搜档网
当前位置:搜档网 › zemax基本操作和透镜设计实验

zemax基本操作和透镜设计实验

zemax基本操作和透镜设计实验
zemax基本操作和透镜设计实验

Zemax基本操作和透镜设计

一、实验目的

学习ZEMAX软件的安装过程,熟悉ZEMAX软件界面的组成及基本使用方法。设计一个单透镜和一个双胶合透镜。

二、实验要求

1、掌握ZEMAX软件的安装、启动与退出的方法。

2、掌握ZEMAX软件的用户界面。

3、掌握ZEMAX软件的基本使用方法。

4、学会使用ZEMAX的帮助系统。

三、实验内容

○单透镜设计

用BK7玻璃设计一个焦距为100mm的F/4单透镜,要求在轴上可见光范围内。

1. 打开ZEMAX软件,点击新建,以抹去打开时默认显示的上一个设计结果,同时新建一个新的空白透镜。

2. 在主菜单-系统-光波长弹出的对话框中输入3个覆盖可见光波段的波长,设定主波长。同样在系统-通用配置里设置入瞳直径值。

3. 在光阑面的Glass列里输入BK7作为指定单透镜的材料,并在像平面前插入一个新的面作为单透镜的出射面。

4. 输入相关各镜面的厚度和曲率半径。

5. 生成光线像差特性曲线、2D、3D图层曲线和实体模型、渲染模型等分析图来观察此时的成像质量。

6. 利用Solve功能来求解镜片厚度,更新后观察各分析图的相应变化。

7. 利用主菜单-工具-优化-优化来对设计进行优化,更新后观察各分析图的相应变化。

8. 调用并建构优化函数(Merit Function),在优化后更新全部内容,然后观察各分析图的相应变化。

9. 分别调用点列图、OPD图以及焦点色位移图(主菜单-分析-杂项)来观察最优化后的成像质量。

10. 将此设计起名保存,生成报告。

优化前

优化后

○双胶合透镜设计

以前一个实验内容设计优化后的单透镜为基础,添加一块材料为SF1玻璃的透镜来构建双透镜系统,进一步优化成像质量。

1. 插入新的平面作为第二块透镜的出射面,输入相关镜面的厚度、曲率半径以及玻璃类型值(BK7、SF1)。

2. 生成光线像差特性曲线、2D、3D图层曲线和实体模型、渲染模型等分析图来观察此时的成像质量。

3. 沿用前例的优化函数,在优化更新后观察各分析图的相应变化,并分别对比单透镜时的点列图、OPD图以及焦点色位移图(主菜单-分析-杂项)的相应变化,观察双透镜此时的成像质量。

4. 利用利用Solve功能来求解镜片边缘厚度,更新后更新后观察各分析图的相应变化。

5. 定义视场(系统-视场)来测试此双透镜的离轴特性。

6. 将此设计起名保存,生成报告。

优化前

优化后

四、验结果及分析

无论是单透镜还是双胶和透镜设计时优化前和优化后各种光学参数有明显的差距,使得所设计的透镜的球差,波相差,离焦等光学参数明显减小,比较符合设计意图,虽然一部分软件原理并不是十分清楚(只是按照规定步骤进行的),但是还是在一定程度上了解和掌握了光学设计软件Zemax的使用方法和主要功能,已基本达到的实验目的。

zemax自聚焦透镜设计

目录 摘要................................................................ I Abstract........................................................... II 绪论. (1) 1 自聚焦透镜简介 (2) 1.1自聚焦透镜 (2) 1.2 自聚焦透镜的特点 (2) 1.3 自聚焦透镜的主要参数 (3) 2 自聚焦透镜的应用 (4) 2.1 聚焦和准直 (4) 2.2 光耦合 (5) 2.3 单透镜成像 (6) 2.4 自聚焦透镜阵列成像 (6) 3 球面自聚焦透镜设计仿真 (8) 3.1 确定透镜模型 (8) 3.2 设置波长 (8) 3.3数值孔径设定 (9) 3.4 自聚焦透镜光路 (9) 4 优化参数 (10) 4.1光线相差分析 (10) 4.2聚焦光斑分析 (12) 4.3 3D模型 (12) 结束语 (13) 致谢 (14) 参考文献 (15)

摘要 本文主要说明应用梯度折射率对光传播的影响分析设计自聚焦透镜(GRIN lens),自聚焦透镜主要应用于光纤传输系统中。自聚焦透镜同普通透镜的区别在于,自聚焦透镜材料能够使沿轴向传输的光产生折射,并使折射率的分布沿径向逐渐减小,从而实现出射光线被平滑且连续的汇聚到一点。利用此特性,G-lens 在光纤传输系统中是构成准直、耦合、成像系统的主要部分。而它结构简单,体积小的特点更适用于小型光学器材中,例如窥镜系统。 关键词:梯度折射率,自聚焦,光耦合,准直

Abstract This article main showing the impact analysis designs the self-focusing lens using the gradient refractive index to the light emission (GRIN lens), the self-focusing lens mainly apply in the optical fiber transmission system. The self-focusing lens lie in with the ordinary lens' difference, the self-focusing lens material can cause along the axial transmission light to have the refraction, and causes the refractive index the distribution to reduce gradually along the radial direction, thus realizes the exit ray by smooth and the continual gathering to a spot. Using this characteristic, G-lens in the optical fiber transmission system is the constitution collimation, the coupling, imaging system's main part. But its structure is simple, the volume small characteristic is suitable in the small optics equipment, for example looking glass system. Keywords:Gradient index, GRIN lens, Light coupling,Collimation

zemax实例

课程1:单透镜(a singlet) 开始ZEMAX,输入波长和镜片数据,生成光线 特性曲线(ray fan),光程差曲线(OPD),和点列图 (Spot diagram),确定厚度求方法和变量,进行简 单的优化。 假设需要设计一个F/4的镜片,焦距为100mm,在轴上可见光谱范围内,用BK7玻璃,该怎样开始呢? 首先,运行ZEMAX。ZEMAX主屏幕会显示镜片数据编辑(LDE)。你可以对LDE(你工作的场所)窗口进行移动或重新调整尺寸,以适合你自己的喜好。LDE由多行和多列组成,类似于电子表格。半径、厚度、玻璃和半口径等列是使用得最多的,其他的则只在某些特定类型的光学系统中才会用到。 1、基本设置:开始,我们先为我们的系统输入波长。这不一定要先完成,我们只不过现在选中了这一步。在主屏幕菜单条上,选择“系统(System)”---“通用配置(general)”----“单位units”,先确定单位。再选择“系统(System)”菜单下的“波长(Wavelengths)”。屏幕中间会弹出一个“波长数据(Wavelength Data)”对话框。ZEMAX中有许多这样的对话框,用来输入数据和提供你选择。用鼠标在第二和第三行的“使用(Use)”上单击一下,

将会增加两个波长使总数成为三。现在,在第一个“波长”行中输入0.486,这是氢(Hydrogen)F谱线的波长,单位为微米。 Z EMAX全部使用微米作为波长的单位。现在,在第二行的波长列中输入0.587,最后在第三行输入0.656。这就是ZEMAX中所有有关输入数据的操作,转到适当的区域,然后键入数据。在屏幕的最右边,你可以看到一列主波长指示器。这个指示器指出了主要的波长,当前为0.486微米。在主波长指示器的第二行上单击,指示器下移到587的位置。主波长用来计算近轴参数,如焦距,放大率等等。“权重(Weight)”这一列用在优化上,以及计算波长权重数据如RMS点尺寸和STREHL率。现在让所有的权为1.0,单击OK保存所做的改变,然后退出波长数据对话框。 选择“系统(System)”---“视场(fields)”----“角度”将X、Y都设为零。表示光线平行于主光轴入射。 2、为镜片定义一个孔径。这可以使ZEMAX在处理其他的事情上,知道每一个镜片该被定为多大。由于我们需要一个F/4镜头,我们需要一个25mm的孔径(100mm的焦距除F/4)。设置这个孔径值,选择“系统”---“通用配置(General)”---“aperture(孔径)”输入“光圈数值”:25。注意孔径类型缺省时为“入瞳直径(Entrance Pupil Diameter)”,也可选择其他类型的孔径设置。 3、加入一些重要的表面数据。ZEMAX模型光学系统使用一系列的表面,每一个面有一个曲率半径,厚度(到下一个面的轴上距离),和玻璃。一些表面也可有其他的数据,我们以后将会讨论到。

探究凸透镜成像规律 实验报告

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 探究凸透镜成像规律实验报告 班级姓名成绩 【实验目的】探究凸透镜成像的规律 【实验器材】光具座/ 蜡烛/ 凸透镜/ 光屏/ 火柴 【实验步骤】 1.将凸透镜的位置固定在光具座刻度尺的40cm处,蜡烛和光屏分居凸透镜两侧,并调节三者高度,使烛焰中心,凸透镜中心,光屏中心在同一高度上,目的是:使烛焰的像能成在光屏的中间。 2、把蜡烛放置距凸透镜40cm的地方,在光具座上移动光屏,直到光屏出现明亮、清晰的像为止,观察所成像的特点,并记录物距、像距和成像特点。 3、把蜡烛移近凸透镜,使物距等于30cm, 25cm,20cm,18cm, 15cm,重复步骤2。 4、使物距u=f=10cm,观察成像情况,并将结果记入表格。 5、使物距u=5cm,观察成像情况,并将结果记入表格。移动透镜,观察像的变化。 6.实验完成后熄灭蜡烛并整理仪器。 【进行实验和收集证据】

【根据实验数据得出如下规律】: ①_____ ___是成实像与虚像的分界点,____ ____是成放大像与缩 小像的分界点。 ②实像都是____ ___(填倒立与正立),且物与像在透镜的_____ ___(同侧与两侧); 虚像都是______ _____,且物与像在透镜的_______ ___。 ③成实像时,物体靠近透镜,像____ ___透镜,且像的大小变____ ____。 成实像时,物体远离透镜,像____ ___透镜,且像的大小变____ ____。 创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王*

ZEMAX光学设计报告

光学设计报ZEMA 一、设计目 通过对设计一个双胶合望远物镜,学zema软件的基本应用和操作 二、设计要 的双胶合望远物镜,且相对孔径1:1设计一个全视场角1.56°,焦距1000m=13.6m要求相高三、设计过 1双胶合望远物镜系统初始结构的选 1.选 由于该物镜的全视场角较小,所以其轴外像差不太大,主要校正的像差有球差、正弦差 位置色差。又因为其相对孔径较小,所以选用双胶合即可满足设计要求。本系统采用紧 型双胶合透镜组,且孔径光阑与物镜框相重合 1.确定基本像差参 根据设计要求,假设像差的初级像差值为零,即球;正弦;位置色s 由此可得基本像差参量。那么按初级像差公式可F 1.冕牌玻璃在前0.0.80.0.8火石玻璃在前 0.008因为没有指定玻璃的种类,故暂选用冕牌玻璃进行计1.选定玻璃组 鉴玻璃的性价比较好,所以选作为其中一块玻璃。查表发现0.00 0.030.008Z组合,此时对应最接近的组合。此系统选 Z组合 的折射的折射0.038311.6721.516Z 1.74.284070.0609 2.009402.4 求形状系1.

考虑到任何实际的透镜组总是有一定的厚度,因此需要把薄透镜组转换成后透镜组 100m1/110m。选用压圈方式根据设计要,则通光口 3.m,由此可求得透镜组定透镜组,该方式所需余量由《光学仪器设计手册》查得103.m外径 对于凸透镜而言;假分别为球面矢高为折射球面曲率半径为透镜外径如图所示, 由上式可求。将所求的的结果代入下式中可求得凸透镜最小2.62.1 缘厚103.4.88.m11 利用下式可求得凸透镜的最小中心厚 m10.01.02.611.6 对于凹透镜而言:先求,再代入下式中可求得凹透镜最小边缘厚1.0.02.6103.11.6m11利用下式可求得凹透镜的最小中心厚不变的条件下进行薄透镜变换成后透镜时,应保

使用ZEMAX设计的典型实例分析

使用ZEMAX于设计、优化、公差和分析 武汉光迅科技股份有限公司宋家军(QQ:41258981)转载并修改 摘要 光学设计软件ZEMAX的功能讨论可藉由使用ZEMAX去设计和分析一个投影系统来讨论,包括使用透镜数组(lenslet arrays) 来建构聚光镜(condenser)。 简介 ZEMAX以非序列性(non-sequential) 分析工具来结合序列性(sequential) 描光程序的传统功能,且为一套能够研究所有表面的光学设计和分析的整合性软件包,并具有研究成像和非成像系统中的杂散光(stray light) 和鬼影(ghosting) 的能力,从简单的绘图(Layout) 一直到优化(optimization)和公差分析(tolerance analysis)皆可达成。 根据过去的经验,对于光学系统的端对端(end to end)分析往往是需要两种不同的设计和分析工具。一套序列性描光软件,可用于设计、优化和公差分析,而一套非序列性或未受限制的(unconstrained) 描光软件,可用来分析杂散光、鬼影和一般的非成像系统,包括照明系统。 “序列性描光程序”这个名词是与定义一个光学系统为一连串表面的工具有关。所有的光线打到光学系统之后,会依序的从一个表面到另一个表面穿过这个系统。在定义的顺序上,所有的光线一定会相交到所有的表面,否则光路将终止。光线不会跳过任何中间的表面,且光线只能打在每一个已定义的表面一次。若实际光线路径交到一个表面上超过一次,如使用在二次描光(double pass) 中的组件,必须在序列性列表中,再定义超过一次的表面参数。 大部份成像光学系统,如照相机镜头、望远镜和显微镜,可在序列性模式中完整定义。对于这些系统,序列性描光具有许多优点:非常快、非常弹性和非常普遍。几乎任何形状的光学表面和材质特性皆可建构。在成像系统中,序列性描光最重要的优点为使用简单且高精确的方法来做优化和分析。序列性描光的缺点,包括无法追迹所有可能的光路径(即鬼影反射) 和许多无法以序列性方式来描述的光学系统或组件。 非序列性描光最常用来分析成像系统中的杂散光和鬼影,甚致分析照明和其它非成像系统。在非序列性描光中,光线入射到光学系统后,是自由的沿着实际光学路径追迹;一条光线可能打到一个对象(object) 许多次,而且可能完全未打到其它对象。此外,非序列性方法可用来分析从光学或机构组件产生的表面散射(scatter),以及从场内(in-field) 和场外(out-of-field) 的光源所产生的表面反射而形成的鬼影成像。 ZEMAX的功能 ZEMAX可以用于一个完全序列性模式中、一个完全非序性模式中和一个混合模式中,混合模式对分析具有大部分序列性而却有一些组件是作用在非序列性方式的系统,是相当有用的,如导光管(light pipes) 和屋顶棱镜(roof prisms)等。

实验报告(凸透镜成像规律)

探究凸透镜成像的规律 实验报告 班级:实验人:组次: 实验目的: 1、通过观察和实验,加深对实像和虚像的认识,收集有关凸透镜成像规律的数据和资料 2、观察凸透镜成像的有关现象和收集实验数据,并从中归纳出凸透镜成像的规律 实验器材:凸透镜蜡烛光具座火柴刻度尺 实验步骤 1、估测凸透镜焦距 f = cm 2、收集凸透镜成像规律的有关实验数据(完成表格一、二) 3、归纳出凸透镜成像的规律(完成表格三) 注意事项 1、实验时,将有关器材放置在水平桌面上,应使蜡烛、凸透镜、光屏在同一条直线上,并使蜡焰、凸透镜、光屏三者的中心大致在同一高度。 2、怎样找像:当成实像时,移动光屏,使光屏上得到最清晰的像时,光屏的位置才是像的位置 表格一:成实像时(f= cm) 表格二:成虚像时(f= cm) 表格三:结论(归纳凸透镜成像规律)

重力的大小跟什么因表有关系 实验报告 班级:实验人:组次: 实验目的: 实验器材: 弹簧测力计的量程,分度值。 实验结论:______________________________________________

摩擦力的大小与什么有关 实验报告 班级:实验人:组次: 实验目的: 实验器材: 实验原理:在水平方向上,物体只受到两个力的作用,分别是使物体向前运动的和阻碍物体运动的.由于物体匀速运动,物体处于状态,故等于拉力.只要测量出拉力的大小,即可知道滑动摩擦力的大小。 一、提出问题: 二、猜想或假设: 实验设计: ●设计实验: 影响滑动摩擦力的因素较多因此在探究过程中要设法控制实验条件(变量).分别确定滑动摩擦力与每一个因素的关系.请写出控制变量的计划________________________________________________________ ●进行实验 1.如图1甲所示,用弹簧测力计水平匀速拉动木块在木板上匀速滑动,此时弹簧测力计的示数等于木块与木板间的滑动摩擦力,读出弹簧测力计示数F1填入表格。 2.如图14-1乙所示,把砝码放在木块上,以改变木板与木块间的压力,再用弹簧测力计水平匀速拉动木块,记下弹簧测力计示数F2,并与F1大小进行比较。 3.如图14-1丙所示,把棉布铺在木板上,改变接触面的粗糙程度,再用弹簧测力计水平匀 实验次数实验条件弹簧测力计的示数F/N 1 2 3 ●分析与论证 通过分析数据,可以得出结论:滑动摩擦力的大小与两个物体的_________有关,还与___________的大小有关,接触面越______ 压力越_______,滑动摩擦力越_____________。 ●评估 由于弹簧测力计本身重力的作用,为保证拉力水平,拉动木块时手要握住测力计的_____ ,拉木块时尽可能__________ ,指针不要颤动。 ●交流与合作 各小组成员对比实验活动,总结出影响摩擦力大小的因素。

zemax自聚焦透镜设计

目录 摘要 .................................................................................................................................................. I Abstract .......................................................................................................................................... I I 绪论 . (1) 1 自聚焦透镜简介 (2) 1.1自聚焦透镜 (2) 1.2 自聚焦透镜的特点 (2) 1.3 自聚焦透镜的主要参数 (3) 2 自聚焦透镜的应用 (4) 2.1 聚焦和准直 (4) 2.2 光耦合 (5) 2.3 单透镜成像 (6) 2.4 自聚焦透镜阵列成像 (6) 3 球面自聚焦透镜设计仿真 (8) 3.1 确定透镜模型 (8) 3.2 设置波长 (8) 3.3数值孔径设定 (9) 3.4 自聚焦透镜光路 (9) 4 优化参数 (10) 4.1光线相差分析 (10) 4.2聚焦光斑分析 (12) 4.3 3D模型 (12) 结束语 (13) 致 (14) 参考文献 (15)

摘要 本文主要说明应用梯度折射率对光传播的影响分析设计自聚焦透镜(GRIN lens),自聚焦透镜主要应用于光纤传输系统中。自聚焦透镜同普通透镜的区别在于,自聚焦透镜材料能够使沿轴向传输的光产生折射,并使折射率的分布沿径向逐渐减小,从而实现出射光线被平滑且连续的汇聚到一点。利用此特性,G-lens 在光纤传输系统中是构成准直、耦合、成像系统的主要部分。而它结构简单,体积小的特点更适用于小型光学器材中,例如窥镜系统。 关键词:梯度折射率,自聚焦,光耦合,准直

探究凸透镜成像的规律实验报告

“探究凸透镜成像的规律”实验报告 【提出问题】凸透镜成的像的虚实、大小、正倒跟物距有什么关系? 【设计实验】光具座、蜡烛、凸透镜(f=10cm)、光屏、火柴 【进行实验】(各组按步骤去探究成像规律,比一比哪一组能最快得出正确结论) 1.把蜡烛放在较远处,使物距u>2f,调整光屏到凸透镜的距离,使烛焰在屏上成清晰的实像,观察实像的大小和正倒.记下物距u和像距v(此步骤做两次) 2.把蜡烛向凸透镜移近,使物距在2f和f之间,即f2f U>2f 2f>u>f 2f>u>f U2f,调整光屏到凸透镜的距离,使烛焰在屏上成清晰的实像,观察实像的大小和正倒.记下物距u和像距v(此步骤做两次) 2.把蜡烛向凸透镜移近,使物距在2f和f之间,即f2f U>2f 2f>u>f 2f>u>f U

zemax自聚焦透镜设计学习资料

目录摘要Abstract............................................................ I 绪论. 0 1 自聚焦透镜简介 (1) 1.1自聚焦透镜 (1) 1.2 自聚焦透镜的特点 (1) 1.3 自聚焦透镜的主要参数 (2) 2 自聚焦透镜的应用 (3) 2.1 聚焦和准直 (3) 2.2 光耦合 (4) 2.3 单透镜成像 (5) 2.4 自聚焦透镜阵列成像 (5) 3 球面自聚焦透镜设计仿真 (7) 3.1 确定透镜模型 (7) 3.2 设置波长 (7) 3.3数值孔径设定 (8) 3.4 自聚焦透镜光路 (8) 4 优化参数 (9) 4.1光线相差分析 (9) 4.2聚焦光斑分析 (11) 4.3 3D模型 (11) 结束语 (12) 致谢 (13)

参考文献 (14)

摘要 本文主要说明应用梯度折射率对光传播的影响分析设计自聚焦透镜(GRIN lens),自聚焦透镜主要应用于光纤传输系统中。自聚焦透镜同普通透镜的区别在于,自聚焦透镜材料能够使沿轴向传输的光产生折射,并使折射率的分布沿径向逐渐减小,从而实现出射光线被平滑且连续的汇聚到一点。利用此特性,G-lens 在光纤传输系统中是构成准直、耦合、成像系统的主要部分。而它结构简单,体积小的特点更适用于小型光学器材中,例如窥镜系统。 关键词:梯度折射率,自聚焦,光耦合,准直

Abstract This article main showing the impact analysis designs the self-focusing lens using the gradient refractive index to the light emission (GRIN lens), the self-focusing lens mainly apply in the optical fiber transmission system. The self-focusing lens lie in with the ordinary lens' difference, the self-focusing lens material can cause along the axial transmission light to have the refraction, and causes the refractive index the distribution to reduce gradually along the radial direction, thus realizes the exit ray by smooth and the continual gathering to a spot. Using this characteristic, G-lens in the optical fiber transmission system is the constitution collimation, the coupling, imaging system's main part. But its structure is simple, the volume small characteristic is suitable in the small optics equipment, for example looking glass system. Keywords:Gradient index, GRIN lens, Light coupling,Collimation

ZEMAX光学设计讲义

实验一:单镜头设计(Singlet) 实验目的: 1、学习如何启用Zemax 2、学习如何输入波长(wavelength)、镜头数据(lens data) 3、学习如何察看系统性能(optical performance),如ray fan,OPD,点列图(spot diagrams), MTF等。 4、学习如何定义thickness solve以及变量(variables) 5、学习如何进行优化设计(optimization) 实验仪器:微机、zemax光学设计软件 实验步骤: 1、设计一个孔径为F/4的单镜头,物在光轴上,其焦距(focal length)为100mm,波长为可见光, 用BK7玻璃为材料。 2、首先运行ZEMAX,将出现ZEMAX的主页,然后点击lens data editor(LDE)。什么是LDE呢?它 是你要的工作场所,在LDE的扩展页上,可以输入选用的玻璃,镜片的radius,thickness,大小,位置等。 3、然后输入波长,在主菜单的system下,点击wavelengths,弹出波长数据对话框wavelength data, 键入你要的波长,在第一行输入0.486,它是以microns为单位,此为氢原子的F-line光谱。在第 二、三行键入0.587及0.656,然后在primary wavelength上点在0.587的位置,primary wavelength 主要是用来计算光学系统在近轴光学近似(paraxial optics,即first-order optics)下的几个主要参数,如focal length,magnification,pupil sizes等。 4、确定透镜的孔径大小。既然指定要F/4的透镜,所谓的F/#是什么呢?F/#就是光由无限远入射所形 成的effective focal length F跟paraxial entrance pupil的直径的比值。所以现在我们需要的aperture 就是100/4=25(mm)。于是从system menu上选general data,aperture type里选择entrance pupil,在apervalue上键入25,然后点击ok。 5、回到LDE,可以看到3个不同的surface,依序为OBJ,STO及IMA。OBJ就是发光物,即光源, STO即孔径光阑aperture stop的意思,STO不一定就是光照过来所遇到的第一个透镜,你在设计一组光学系统时,STO可选在任一透镜上,通常第一面镜就是STO,若不是如此,则可在STO这一栏上按鼠标,可前后加入你要的镜片,于是STO就不是落在第一个透镜上了。而IMA就是imagine plane,即成像平面。回到我们的singlet,我们需要4个面(surface),于是点击IMA栏,选取insert,就在STO后面再插入一个镜片,编号为2,通常OBJ为0,STO为1,而IMA为3。 6、输入镜片的材质为BK7。在STO列中的glass栏上,直接键入BK7即可。 7、孔径的大小为25mm,则第一镜面合理的thickness为4,在STO列中的thickness栏上直接键入4。 Zemax的默认单位是mm 8、确定第1及第2镜面的曲率半径,在此分别选为100及-100,凡是圆心在镜面之右边为正值,反之为 负值。再令第2面镜的thickness为100。

ZEMAX单透镜设计例子详细(多图)

ZEMAX单透镜设计例子,单透镜是最简单的透镜系统了,这个例子基本是很多ZEMAX教程开头都会讲的。 1-1 单透镜 这个例子是学习如何在ZEMAX里键入资料,包括设罝系统孔径(System Aperture)、透镜单位(Lens Units)、以及波长范围(Wavelength Range),并且进行优化。你也将使用到光线扇形图(Ray Fan Plots)、弥散斑(Spot Diagrams)以及其它的分析工具来评估系统性能。 这例子是一个焦距100 mm、F/4的单透镜镜头,材料为BK7,并且使用轴上(On-Axis)的可见光进行分析。首先在运行系统中开启ZEMAX,默认的编辑视窗为透镜资料编辑器(Lens Data Editor, LDE),在LDE可键入大多数的透镜参数,这些设罝的参数包括: ?表面类型(Surf:Type)如标准球面、非球面、衍射光栅…等 ?曲率半径(Radius of Curvature) ?表面厚度(Thickness):与下一个表面之间的距离 ?材料类型(Glass)如玻璃、空气、塑胶…等:与下一个表面之间的材料 ?表面半高(Semi-Diameter):决定透镜表面的尺寸大小 上面几项是较常使用的参数,而在LDE后面的参数将搭配特殊的表面类型有不同的参数涵义。 1-2 设罝系统孔径 首先设罝系统孔径以及透镜单位,这两者的设罝皆在按钮列中的「GEN」按钮里(System->General)。点击「GEN」或透过菜单的System->General 来开启General的对话框。 点击孔径标签(Aperture Tab)(默认即为孔径页)。因为我们要建立一个焦距100 mm、F/4的单透镜。所以需要直径为25 mm的入瞳(Entrance Pupil),因此设罝: ?Aperture Type:Entrance Pupil Diameter ?Aperture Value:25 mm

用二次成像法测凸透镜焦距实验报告

实验报告实验题目:用二次成像法测凸透镜焦距 系别:物理与电子科学系 专业:物理学 班级:2010 级物理学班 姓名:张凤兴 学号:2 0 1 0 0 5 1 0 3 5 老师:冉老师 时间:2012年4月18日

目录 一实验名称 (3) 二实验目的 (3) 三实验器材 (3) 四实验原理 (3) 五实验步骤 (4)

六实验数据记录与处理 (5) 七误差分析 (6) 八参考文献 (7) 一实验名称:用贝塞耳法(两次成像法)测薄凸透镜焦距; 二实验目的: 1掌握光具座的使用方法,学会调节光学系统,使之共轴; 2掌握用贝塞耳法(两次成像法)测薄凸透镜焦距的方法; 3掌握简单光路的分析和光学元件等高共轴调节的方法; 三实验器材: 1:白光源S 5:白屏H (SZ-13)

2:物屏P (SZ-14) 6:二维平移底座(SZ-02) 3:凸透镜L (f '=190 mm) 7:三维平移底座(SZ-01) 4:二维架(SZ-07)或透镜架(SZ-08) 8-9:通用底座(SZ-04) 四 实验原理: 图2-1 如图2-1,取物体与像屏之间的距离L 大于4倍凸透镜焦距f ,即L>4f,并保持L 不变。沿光轴方向移动透镜,则在像屏上必能两次成像。当透镜在位置I 时屏上将出现一个放大清晰的像(设此物距为u ,像距为v );当透镜在位置II 时,屏上又将出现一个缩小清晰的像(设此物距为u ′,像距为v ′),设透镜在两次成像时位置之间的距离为C ,根据透镜成像公式,可得u= v ′,u ′=v 又从图可以看出: u v u C L 2='+=- ∴2 C L u -= 22C L C L L u L v += -- ='-=' ∴L C L L C L C L v u uv f 42222-=+-=+= (2-1) 式(2-1)称为透镜成像的贝塞尔公式。可知,只要测出了L 和C 的 值,就可求得f 。此方法避免了测量物距和像距时由于估计透镜光心的位置不准所带来的误差(因透镜的光心不一定与它的对称中心重合),所以这种方法测焦距f ,既简便,准确度又较高。 五 实验步骤:

镜头设计

光学镜头设计 自 聚 焦 透 镜 姓名:董杏杰 学号:120514130 专业:12级光伏 2015年6月22日

光学系统的设计要求 任何一种光学仪器的用途和使用条件必然会对它的光学系统提出一定的要求,因此,在我们进行光学设计之前一定要了解对光学系统的要求,这些要求概况起来有以下几个方面: 一、光学系统的基本特性 光学系统的基本特性有:数值孔径或相对孔径;视场角或线视角;系统的放大率或焦距。此外还有这些基本特性相关的一些参数,如光瞳的大小和位置、后工作距离、共轭距等。 二、系统的外形尺寸 外形尺寸也就是系统的横向尺寸和纵向尺寸。在设计多光组的复杂光学系统时,外形尺寸计算以及各光组之间光瞳的衔接都是很重要的。 三、成像质量 成像质量的要求和光学系统的用途有关。不同的光学系统按其用途可提出不同的成像质量要求。对于望远系统和一般的显微镜只要求中心视场有较好的成像质量;对于照相物镜要求整个视场都要有较好的成像质量。 四、仪器的使用条件 在对光学系统提出使用要求时,一定要考虑在技术上和物理上可实现的可能性。如生物显微镜的放大率m要满足500NA≤m≤1000NA条件,望远镜的视觉放大率一定要把望远系统的极限分辨率和眼睛的极限分辨率一起来考虑。 光学系统的设计过程 所谓光学系统设计就是根据使用条件,来决定满足使用要求的各种数据,即决定光学系统的性能参数、外形尺寸和各光组的结构等。因此我们可以把光学设计过程分为四个阶段:外形尺寸计算、初始结构计算、象差校正和平衡以及象质评价。 一、外形尺寸计算 在各个阶段里要设计拟定出光学系统原理图,确定基本光学特性,使满足给定的技术要求,即确定放大倍率或焦距、线视场或角视场、数值孔径或相对孔径、共轭距、后工作距离光阑位置和外形尺寸等。因此,常把这个阶段成为外形尺寸计算。一般都按理想光学系统的理论和计算公式进行外形尺寸计算。在计算时一定要考虑机械结构和电气系统,以防止在机构结构上无法实现。每项性能的确定一定要合理,过高的要求会使设计结果复杂造成浪费,过低要求会使设计

薄透镜焦距的测定 物理实验报告

南昌大学物理实验报告 课程名称:大学物理实验 实验名称:薄透镜焦距的测定 学院:信息工程学院专业班级: 学生姓名:学号: 实验地点:基础实验大楼座位号:01 实验时间:第7周星期3下午4点开始

二、实验原理: (一)凸透镜焦距的测定 1.自准法 如图所示,在待测透镜L的一侧放置一被光源照明的物屏AB,在另一侧放一平面反射镜M,移动透镜(或物屏),当物屏AB正好位于凸透镜之前的焦平面时,物屏AB上任一点发出的光线经透镜折射后,仍会聚在它的焦平面上,即原物屏平面上,形成一个与原物大小相等方向相反的倒立实像。此时物屏到透镜之间的距离,就是待测透镜的焦距,即 由于这个方法是利用调节实验装置本身使之产生平行光以达到聚焦的目的,所以称之为自准法,该法测量误差在之间。

2.成像法 在近轴光线的条件下,薄透镜成像的高斯公式为 当将薄透镜置于空气中时,则焦距为: 式中为像方焦距,为物方焦距,为像距,为物距。 式中的各线距均从透镜中心(光心)量起,与光线行进方向一致为正,反之为负,如图所示。若在实验中分别测出物距和像距,即可用式求出该透镜的焦距。但应注意:测得量须添加符号,求得量则根据求得结果中的符号判断其物理意义。 3.共轭法 共轭法又称为位移法、二次成像法或贝塞尔法。如图所示,使物与屏间的距离并保持不变,沿光轴方向移动透镜,则必能在像屏上观察到二次成像。设物距为时,得放大的倒立实像;物距为时,得缩小的倒立实像,透镜两次成像之间的位移为d,根据透镜成像公式,可推得: 物像公式法、自准法都因透镜的中心位置不易确定而在测量中引进误差。而共轭法只要在光具座上确定物屏、像屏以及透镜二次成像时其滑块移动的距离,就可较准确地求出焦距。这种方法无需考虑透镜本身的厚度,测量误差可达到。

ZEMAX光学设计报告材料

ZEMAX 光学设计报告 一、设计目的 通过对设计一个双胶合望远物镜,学会zemax 软件的基本应用和操作。 二、设计要求 设计一个全视场角为1.56°,焦距为1000mm ,且相对孔径为1:10的双胶合望远物镜,要求相高为y`=13.6mm 。 三、设计过程 1.双胶合望远物镜系统初始结构的选定 1.1选型 由于该物镜的全视场角较小,所以其轴外像差不太大,主要校正的像差有球差、正弦差和位置色差。又因为其相对孔径较小,所以选用双胶合即可满足设计要求。本系统采用紧贴型双胶合透镜组,且孔径光阑与物镜框相重合。 1.2确定基本像差参量 根据设计要求,假设像差的初级像差值为零,即球差0'0=L δ;正弦差0'0s =K ;位置色差 0'0=FC l δ。那么按初级像差公式可得0===∑∑∑I I I I C S S ,由此可得基本像差参量为 0===I ∞ ∞C W P 。 1.3求0P )(() ?? ?? ?+-+-=∞∞∞∞ 火石玻璃在前时 冕牌玻璃在前时 2 2 02.085.01.085.0W P W P P 因为没有指定玻璃的种类,故暂选用冕牌玻璃进行计算,即0085.00-=P 。 1.4选定玻璃组合 鉴于9K 玻璃的性价比较好,所以选择9K 作为其中一块玻璃。查表发现当000.0=I C ,与 0085.00-=P 最接近的组合是9K 与2ZF 组合,此时对应的038.00=P 。此系统选定9K 与

2ZF 组合。 9 K 的 折 射 率 5163 .11=n , 2 ZF 的折射率 6725 .12=n , 038319.00=P ,284074.40-=Q ,06099.00-=W ,009404.21=?,44.2=A ,72.1=K 。 1.5求形状系数Q 一般情况下,先利用下式求解出两个Q 的值: A P P Q Q 00-±=∞ 再与利用下式求的Q 值相比较,取其最相近的一个值: ) (1 20 0+-+ =∞ A P W Q Q 因为 0P P ≈∞ ,所以可近似为284074.40-==Q Q ,06099.00-==∞ W W 。 1.6求归一化条件下的透镜各面的曲率 ()()?????????-=--+-==-=-+=+===-+-?=+-==77370.011 1127467 .2284074.4009404.21 61726.1284074.415163.1009404 .25163.111221233 12211111n Q n n r Q r Q n n r ?ρ?ρ?ρ 1.7求球面曲率半径 ???? ?????-=-='=-=-='==='=491.129277370.01000 624.43927467.21000330.61861726.110003322 11ρρρf r f r f r 1.8整理透镜系统结构数据 视场0136.0tan -=ω(负号表示入射光线从光轴左下方射向右下方),物距-∞=L (表示物体在透镜组左侧无穷远处),入瞳半径mm h 50=,光阑在透镜框上,即入瞳距第一折射

光学系统设计zemax初级教程

光学系统设计(Zemax初学手册) 内容纲目: 前言 习作一:单镜片(Singlet) 习作二:双镜片 习作三:牛顿望远镜 习作四:Schmidt-Cassegrain和aspheric corrector 习作五:multi-configuration laser beam expander 习作六:fold mirrors和coordinate breaks 习作七:使用Extra Date Editor, Optimization with Binary Surfaces 前言 整个中华卫星二号「红色精灵」科学酬载计划,其量测仪器基本上是个光学仪器。所以光学系统的分析乃至于设计和测试是整个酬载发展重要一环。 这份初学手册提供初学者使用软件作光学系统设计练习,整个需要Zemax光学系统设计软件。它基本上是Zemax使用手册中tutorial的中文翻译,由蔡长青同学完成,并在Zemax E. E. 7.0上测试过。由于蔡长青同学不在参和「红色精灵」计划,所以改由黄晓龙同学接手进行校稿和独立检验,整个内容已在Zemax E. E. 8.0版上测试过。我们希望藉此初学手册(共有七个习作)和后续更多的习作和文件,使团队成员对光学系统设计有进一步的掌握。(陈志隆注) (回内容纲目) 习作一:单镜片(Singlet)

你将学到:启用Zemax,如何键入wavelength,lens data,产生ray fan,OPD,spot diagrams,定义thickness solve以及variables,执行简单光学设计最佳化。 设想你要设计一个F/4单镜片在光轴上使用,其focal length 为100mm,在可见光谱下,用BK7镜片来作。 首先叫出ZEMAX的lens data editor(LDE),什么是LDE呢?它是你要的工作场所,譬如你决定要用何种镜片,几个镜片,镜片的radius,thickness,大小,位置……等。 然后选取你要的光,在主选单system下,圈出wavelengths,依喜好键入你要的波长,同时可选用不同的波长等。现在在第一列键入0.486,以microns为单位,此为氢原子的F-line 光谱。在第二、三列键入0.587及0.656,然后在primary wavelength上点在0.486的位置,primary wavelength主要是用来计算光学系统在近轴光学近似(paraxial optics,即 first-order optics)下的几个主要参数,如focal length,magnification,pupil sizes 等。 再来我们要决定透镜的孔径有多大。既然指定要F/4的透镜,所谓的F/#是什么呢?F/#就是光由无限远入射所形成的effective focal length F跟paraxial entrance pupil的直径的比值。所以现在我们需要的aperture就是100/4=25(mm)。于是从system menu上选general data,在aper value上键入25,而aperture type被default为Entrance Pupil diameter。也就是说,entrance pupil的大小就是aperture的大小。 回到LDE,可以看到3个不同的surface,依序为OBJ,STO及IMA。OBJ就是发光物,即光源,STO即aperture stop的意思,STO不一定就是光照过来所遇到的第一个透镜,你在设计一组光学系统时,STO可选在任一透镜上,通常第一面镜就是STO,若不是如此,则可在STO这一栏上按鼠标,可前后加入你要的镜片,于是STO就不是落在第一个透镜上了。而IMA 就是imagine plane,即成像平面。回到我们的singlet,我们需要4个面 (surface),于是在STO栏上,选取insert cifter,就在STO后面再插入一个镜片,编号为2,通常OBJ为0,STO为1,而IMA为3。 再来如何输入镜片的材质为BK7。在STO列中的glass栏上,直接打上BK7即可。又孔径的大小为25mm,则第一面镜合理的thickness为4,也是直接键入。再来决定第1及第2面镜的曲率半径,在此分别选为100及-100,凡是圆心在镜面之右边为正值,反之为负值。而再令第2面镜的thickness为100。 现在你的输入数据已大致完毕。你怎么检验你的设计是否达到要求呢?选analysis中的fans,其中的Ray Aberration,将会把transverse的ray aberration对pupil coordinate 作图。其中ray aberration是以chief ray为参考点计算的。纵轴为EY的,即是在Y方个的aberration,称作tangential或者YZ plane。同理X方向的aberration称为XZ plane 或sagittal。 Zemax主要的目的,就是帮我们矫正defocus,用solves就可以解决这些问题。solves 是一些函数,它的输入变量为curvatures,thickness,glasses,semi-diameters,conics,以及相关的parameters等。parameters是用来描述或补足输入变量solves的型式。如curvature的型式有chief ray angle,pick up,Marginal ray normal,chief ray normal,Aplanatic,Element power,concentric with surface等。而描述chief ray angle solves

相关主题