搜档网
当前位置:搜档网 › 线变换刚体运动矩阵的群表示方法

线变换刚体运动矩阵的群表示方法

线变换刚体运动矩阵的群表示方法
线变换刚体运动矩阵的群表示方法

7.3 线性变换的矩阵

第七章 线性变换 学习单元3: 线性变换的矩阵 _________________________________________________________ ● 导学 学习目标: 理解线性变换在一个基下的矩阵的概念;会计算线性变换在一个基下的矩阵;理解线性变换在不同基下的矩阵的相似关系;掌握矩阵等价与矩阵相似的区别与联系。 学习建议: 线性变换在一个基下的矩阵建立了线性变换与矩阵的对应关系,类似于平面上点与坐标的对应关系,有了这种对应关系,可以让线性变换问题与矩阵问题互相转化。建议大家多看书,认真理解概念与结论。 重点难点: 重点:深刻理解线性变换在一个基下的矩阵。 难点:理解线性变换在两个不同基下的矩阵的相似关系。 _________________________________________________________ ● 学习内容 一、线性变换的确定 设V 为P 上n 维线性空间,1,,n εεL 为V 的一个基,对任何11,n n V x x ξξεε∈=++L , ()A L V ∈,则11()()()n n A x A x A ξεε=++L 。即只要知道了1(),()n A A εεL ,则()A ξ也就确定了。 命题1 设1,,n εεL 为线性空间V 的一个基,,()A B L V ∈,则A = B 当且仅当 ()(),1,2,,i i A B i n εε==L 。 命题2 设1,,n εεL 为线性空间V 的一个基,1,,n ααL 为V 中一个向量组,则存在 ()A L V ∈,使

(),1,2,,i i A i n εα==L 。 定理 设1,,n εεL 为V 的一个基,1,,n ααL 为V 中任意n 个向量,则存在唯一的 ()A L V ∈,使 (),1,2,,i i A i n εα==L 。 例 设V 为P 上n 维线性空间,()A L V ∈,A 不可逆,证明存在V 的非零线性变换B ,使得BA = 0。 注:由定理可知P 上n 维线性空间V 的线性变换的集合()L V 与V 上n 元向量组之集合间有一一对应关系。 二、线性变换的矩阵 设V 为数域P 上n 维线性空间,取定V 的一个基1,,n εεL ,则对V 中任一n 元向量组1,,n ααL ,存在唯一的()A L V ∈,使(),1,2,,i i A i n εα==L 。这说明()L V 与V 的n 元有序向量组之集有一一对应关系,但n 元有序向量组1,,n ααL 又可由它们在基1,,n εεL 下的坐标确定。 定义 设1,,n εεL 为V 的基,()A L V ∈,令 11112121212122221122()()()n n n n n n n nn n A a a a A a a a A a a a εεεεεεεεεεεε=+++??=+++?? ??=+++?L L K L , 即 1212((),(),())(,,)n n A A A A εεεεεε=L L 其中 111212122212n n n n nn a a a a a a A a a a ?? ????=???????? L L L L L L

车用新型AC_DC矩阵式变换器汇总

2011年8 月电工技术学报 Vol.26 No. 8 第26卷第8期 TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Aug. 2011 车用新型AC-DC 矩阵式变换器 徐壮殷冠贤徐殿国 (哈尔滨工业大学电气工程及自动化学院哈尔滨 150001) 摘要针对车用电子系统容量扩大和传统PWM 整流器缺点问题,为实现输入单位功率因数和一级降压整流,去除死区时间引起的谐波带来的影响,本文提出一种新型基于42V PowerNet的车用双向AC-DC 矩阵变换器。在基于三相 - 三相矩阵变换器理论基础上,推演出AC-DC 矩阵 变换器的整流调制策略,并研究了开关序列和换相的方法,采用优化AV 法调制策略来控制整流器。运用四步换流策略解决了开关换相存在的短路、断路风险和死区时间问题,仿真和实验结果验证了车用新型AC-DC 矩阵式整流器的有效性和正确性。 关键词:AC-DC 变换器矩阵变换器功率因数四步换流中图分类号:TM464 A New Bidirectional AC-DC Converter Using

a Matrix Converter Topology Xu Zhuang Yin Guanxian Xu Dianguo (Harbin Institute of Technology Harbin 150001 China) Abstract The expansion of automotive electronic system and the disadvantage of the conventional rectifier should not be ignored. To achieve unity power factor and complete the step-down rectification in single stage, this paper presents a new type of AC-DC matrix converter with 42V for automotives. It removed the impact of harmonics which is caused by the dead time and reduced the cost of the system. In this paper, the modulation strategy of AC-DC matrix converter derived from that of three-phase – three-phase matrix converter and the methods of commutation are studied. The optimized modulation strategy named AV method is used to control the switch-state. The four-step commutation strategy is a solution of the risks for short circuit, open circuit and the dead-time problem. The experimental results based on DSP system and the simulation results demonstrate the validity and effectiveness of the system. Keywords :AC-DC converter, matrix converter, power factor, four-step current commutation 1 引言 随着汽车电子系统容量的扩大,极限功率为3kW 左右的传统14V 供电系统已经逐渐过渡到42V 系统,其中42V 为整流器工作时的直流端电压,蓄电池电压为36V 。而42V 车用整流器在汽车行驶过程中将发电机所发出的变频变幅的交流电变换为42V 直流电。21世纪汽车的发展受到能源、环保和 安全的三大挑战。未来车辆对电能的需求和效率的要求使得设计适合的车用整合起动发电系统(ISA )显得尤为必要。目前的解决方案离真正意义上的ISA 还有一定的距离。考虑到中国和世界巨大的市场,ISA 的研发对中国的汽车产业将带来相当大的益处。ISA 系统(见图1)起动时由电动机带动引擎,当达到预定转速

旋转矩阵公式法

旋转矩阵公式法!一,选11个号,中了5个号,100%能组合到4个号。假设你选了01、02、03、04、05、06、07、08、09、10、11,则可以组合成以下22注,需投入44元: (1)01、05、07、09、11 (2)01、05、06、08、10 (3)01、04、06、08、09 (4)01、04、05、07、10 (5)01、03、07、08、11 (6)01、03、04、09、10 (7)01、02、06、10、11 (8)01、02、04、08、11 (9)01、02、03、06、07 (10)01、02、03、05、09 (11)02、07、08、09、10 (12)02、05、06、07、08 (13)02、04、07、09、11 (14)02、04、05、06、09 (15)02、03、05、10、11 (16)02、03、04、08、10 (17)03、06、08、09、11 (18)03、06、07、09、10 (19)03、04、05、07、08 (20)03、04、05、06、11 (21)04、06、07、10、11 (22)05、08、09、10、11 二,选11个号,中了4个号,100%能组合到4个号。假设你选了01、02、03、04、05、06、07、08、09、10、11,则可以组合成以下66注,只要132元就能搞定: (1)01、07、08、09、10 (2)01、06、07、09、11 (3)01、05、08、09、11 (4)01、05、07、10、11 (5)01、05、06、08、10 (6)01、04、09、10、11 (7)01、04、06、08、11 (8)01、04、06、07、10 (9)01、04、05、07、08 (10)01、04、05、06、09 (11)01、03、08、10、11 (12)01、03、06、09、10 (13)01、03、06、07、08 (14)01、03、05、07、09 (15)01、03、05、06、11 (16)01、03、04、08、09 (17)01、03、04、07、11 (18)01、03、04、05、10

旋转变换(一)旋转矩阵

旋转变换(一)旋转矩阵 1. 简介 计算机图形学中的应用非常广泛的变换是一种称为仿射变换的特殊变换,在仿射变换中的基本变换包括平移、旋转、缩放、剪切这几种。本文以及接下来的几篇文章重点介绍一下关于旋转的变换,包括二维旋转变换、三维旋转变换以及它的一些表达方式(旋转矩阵、四元数、欧拉角等)。 2. 绕原点二维旋转 首先要明确旋转在二维中是绕着某一个点进行旋转,三维中是绕着某一个轴进行旋转。二维旋转中最简单的场景是绕着坐标原点进行的旋转,如下图所示: 如图所示点v 绕原点旋转θ角,得到点v’,假设v点的坐标是(x, y) ,那么可以推导得到v’点的坐标(x’, y’)(设原点到v的距离是r,原点到v点的向量与x轴的夹角是? ) x=rcos?y=rsin? x′=rcos(θ+?)y′=rsin(θ+?) 通过三角函数展开得到 x′=rcosθcos??rsinθsin? y′=rsinθcos?+rcosθsin? 带入x和y表达式得到 x′=xcosθ?ysinθ y′=xsinθ+ycosθ 写成矩阵的形式是: 尽管图示中仅仅表示的是旋转一个锐角θ的情形,但是我们推导中使用的是三角函数的基本定义来计算坐标的,因此当旋转的角度是任意角度(例如大于180度,导致v’点进入到第四象限)结论仍然是成立的。 3. 绕任意点的二维旋转 绕原点的旋转是二维旋转最基本的情况,当我们需要进行绕任意点旋转时,我们可以把这种情况转换到绕原点的旋转,思路如下: 1. 首先将旋转点移动到原点处 2. 执行如2所描述的绕原点的旋转 3. 再将旋转点移回到原来的位置

也就是说在处理绕任意点旋转的情况下需要执行两次平移的操作。假设平移的矩阵是T(x,y),也就是说我们需要得到的坐标v’=T(x,y)*R*T(-x,-y)(我们使用的是列坐标描述点的坐标,因此是左乘,首先执行T(-x,-y)) 在计算机图形学中,为了统一将平移、旋转、缩放等用矩阵表示,需要引入齐次坐标。(假设使用2x2的矩阵,是没有办法描述平移操作的,只有引入3x3矩阵形式,才能统一描述二维中的平移、旋转、缩放操作。同理必须使用4x4的矩阵才能统一描述三维的变换)。 对于二维平移,如下图所示,P点经过x和y方向的平移到P’点,可以得到: x′=x+tx y′=y+ty 由于引入了齐次坐标,在描述二维坐标的时候,使用(x,y,w)的方式(一般w=1),于是可以写成下面矩阵的形式 按矩阵乘法展开,正好得到上面的表达式。也就是说平移矩阵是 如果平移值是(-tx,-ty)那么很明显平移矩阵式 我们可以把2中描述的旋转矩阵也扩展到3x3的方式,变为:

§7.3线性变换和矩阵.

1.在向量空间 3 F 3中,设1, 1, 1, 1, 是F3的两个基, F 3), 1) 3到 基§7.3 线性变换和矩 阵 1, 0, 1, 1 , 1, 1, 1 2, 1, 1 3 的过渡矩阵; 1,2,3 2) 在基1, 2, 3下的矩阵; 3)求基1, 2, 3下的矩阵; 4)设 (2,1,3) ,分别求在基 1, 2, 3与1 设三维向量空间V 的线性变换在基1, 2 , 3 下的矩阵是 a11a12a13 A a21a22a23 a31a32a33 1)求在基3, 2, 1下的矩阵; 2)求在基1,k 2 , 3下的矩阵, 其中0k F;2 2. 12 12 3 下的坐标.3) 在基3下的矩阵. 3.在向量空间M 2 (F) 中,定义线性变换 (x)= a b a b (X)= a c b d X c a d b

在基E11, E12, E21, E22下的矩阵. 4.在F 2 2中,求在基E11, E12, E21, E22下的矩阵为 1020 0102 A 3040 0304 的线性变换 . 5. 在n维向量空间V中, L(V),存在向量V ,使得 n1 0,但 n 0 .证 明:V中存在一个基,使得在这个基下的矩阵是 0E n1 00 6. 设A s B,C s D,证明 A0B0 s 0C0C 7. 设A可逆,证明:AB^BA. 8. 在向量空间F3 3中,设 ab c c a b b c a A b c a , B a b c, C c a b ca b b c a a b c 证明:A,B, C 彼此此相似. 9.设V 是数域 F 上n 维向量空间,证明:V 的与全体线性变换可交换的线性变换是数乘变换. 10.设V是数域F上n维向量空间,问V中是否有线性变换,,使其中I 是恒等变换,为什么?对无限维空间结论又如何? I.

矩阵式变换器四步换流的仿真研究

矩阵式变换器四步换流的仿真研究 郭有贵,朱建林 (湘潭大学信息工程学院 湖南湘潭 411105) 摘 要:利用SIM U L IN K 对矩阵变换器的四步换流进行了仿真,验证了理论的正确性。关键词:矩阵变换器;四步换流;SIM U LI NK 仿真;电流 中图分类号:T P 337 文献标识码:A 文章编号:1004373X (2003)0706202 A Simulation Study on Four step Commutation for Matrix C onverters GU O Y oug ui,ZHU Jianlin (Colleg e of Info rmatio n Engineering ,Xi a ng tan University ,Xiangta n,411105,China) Abstract :Simula tes t he fo ur st ep comm ut atio n fo r mat rix conv erter s by means o f SIM U L IN K .It ver ifies the cor rectness o f four step commutat ion theo ry. Keywords :mat rix co nv ert er s;fo ur st ep co mmutatio n;SIM U LI NK simulatio n;cur rent 收稿日期:200301 02 矩阵式变换器的安全换流非常重要,否则,将导致开关管的损坏。换流是指将负载电流从一个双向开关管换到另一个双向开关管。在调制过程中,矩阵式变换器开关管通断状态不断改变,从而使换流始终存在于矩阵式变换器的运行过程中,因此,安全换流是矩阵式变换器控制策略中一项至关重要的问题。 同一输出相的双向开关的换流方法主要有3种:(1)插入死区延时法。他不能工作在电流连续的情况下,且开关损耗大,但控制方法简单。 (2)N.Burany 提出的一种四步换流策略,可实现半软开关换流。被认为是最有前途的方法。 (3)台湾学者潘晴财教授提出的一种基于电流滞环调制的谐振式软开关换流策略。这仅限于电流滞环调制的矩阵式变换器换流。1 四步换流 1.1 2个双向开关之间的换流 如图1所示,1和2是同一输出相的2个双向开关,1c 和2c 是开关1和2的正向开关,1nc 和2nc 是反向开关。假定电流方向为正向,现在要关断开关1,开通开关2,要保证电流连续,又不能出现短路情况,共要经过4步才能完成: 1关断开关1的反向开关1nc,由于电流是正向流动,这一步不会带来开关损耗。 o开通开关2的正向开关2c ,打开2c 后,如果开关2所连接的电压高于开关1所连接的电压,那么电流将自动换流到2c 中。 ?关断开关1的正向开关1c,由于电流有一半的可能已经换流到2c 中了,所以1c 的关断有50%的可能性为零电流关断。 ?开通开关2的反向开关2nc 。 图1 四步换流法 这样的四步换流策略,既禁止了电源发生短路的开关组合,又保证了在任意时刻给负载电流提供了至少一条流通路径,且换流过程中有一半的可能性实现软开关中的零电流关断,所以被称为四步半软开关换流法。 如果电流是反相流动的,仍采用原来的换流顺序,将导致不安全后果。电流为反向时要按以下顺序进行:第1步,关断1c;第2步,开通2nc;第3步,关断1nc;第4步,开通2c 。 1.2 3个双向开关之间的换流 在矩阵式变换器中,每一输出相通过3个双向开 62 郭有贵等:矩阵式变换器四步换流的仿真研究

三维旋转矩阵的计算

三维旋转矩阵的计算 旋转矩阵(Rotation matrix)是在乘以一个向量的时候有改变向量的方向但不改变大小的效果的矩阵。旋转矩阵不包括反演,它可以把右手坐标系改变成左手坐标系或反之。所有旋转加上反演形成了正交矩阵的集合。 在三维空间中,旋转变换是最基本的变换类型之一,有多种描述方式,如Euler 角、旋转矩阵、旋转轴/旋转角度、四元数等。本文将介绍各种描述方式以及它们之间的转换。 1. 旋转矩阵 用一个3阶正交矩阵来表示旋转变换,是一种最常用的表示方法。容易证明,3阶正交阵的自由度为3。注意,它的行列式必须等于1,当等于-1的时候相当于还做了一个镜像变换。 2. Euler角 根据Euler定理,在三维空间中,任意一种旋转变换都可以归结为若干个沿着坐标轴旋转的组合,组合的个数不超过三个并且两个相邻的旋转必须沿着不同的坐标轴。因此,可以用三个沿着坐标轴旋转的角度来表示一个变换,称为Euler角。旋转变换是不可交换的,根据旋转顺序的不同,有12种表示方式,分别为:XYZ、XZY、XYX、XZX、YXZ、YZX、YXY、YZY、ZXY、ZYX、ZXZ、ZYZ,可以自由选择其中的一种。对于同一个变换,旋转顺序不同,Euler角也不同,在指定Euler角时应当首先约定旋转顺序。 2.1 Euler角转化为旋转矩阵 不妨设先绕Z轴旋转γ,再绕Y轴旋转β,最后绕X轴旋转α,即旋转顺序为XYZ,旋转矩阵

3. 旋转轴/旋转角度 用旋转轴的方向向量n和旋转角度θ来表示一个旋转,其中 θ>0表示逆时针旋转。 3.1 旋转轴/旋转角度转化为旋转矩阵 设v是任意一个向量,定义

线性变换与矩阵地关系

线性变换与矩阵的关系 学院:数学与计算机科学学院 班级:2011级数学与应用数学 : 学号:

线性变换与矩阵的关系 (西北民族大学数学与应用数学专业, 730124) 指导教师 一、线性变换 定义1 设有两个非空集合V,U,若对于V中任一元素α,按照一定规则总有U中一个确定的元素β和它对应,则这个对应规则被称为从集合V到集合U的变换(或映射),记作β=T(α)或β=T α,( α∈V)。 设α∈V,T(α)= β,则说变换T把元素α变为β,β称为α在变换T下的象,α称为β在变换T下的源,V称为变换T的源集,象的全体所构成的集合称为象集,记作T(V)。即 T(V)={ β=T(α)|α∈V}, 显然T(V) ?U 注:变换的概念实际上是函数概念的推广。 定义2 设V n,U m分别是实数域R上的n维和m维线性空间,T是一个从V n到U m得变换,如果变换满足 (1)任给α1 ,α2∈V n,有T(α1+α2)=T(α1)+T(α2); (2)任给α∈V n,k∈R,都有 T(kα)=kT(α)。 那么,就称T为从V n到U m的线性变换。 说明:

○1线性变换就是保持线性组合的对应的变换。 ○2一般用黑体大写字母T,A,B,…代表现象变换,T(α)或Tα代表元 α在变换下的象。 ○3若U m=V n,则T是一个从线性空间V n到其自身的线性变换,称为线性空 V n中的线性变换。下面主要讨论线性空间V n中的线性变换。 二、线性变换的性质 设T是V n中的线性变换,则 (1)T(0)=0,T(-α)=-T(α); (2)若β=k1α1+k2α2+…+k mαm,则Tβ=k1Tα1+k2Tα2+…+k m Tα m; (3)若α1,…αm线性相关,则Tα1…Tαm亦线性相关; 注:讨论对线性无关的情形不一定成立。 (4)线性变换T的象集T(V n)是一个线性空间V n的子空间。 记S T={α|α∈V n,T α=0}称为线性变换T的核,S T是V n的子空间。 设V和W是数域F上的向量空间,而σ:V→W是一个线性映射。那么 (i)σ是满射Im(σ)=W; (ii)σ是单射Ker(σ)={0}

矩阵变换器研究综述

矩阵变换器研究综述 1 引言 随着电力电子技术的迅速发展,交-交变频器在传动系统中已经得到了广泛的应用,但也存在一些固有的缺陷,因此研究新型的既有优良控制性能和输入电流品质而又成本低、结构紧凑、性能可靠的交-交变频器已成为当前的发展趋势。 矩阵式变换器是一种直接交-交变频器,与传统的自然换流变频器相比,具有以下优点: l 无中间直流环节,结构紧凑,体积小,效率高,便于实现模块化; l 无需较大的滤波电容,动态响应快; l 能够实现能量双向流动, 便于电动机实现四象限运行; l 控制自由度大,输出电压幅值和频率范围连续可调; l 输入功率因数可控,带任何负载时都能使功率因数为1.0; l 输出电压和输入电流的低次谐波含量较小; l 实现功率集成后能够改善变换器内部的电磁兼容性,其输出的pwm电压和输入功率因数可调的特点能够改善电动机、变换器与电源之间的电磁兼容性[1]。 矩阵变换器的原理在80年代被提出,由于具有性能优良的潜在优势,越来越引起人们的重视,有逐步取代交-直-交变频器、周波变流器的趋势[2]。特别是它具有本身不产生谐波污染的同时,能够对电网进行无功补偿的能力,其总体性能高于其它变换器。在日益关注可持续发展问题,大力推行电力环保、绿色电源的今天,研究与开发矩阵式变换器特别具有现实意义。 矩阵变换器的关键技术主要包括:主回路的拓扑结构和工作原理、安全换流技术、调制策略和保护电路设计等,下面就这些关键技术的研究进行一一介绍。

2 主回路拓扑结构和工作原理 矩阵变换器的名称来源于它的矩阵状拓扑结构。一个m相输入、n相输出的矩阵变换器,由m×n个双向开关组成,它们排列成矩阵形状,分单级和双级两种。 图1 单级矩阵变换器拓朴结构 2.1 单级矩阵变换器 常规的矩阵变换器是一种单级交-交变换器(见图1),其结构简单,可控性强,但存在以下缺陷: l 最大电压增益为0.866,并且与控制算法无关; l 主电路的9个双向开关存在控制和保护问题,应采用安全换流技术; l 必须采用复杂的pwm控制和保护策略,同时要求复杂的箝位保护电路。 单级矩阵变换器的理论和控制技术得到了飞速的发展,但仍然停留在实验阶段,而不能在工业中推广应用,原因在于: l 其控制策略复杂,计算量大; l 四步换流法增加了控制的难度, 降低了系统的可靠性; l 开关数量多,系统成本过高[3,4]。

旋转矩阵

三维旋转矩阵 三维旋转特性 给定单位向量u和旋转角度φ,则R(φ,u)表示绕单位向量u旋转φ角度。 R(0,u)表示旋转零度。 R(φ,u)= R(?φ,?u)。 R(π+φ,u)= R(π?φ,?u)。 如果φ=0,则u为任意值。 如果0<φ<π,则u唯一确定。 如果φ= π,则符号不是很重要。因为- π和π是一致的,结果相同,动作不同。 由旋转矩阵求旋转角和旋转轴 每一个三维旋转都能有旋转轴和旋转角唯一确定,好多方法都可以从旋转矩阵求出旋转轴和旋转角,下面简单介绍用特征值和特征向量确定旋转轴和旋转角的方法。 将旋转矩阵作用在旋转轴上,则旋转轴还是原来的旋转轴,公式表示如下: Ru=u 转化得: Ru=Iu =>(R?I)u=0 可以确定的是u在R-I的零空间中,角度可有下面的公式求得,Tr表示矩阵的迹: Tr(R)=1+2cosθ 从旋转轴和旋转角求旋转矩阵 假设给定单位向量u=(u x,u y, u z) T ,并且u为单位向量即: u x2+u y2+u z2=1,给定绕u旋转的角度θ,可以得出旋转矩阵R: R=[cosθ+u x2(1?cosθ)u x u y(1?cosθ)?u z sinθu x u z(1?cosθ)+u y sinθ u y u x(1?cosθ)+u z sinθcosθ+u y2(1?cosθ)u y u z(1?cosθ)?u x sinθ u z u x(1?cosθ)?u y sinθu z u y(1?cosθ)+u x sinθcosθ+u z2(1?cosθ) ] 上面的公式等价于: R=cosθI+sinθ[u]×+(1?cosθ)u?u 其中[u]×是单位向量u的叉乘矩阵,?表示张量积,I是单位向量. 这是罗德里格斯旋转方程的矩阵表示。下面给出叉乘和张量积的公式:

线性变换和矩阵.

§3 线性变换和矩阵 一、线性变换关于基的矩阵 设V 是数域P 上n 维线性空间.n εεε,,,21 V 的一组基,现在建立线性变换与 矩阵关系. 空间V 中任意一个向量ξ可以被基n εεε,,,21 线性表出,即有关系式 n n x x x εεεξ+++= 2211 (1) 其中系数是唯一确定的,它们就是ξ在这组基下的坐标.由于线性变换保持线性关系不变,因而在ξ的像A ξ与基的像A 1ε,A 2ε,…,A n ε之间也必然有相同的关系: A ξ=A (n n x x x εεε+++ 2211) =1x A (1ε)+2x A (2ε)+…+n x A (n ε) (2) 上式表明,如果知道了基n εεε,,,21 的像,那么线性空间中任意一个向量ξ 的像也就知道了,或者说 1. 设n εεε,,,21 是线性空间V 的一组基,如果线性变换?与?在这组基上 的作用相同,即 A i ε= B i ε, ,,,2,1n i = 那么A = B . 结论1的意义就是,一个线性变换完全被它在一组基上的作用所决定.下面指出,基向量的像却完全可以是任意的,也就是 2. 设n εεε,,,21 是线性空间V 的一组基,对于任意一组向量n ααα,,,21 一定有一个线性变换?使 A i ε=i α .,,2,1n i = 定理1 设n εεε,,,21 是线性空间V 的一组基,n ααα,,,21 是V 中任意n 个 向量.存在唯一的线性变换?使

A i ε=i α .,,2,1n i = 定义2 设n εεε,,,21 是数域P 上n 维线性空间V 的一组基,A 是V 中的一个 线性变换.基向量的像可以被基线性表出: ???????+++=+++=+++=. ,,22112222112212211111n nn n n n n n n n a a a A a a a A a a a A εεεεεεεεεεεε 用矩阵表示就是 A (n εεε,,,21 )=(A (1ε),A ?(2ε),…, A (n ε)) =A n ),,,(21εεε (5) 其中 ?????? ? ??=nn n n n n a a a a a a a a a A 2122221 11211 矩阵A 称为线性变换A 在基n εεε,,,21 下的矩阵. 例 1 设m εεε,,,21 是n )(m n >维线性空间V 的子空间W 的一组基,把它 扩充为V 的一组基n εεε,,,21 .指定线性变换A 如下 ???+====. ,,1,0,,,2,1,n m i A m i A i i i εεε 如此确定的线性变换A 称为子空间W 的一个投影.不难证明 A 2=A 投影A 在基n εεε,,,21 下的矩阵是

高等代数与解析几何第七章(1-3习题)线性变换与相似矩阵答案

第七章线性变换与相似矩阵 习题 7.1 习题 7.1.1 判别下列变换是否线性变换? (1)设是线性空间中的一个固定向量, (Ⅰ),, 解:当时,显然是的线性变换; 当时,有,,则 ,即此时不是的线性变换。 (Ⅱ),; 解:当时,显然是的线性变换; 当时,有,,则 ,即此时不是的线性变换。 (2)在中, (Ⅰ), 解:不是的线性变换。因对于,有,,所以。 (Ⅱ); 解:是的线性变换。设,其中,,则有 ,

。 (3)在(Ⅰ)解:是中, , 的线性变换:设,则 , ,。 (Ⅱ)解:是 ,其中 的线性变换:设 是中的固定数; ,则 , ,。 (4)把复数域看作复数域上的线性空间, 共轭复数; 解:不是线性变换。因为取,时,有 ,即。,其中是的 , (5)在中,设与是其中的两个固定的矩阵,,。 解:是的线性变换。对,,有 , 。 习题7.1.2 在中,取直角坐标系,以表示空间绕轴由 轴向方向旋转900的变换,以表示空间绕轴由轴向方向

旋转 900的变换,以表示空间绕轴由轴向方向旋转900的变换。证明(表示恒等变换), , ; 并说明是否成立。 证明:在中任取一个向量,则根据,及的定义可 知:, ,, ; ; , , , ,即,故。 因为因为 , ,所以 , ,所以 。 。 因为, ,所以。 习题 7.1.3 在中,,,证明。证明:在中任取一多项式,有 。所以。 习题 7.1.4 设,是上的线性变换。若,证明 。 证明:用数学归纳法证明。当时,有

命题成立。假设等式对成立,即。下面证明等式对 也成立。因有 ,即等式对也成立,从而对任意自然数都成立。习题 7.1.5 证明(1)若是上的可逆线性变换,则的逆变换唯一; (2)若,是上的可逆线性变换,则也是可逆线性变换,且 。 证明:(进而(2)因1)设 ,都是 都是的逆变换,则有, 。即的逆变换唯一。 上的可逆线性变换,则有 。 ,同理有 由定义知是可逆线性变换,为逆变换,有唯一性得 。 习题7.1.6 设是上的线性变换,向量,且,,,都不是零向量,但。证明,,, 线性无关。 证明:设,依次用可得 ,得,而, 故即得 ;同理有: ;依次类推可得,即得 ,得, ,进而得。

矩阵式变换技术

矩阵式变换技术 1、引言 随着电力电子技术的发展,电力电子器件从20世纪60年代的SCR(晶闸管)发展到HVIGBT(耐高压绝缘栅双极型晶体管)。继VVVF变频之后出现了矢量控制变频、直接转矩控制变频,其共同缺点是输入功率因数低,直流回路需要耐高压大容量的储能电容,再生能量不能回馈电网。矩阵式交—交变频能克服以上不足,近年来越来越受到人们的广泛关注。 与传统的交—直—交变频器和交—交变频器相比,矩阵式变频器有如下几方面的显著特点: (1)输出电压幅值和频率可独立控制,输出频率可以高于、低于输入频率,理论上可以达到任意值; (2)在某些控制规律下,输入功率因数角能够灵活调节达到0.99以上,并可自由调节,可超前、滞后或调至接近于单位功率因数角; (3)采用四象限开关,可以实现能量双向流动; (4)没有中间储能环节,结构紧凑,效率高; (5)输入电流波形好,无低次谐波; (6)具有较强的可控性。 矩阵变换器的控制策略包括开关函数S的确定、实现和安全换流,开关函数的确定方法有直接变换法、空间矢量调制法[1]和滞环电流跟踪法,目前空间矢量调制法研究的比较成熟。在换流方法的研究上有四步法、三步法、两步法、软开关换流。 2、拓扑结构的发展 矩阵变换器的电路拓扑形式在1976年由L.Gyllglli提出。直到1979年,M.Venturini和A.Alesina[7]首先提出了由9个功率开关组成的矩阵式交—交变换器结构,并指出矩阵式变换器的输入功率因素角是可以任意调节的,但后来发现这种变换器存在固有极限,最大电压增益为0.866,并且与控制算法无关。由于矩阵式变换器的主回路采用9个双向开关,还存在着双向开关的实现与保护问题,其难点在于开关换流时,既不能有死区又不能有交叠,否则,任何一种情况都将导致开关管的损坏。为了实现安全换流,N.Bu rany提出了一种四步换流策略,可实现半软开关换流。 2.1 拓扑结构 矩阵变换器最初提出时指的是M相输入变换到N相输出的一般化结构,因此曾被称为通用变换器。根据M、N取值的不同及输入输出端电源性质的不同,人们提出了许多拓扑结构 (1)由三相交流变换到两组直流,或者一组可变换极性的直流; (2)从三相交流变换到单相交流; (3)从单一直流变换到三相交流,也就是通常所说的逆变器; (4)由交流三相变换到交流三相,它的输入输出端之间采用双向开关互相连接,即9开关矩阵变换器,它是研究得最多的一种拓扑; (5)由交流三相变换到交流三相,但输入输出端之间采用3个全控桥进行连接,称为电压源型矩阵变换器。它的结构比9开关矩阵变换器复杂,但性能更优。 三相输入、三相输出的交—交矩阵变换器电路拓扑结构如图1所示。

线性变换的矩阵表示式

§5 线性变换的矩阵表示式 上节例10中,关系式 ()T x Ax = ()n x R ∈ 简单明了地表示出n R 中的一个线性变换. 我们自然希望n R 中任何一个线性变换都能用这样的关系式来表示. 为此,考虑到n n Ae Ae ==αα,,11 (n e e ,,1 为单位坐标向量),即 ()n i Ae i i ,,2,1 ==α, 可见如果线性变换T 有关系式()Ax x T =,那么矩阵A 应以()i e T 为列向量. 反之,如果一贯个线性变换T 使()()n i e T i i ,,2,1 ==α,那么T 必有关系式 ()11122(), ,() n n n T x T e e x T x e x e x e ==++ +???? 1122()()() n n x T e x T e x T e =++ + ()11(),,()(,,)n n T e T e x x Ax αα=== 总之,n R 中任何线性变换T ,都能用关系式 ()()n R x Ax x T ∈=表示,其中1((),,())n A T e T e =. 把上面的讨论推广到一般的线性空间,我们有 定义7 设T 是线性空间n V 中的线性变换,在n V 中取定一个基 n αα,,1 ,如果这个基在变换T 下的象(用这个基线性表示)为 11112121212122221122(),(),(), n n n n n n n nn n T a a a T a a a T a a a αααααααααααα=++ +??=+++???? =++ +? 记()()()()n n T T T αααα,,,,11 = ,上式可表示为

矩阵式变换器

矩阵式交流/交流变频器 1、引言 随着电力电子技术的发展,电力电子器件从20世纪60年代的SCR(晶闸管)发展到HVIGB T(耐高压绝缘栅双极型晶体管)。继VVVF变频之后出现了矢量控制变频、直接转矩控制变频,其共同缺点是输入功率因数低,直流回路需要耐高压大容量的储能电容,再生能量不能回馈电网。矩阵式交—交变频能克服以上不足,近年来越来越受到人们的广泛关注。 与传统的交—直—交变频器和交—交变频器相比,矩阵式变频器有如下几方面的显著特点: (1)输出电压幅值和频率可独立控制,输出频率可以高于、低于输入频率,理论上可以达到任意值; (2)在某些控制规律下,输入功率因数角能够灵活调节达到0.99以上,并可自由调节,可超前、滞后或调至接近于单位功率因数角; (3)采用四象限开关,可以实现能量双向流动; (4)没有中间储能环节,结构紧凑,效率高; (5)输入电流波形好,无低次谐波; (6)具有较强的可控性。 矩阵变换器的控制策略包括开关函数S的确定、实现和安全换流,开关函数的确定方法有直接变换法、空间矢量调制法[1]和滞环电流跟踪法,目前空间矢量调制法研究的比较成熟。在换流方法的研究上有四步法、三步法、两步法、软开关换流。 2、拓扑结构的发展 矩阵变换器的电路拓扑形式在1976年由L.Gyllglli提出。直到1979年,M.Venturini 和A.Alesina[7]首先提出了由9个功率开关组成的矩阵式交—交变换器结构,并指出矩阵式变换器的输入功率因素角是可以任意调节的,但后来发现这种变换器存在固有极限,最大电压增益为0.866,并且与控制算法无关。由于矩阵式变换器的主回路采用9个双向开关,还存在着双向开关的实现与保护问题,其难点在于开关换流时,既不能有死区又不能有交叠,否则,任何一种情况都将导致开关管的损坏。为了实现安全换流,N.Burany提出了一种四步换流策略,可实现半软开关换流。 2.1 拓扑结构 矩阵变换器最初提出时指的是M相输入变换到N相输出的一般化结构,因此曾被称为通

旋转矩阵公式表

S=10—13的旋转矩阵公式一览 选10个号码,出7中6型旋转矩阵 A,B,C,D,E,F,G A,B,C,D,H,I,J A,B,C,E,F,H,J A,B,C,E,F,I,J A,B,D,E,F,H,J A,B,D,E,F,I,J A,B,E,F,G,H,I A,C,E,G,H,I,J B,D,F,G,H,I,J C,D,E,F,G,H,I C,D,E,F,G,H,J C,D,E,F,G,I,J 一、10个号码(选6中5 - 12注) 2 3 5 6 7 9 ,1 2 4 7 9 10, 3 4 6 7 8 10 3 4 5 6 9 10 ,1 3 5 6 7 10, 1 2 4 5 6 8 1 2 3 4 8 9 ,1 4 5 7 8 9, 2 3 5 7 8 10 1 2 6 8 9 10 ,1 2 3 4 5 10, 1 3 6 7 8 9 二、11个号码(选6中5 – 19注) 2 3 7 9 10 11,2 4 7 8 10 11,1 3 4 6 7 10

2 3 4 6 8 9,1 4 5 7 8 9,3 5 7 8 9 10 1 2 6 8 9 10,1 2 3 4 5 10,1 2 3 7 8 11 1 2 4 6 7 11,2 4 5 8 9 11,3 4 5 6 7 11 1 2 3 5 6 9,2 5 6 7 8 10,1 3 4 8 9 11 1 6 7 8 9 11, 三、12个号码(选6中5 – 33注) 2 3 9 10 11 12, 4 7 8 10 11 12,1 3 6 7 10 12 1 2 5 8 10 12, 1 5 7 9 11 12,3 5 6 8 11 12 2 3 4 6 8 10, 2 6 7 8 9 12,3 5 8 9 10 12 4 5 6 9 10 12, 1 3 4 5 10 11,2 3 7 8 10 11 1 2 4 7 9 10, 2 4 5 8 9 11,3 4 6 7 9 11 1 2 3 5 6 9, 2 5 6 7 10 11,1 3 4 8 9 12 1 6 8 9 10 11, 1 4 5 6 7 8,1 4 5 6 10 11 2 3 4 5 7 12, 1 3 4 8 11 12,1 2 3 5 7 11 1 3 7 8 9 11, 1 2 4 6 9 12,1 2 4 10 11 12 1 2 6 8 11 12, 1 2 3 4 7 8,2 4 6 7 11 12 1 2 3 6 9 11, 5 6 7 8 9 10,3 4 5 7 9 10 四、13个号码(选6中5 - 56注) 3 9 10 11 12 13, 4 7 8 10 12 13,1 3 6 7 12 13 1 2 5 6 7 10,1 2 5 7 12 13,5 6 8 11 12 13

矩阵式变频电路及变频器

矩阵式交---交变频器 姓名 摘要:本文介绍了矩阵式变频电路及变频器的工作原理和调制策略,文中遵循理论和实际相结合的原则,对变频器的工作原理和调制策略作了详细的分析。 关键词:变频、工作原理、调制策略 引言:随着电力电子技术的发展,电力电子器件从20世纪60年代的SCR(晶闸管)发展到HVIGBT(耐高压绝缘栅双极型晶体管)。继VVVF变频之后出现了矢量控制变频、直接转矩控制变频,其共同缺点是输入功率因数低,直流回路需要耐高压大容量的储能电容,再生能量不能回馈电网。矩阵式交—交变频能克服以上不足,近年来越来越受到人们的广泛关注。矩阵式变频器是一种交-交直接变频器,由九个直接接于三相输入和输出之间的开关阵组成。矩阵变换器没有中间直流环节,输出由三个电平组成,谐波含量比较小;其功率电路简单、紧凑,并可输出频率、幅值及相位可控的正弦负载电压;矩阵变换器的输入功率因数可控,可在四象限工作。 一、拓扑结构的发展 矩阵变换器的电路拓扑形式在1976年由L.Gyllglli提出。直到1979年,M.Venturini和A.Alesina[7]首先提出了由9个功率开关组成的矩阵式交—交变换器结构,并指出矩阵式变换器的输入功率因素角是可以任意调节的,但后来发现这种变换器存在固有极限,最大电压增益为0.866,并且与控制算法无关。由于矩阵式变换器的主回路采用9个双向开关,还存在着双向开关的实现与保护问题,其难点在于开关换流时,既不能有死区又不能有交叠,否则,任何一种情况都将导致开关管的损坏。为了实现安全换流,N.Burany提出了一种四步换流策略,可实现半软开关换流。 矩阵变换器最初提出时指的是M相输入变换到N相输出的一般化结构,因此曾被称为通用变换器。根据M、N取值的不同及输入输出端电源性质的不同,人们提出了许多拓扑结构 (1)由三相交流变换到两组直流,或者一组可变换极性的直流; (2)从三相交流变换到单相交流; (3)从单一直流变换到三相交流,也就是通常所说的逆变器; (4)由交流三相变换到交流三相,它的输入输出端之间采用双向开关互相连接,即9开关矩阵变换器,它是研究得最多的一种拓扑; (5)由交流三相变换到交流三相,但输入输出端之间采用3个全控桥进行连接,称为电压源型矩阵变换器。它的结构比9开关矩阵变换器复杂,但性能更优。 二、矩阵式变频电路的基本工作原理 (1)利用单相输入 u为 对单相交流电压us进行斩波控制,即进行PWM控制时,输出电压 o

相关主题