搜档网
当前位置:搜档网 › -生物柴油--论文

-生物柴油--论文

-生物柴油--论文
-生物柴油--论文

分离生物柴油中的甘油的工艺研究

谢艳艳工业催化 201320718

摘要:化石燃料是当前人类使用的主要能源,但其日益消耗殆尽,同时造成了严重的温室效应和环境污染问题,因此,生物柴油被当作化石燃料的绿色替代品,这种可再生的碳中性的能源对于环境和经济可持续发展是必要的。而微藻因含油量高,生长速率快,能利用温室气体CO2等优势,成为制备生物柴油最有潜力的原料之一。而甘油是生物柴油生产中的主要副产物,是评价生物柴油质量的重要指标之一。2007年我国实施的生物柴油国家标准规定游离甘油的含量不超过0.02%。生物柴油精制工艺在中国来说还不是很完善,因此生物柴油精制工艺的研究,特别是除去生物柴油中的甘油的研究具有重要的理论意义和现实意义。

关键词:生物柴油微藻游离甘油树脂水洗

Abstract:For the past few years, to alleviate the energy shortage and environmental pollution problems, biodiesel has lately emerged as an alternative fuel of wide acceptance because of its renewable and lower environmental impact as compare to diesel petroleum fuels. The main subproduct of the production of biodiesel is glycerol. Removal of free glycerol from biodiese is especially important because the quality of the fuel strongly depends on the content of free glycerol. Nation standard establish a maximum amount of 0.02% free glycerol. The

purification technology of biodiesel is imperfect in China, so the study on the purification technology of biodiesel is an important exploratory development work especially of removal free glycerol.

Key words: Biodiesel free glycerol resins washing

综述:

随着能源安全和环保问题日益严峻,开发利用环境友好的可再生性能源迫在眉睫。目前,可替代石油产品的可再生能源主要是生物乙醇和生物柴油。生物乙醇在国内外的发展已具有一定规模,尤其是利用非粮作物(如木质纤维素等难于水解的生物质)为碳源生产乙醇具有广阔的发展前景,但在低成本生产技术方面一直难以有重大突破。近年来,生物柴油作为化石能源的替代品,已成为国际上发展最快、应用最广的环保可再生能源,但制约其大规模发展的关键问题是原料严重不足。近年来,人们普遍认为微藻光自养生长过程合成的油脂是一种极有希望制备生物柴油的原料。

1.生物柴油的优势和缺点

生物柴油是以生物体油脂为原料,通过分解、酯化而得到的长链脂肪酸甲酯,是一种可以替代普通柴油使用的环保、可再生能源。生物柴油的油脂原料来自植物油脂(大豆油、玉米油、菜籽油、棕榈油等)、动物油脂(各种动物脂肪)、微藻脂肪酸以及废弃食用油(地沟油)等。

生物柴油作为化石燃料的替代品,与化石柴油及燃料乙醇等其他液体燃料相比,有突出的特性:生物柴油不含石蜡,闪点高,燃烧性

能和效率要高于普通柴油,使用时更安全;同时可以通过种植、养殖或培养源源不断地得到,因而属于可再生资源;生物柴油产品中含硫和氮较少,可以减少产生S02和NO对大气的排放量。以淀粉类作物和木质纤维素类物质发酵产生的燃料乙醇,燃烧后尾气排放污染小,但其热值只有普通汽油的2/3,比柴油更低,且乙醇易吸水使燃烧值下降。由于生物柴油具有其他生物质燃料不可比拟的优良特性,世界各国纷纷开展生物柴油原料的研发和产业化工作,以替代储量日益减少且严重污染环境的化石燃料。

表1生物柴油和石化柴油的性能比较[1]

Table 1 Comparison between biodiesel and petroleum diesel used as fuels

冷滤点(CFPP)夏季产品 (℃)-100

冷滤点(CFPP)冬季产品 (℃)-20-20

20℃的密度 (g·ml-1)0.880.83

40℃动力粘度 (mm2·s-1)4~62~4

闭口闪点 (℃)>10060

十六烷点≧56≧49

热值 (MJ·L-1)3235

燃烧功率(柴油=100%) (%)104100

硫含量(质量分数) (%)<0.001<0.2

氧含量(体积分数) (%)100

燃烧1kg燃料按化学计算法的最小空气耗量 (kg)12.514.5

水危害等级 12生物柴油也有它的缺点,主要有:价格太高;贮存性能差;易变质;粘度较高;在气候寒冷地区使用受到影响。

2.微藻生物柴油的优越性

2.1微藻产油率高

微藻的光合作用效率高、含油量高、生长周期短、油脂面积产率高,这是其它油料作物无法比拟的,被认为是最有潜力替代石油的生

物资源。如种植油菜、大豆、玉米等作物来生产可满足美国交通燃油需求量50%的生物燃料,所需种植面积均超过美国现有耕地总面积(1.2~8.5倍),而培养微藻来生产生物柴油所需面积仅为美国现有耕地总面积的1.1%~2.5%(见表2)。

表2 不同作物产油率[2]

Table 2 Oil yield rate for different plants

作物产油率(升/公顷)

玉米145

大豆446

红花779

向日葵952

油菜籽1100

油棕 5 000

微藻100 000

注:生物柴油的产率约为80%,即100L油类能转化为80L生物柴油

2.2绿色环保

(a)微藻可以旺盛地消耗高浓度的CO2和NO2,这些火力发电厂的污染物能作为微藻的营养。来自化石燃烧发电厂的废气可以直接通入微藻生产设备,此举能显著提高生产能力和清洁空气。微藻利用光合作用固定CO2,将光能转化为化学能的形式储存于油脂,我们利用油脂生产生物柴油,燃烧后产生CO2和水,这一过程不会增加CO2的净排放量。因此,这是一种可再生的能源而且不会增加CO2的净排放量。

(b)微藻光自养培养过程可利用废水中的N、P等营养(我国的废水营养化问题尤其严重),从而可降低水体的富营养化。

2.3具有潜在的价格竞争优势

目前报道中的微藻生物柴油生产最低成本约为$3/L,其中后处理精炼过程占一半。大规模工业化生产后成本可降低一半,通过精炼过

程的改造和使用新型催化剂,再加上高价值副产物的提取,其最终生产成本完全能降低到一个可以接受的程度,并最终使微藻生物柴油在价格上具有竞争优势。

2.4不占用耕地

不与农作物争地、争水。微藻可利用滩涂、盐碱地、荒漠以及海水、盐碱水和荒漠地区的地下水等进行大规模培养。我国18000km海岸线上有着大片滩涂和湿地,非常适合微藻的大规模养殖和循环利用。

2.5后处理条件低

微藻个体小、木质素含量很低,易粉碎、干燥,用微藻来生产液体燃料所需的后处理条件相对较低。

3.微澡生物技术的国内外现状[3]

3.1国外情况概述

利用微藻生产生物能源并不是一个新的研究方向。1978-1996年,美国能源部就资助了一个利用微藻生产生物柴油的项目“水生物种计划——藻类生物柴油”(“Aquatic Species Program——Biodiesel from Algae”,简称“ASP”),在能源微藻藻种筛选方面做了大量工作并在户外敞开池大规模培养方面做了一定的尝试。从1990年到2000年,日本国际贸易和工业部曾资助了一项名为“地球研究更新技术计划”的项目。该项目利用微藻来固定CO2,并着力开发密闭式光生物反应器技术,通过微藻吸收火力发电厂烟气中的CO2来生产生物能源。该项计划共有大约20多家私人公司和政府的研究机构参与,10年间共投资约25亿美元,筛选出多株耐受高CO2浓度、生长速度快、能形成高

细胞密度的藻种,建立起了光生物反应器的技术平台以及微藻生物能源开发的技术方案。2006-2008年,石油价格一度大幅上扬,大大刺激了微藻生物柴油产业化技术的开发,美国等发达国家的政府和企业在该领域纷纷投入大量资金并计划投入巨资进行中试和产业化,在国际上掀起一股势不可挡的开发热潮。

3.2国内的发展现状

我国过去所开展的微藻光自养培养研究,大多关心具有营养价值及生物活性的物质,很少关注藻细胞内的油脂含量,仅有少量研究涉及藻细胞内的多不饱和脂肪酸。从生物柴油角度开展能源微藻的藻种筛选及其光自养培养技术方面的研究仅是近年来的事,目前大多处于实验室阶段,但已得到很多机构的重视。

4.面临的问题及解决方案

4.1生产的经济性

生产的经济性是利用微藻生产生物柴油所要面对的最大问题,当然,我们不能仅仅从经济效益方面来考虑生产,我们还要明白,环境效益和社会效益也是极其重要的。通过不懈的努力,运用多种技术手段:生物反应器,基因工程,代谢工程和系统生物学等方法。我们有理由相信最终能解决生产的经济性问题。

4.2对微藻生产生物柴油的接受程度

人们对微藻生产生物柴油的接受程度,主要是对微藻生物柴油品质及对动力性能的担忧,害怕对发动机产生不良影响和造成使用成本增加。因此,要严格制定和规范微藻生物柴油生产及合格成品油检验

标准并严格执行。在大规模使用微藻柴油前,要进行试验并由权威研究机构全程参与,研究分析并给出可靠结论,还要通过宣传使大家了解和接受微藻生物柴油。如有可能,还可对使用生物柴油的用户进行补贴。

4.3精炼过程复杂且效率低

微藻培养过程中除了产油外,还会产生多种不饱和脂肪酸和其他物质如蛋白质等,这些物质会对后处理精炼过程产生影响,影响生物柴油的品质和增加生产成本,因为后处理精炼过程成本占生产成本的一半以上。人们可利用石油炼制过程取得的成果,开发更适合生物柴油生产使用的催化剂和生产工艺,提高催化效率,降低成本以及提高生物柴油品质。

5.微藻生物柴油的研究方向

要满足市场对生物柴油的需求,就必须尽可能提高微藻产量及细胞内油脂含量。目前的研究主要集中在以下四方面:

(1)基因工程改造藻种。藻种的基因改造主要有三方面:

a)提高藻细胞的含油量。磷酸烯醇式丙酮酸羧化酶PEPC存在于所有光合生物中,是光合作用过程中的关键酶,乙酰辅酶A羧化酶ACCase是

脂肪酸生物合成途径的关键限速酶,ACCase和PEPC的相对活性影响

着脂类代谢途径的走向,对这两种酶基因进行改造构建高油藻种是该领域的研究热点 [4] 。

b)改变微藻的营养方式。目前只有少数藻种可进行异养培养,通过基

因工程手段能使原先专性自养生长的微藻在有机碳源存在时异养生长。

c)提高藻细胞对抗营养和氧胁迫的能力从而提高生物质产量。

(2)反应器的改进。户外大规模培养微藻主要为池塘系统和密闭式光生物反应器,由于光在培养液内的不均匀分布,使得光能转化率及藻体产量都受到限制。对反应器的改进主要有四方面:a. 增大反应器的比表面积。b. 增强气液传质效率。c. 提供高效光源。d. 提高光传递效率。C.U. Ugwu在反应管内安装搅拌器,使细胞在液流带动下可以快速在明暗区间转换,解除了藻体在强光区的光抑制效应同时也改善了在暗区光照不足的情况,提高了微藻生物量[5]。用气升泵鼓气加速培养液混匀也是反应器改进的成功例子,但是管式反应器由于CO2消耗,溶氧水平升高以及pH上升等问题[6],反应管不可能无限制延长,一般小于80m。为了提高光合效率,除利用自然光照外,还可在反应器中安装发光二级管、光导纤维等人工光源,光源的位置可分为外置式和内置式两种。

(3)利用代谢工程对微藻生长进行调控。通过代谢工程对培养条件进行优化,发现在低氮培养基中藻体的油脂含量会明显升高,而且盐浓度和铁离子也影响细胞内油脂积累[7]。采用补料分批发酵方式异养培养Chlorella protothecoides,为解除底物抑制,以补料方式使培养液内的葡萄糖浓度始终小于24 g /L, 最终藻体密度高达51.2 g/ L。此外,利用前期自养,后期异养的混养方式培养小球藻,生物量可达108.0 g /L,油脂含量为细胞干重的52%。

(4)技术集成降低成本。微藻制备生物柴油的过程中,收获藻体,细胞干燥,裂解和抽提油脂的花费占柴油生产总成本的40%~60%,

目前通过技术集成化繁为简,用有机溶剂与培养液共混,使细胞内油脂连续被抽提至有机相,而藻细胞仍能保持良好的生长趋势,经蒸馏分离有机溶剂和油脂,有机溶剂还可重复利用以降低成本。

结束语:

在国际原油价格一路飙升的大环境下,世界各国纷纷将目光投向可再生替代能源的研发利用上来,生物柴油也以其独特的优势,越来越受到重视。与其它生物柴油原料相比,微藻具有生长速率快,可利用零成本的空气和光合成有机质,在碳循环中不产生净增长,油脂含量高等诸多优势,所以利用“工程微藻”生产生物柴油有很广阔的前景,但要真正代替化石石油还有很长的路要走。

参考文献

[1] 徐薇.我国生物柴油产业发展研究[D].北京:北京林业大学,2008.

[2] 李永善,于佑世.大有作为的“绿色化工”—未来的可再生柴油[J].灾害学,2003,16(2):12-17.

[3] 潘鹤林,徐志珍,杨锦梁等.生物柴油-可再生柴油[J].化工文摘,2007,(5):44-48.

[4] 黄格省,李振宇,付兴国等.第二代生物柴油技术开发现状与前景展望[J].现代化工,2012,32(6):6-10.

[5] 张淑谦,童忠良.化工与新能源材料及应用[M].北京:化学工业出版社,2010,32-75.

[6] 张传利,林良斌,刘雅婷等.生物质柴油生产现状及其生产技术进展[J].云南农业大学学报,2007,22(5):747-753.

[7] RNOALD G.BRAY.advances in biodiesel and renewable diesel

production[Z].SRI Consulting-PEP Report 251A,2007.

世界棕榈油市场现状及展望

世界棕榈油市场现状及展望 2012年10月15日09:19新华网 字号:T|T 棕榈油消费集中在亚洲,不过欧盟也提高了棕榈油进口量。棕榈油主要消费国家和地区有中国、印度、欧盟等,其消费占到世界棕榈油消费总量的60%以上。 目前,世界上约有20个国家生产棕榈油。马来西亚和印度尼西亚是全球两大棕榈油生产国。受气候影响,马来西亚棕榈油单产有所下降,而印度尼西亚棕榈树正进入旺产期,单产提升,种植园得到进一步扩张。总体来看,印度尼西亚棕榈油产量更具增长潜力。马来西亚曾是最大的棕榈油生产国,其产量约占世界总产量的45%。马来西亚棕榈树种植面积达250万公顷,约占全国耕地的1/3。2008年,马来西亚棕榈油产量达到创纪录的17560千吨,产量在20年的时间里增长了3.5倍。2011年,马来西亚棕榈油产量维持在18000千吨左右。印度尼西亚目前是世界棕榈油生产第一大国,2005年其棕榈油产量约占世界总产量的41%。2006年,印度尼西亚棕榈油产量超过马来西亚。 图1 全球棕榈油产销分布 主要生产国情况 1.印度尼西亚棕榈油产销 印度尼西亚棕榈油主产区在苏门答腊岛,其棕榈树种植面积和产量约占全国的80%。印尼棕榈油产量巨大,但生产效率相对较低,仅为3.8吨/公顷,远低于马来西亚的4.6吨/公顷。2011年,印尼棕榈油产量为25400千吨,出口量为18000千吨。2012年,预期产量为27000千吨,全年出口量可能超过1900千吨。印尼政府计划到2020年将棕榈油产量提升至40000千吨。印尼棕榈油生产商众多,如金光集团(SinarMasGroup)、米南伽奥甘农业公司(PT Perkebunan Minanga Ogan)、金鹰国际集团(RGMInternational)等,其中金光

生物柴油的制备

由菜籽油制备生物柴油的实验方案 化强0601 石磊丁佐纯 目录 一.文献综述 1.生物柴油简介 2.目前制备生物柴油的方法 3.本实验所采用的制备方法及各实验参数的选择及其理论依据 二.实验目的 三.实验原理 1.生物柴油的制备原理 2.碘值的测定原理 3.酸价的测定原理 四.实验用品 1.实验仪器 2.实验药品 五.实验步骤 1.生物柴油的制备 2.粗产物的处理 3.碘值的测定 4.酸价的测定 六.实验结束 七.本实验所参考的文献一览 ★★注:若实验中能够提供超声装置用来替代搅拌装置,一则可以大大缩短反应时间(从原来的1.5—2小时缩短为10分钟左右),又节约了能源同时提高了转化率。

一、文献综述 1、生物柴油简介 1.1目前燃料情况 能源和环境问题是全球性问题,日益紧缺的石油资源和不断恶化的地球环境使得各国政府都在积极寻求适合的替代能源。 我国在醇类代用燃料方面已经开展了大量的研究工作,但用粮食生产醇类代用燃料转化能耗高,配制汽油代用燃料不能直接在现有汽车中使用也是一个不容回避的现实问题。而大量研究资料表明,生物柴油在燃烧性能方面丝毫不逊于石化柴油,而且可以直接用于柴油机,被认为是石化柴油的替代品。 1.2什么是生物柴油 生物柴油即脂肪酸甲酯,由可再生的油脂原料经过合成而得到,是一种可以替代普通柴油使用的清洁的可再生能源。 1.3生物柴油的优点 1.3.1 能量高,具有持续的可再生性能。 1.3.2具有优良的环保特性: ①生物柴油中不含硫,其大量生产和使用将减少酸雨形成的环境灾害;生物柴油不含 苯及其他具有致癌性的芳香化合物。 ②其中氧含量高,燃烧时一氧化碳的排放量显著减少; ③生物柴油的可降解性明显高于矿物柴油; ④生物柴油燃烧所排放的CO2,远低于植物生长过程中所吸收的CO2 ,因此使用 生物柴油,会大大降低CO2的排放和温室气体积累。 1.3.3具有良好的替代性能:①生物柴油的性质与柴油十分接近,可被现有的柴油机和柴 油配送系统直接利用。②对发动机,油路无腐蚀、喷咀无结焦、燃烧室无积炭。具有较好的润滑性能,使喷油泵、发动机缸体和连杆磨损率降低。 1.3.4由于闪点高,不属危险品,储存、运输、使用较为安全。 总之,发展生物柴油具有调整农业结构、增加社会有效供给、改善生态环境、缓解能源危机、增加就业机会等多方面重要意义。 1.4 由菜籽油制生物柴油的有利之处 尽管许多木本油料都可以加工为生物柴油,但规模有限,其他油料作物扩大面积的潜力有限,而油菜具有适应范围广,化学组成与柴油相近等特点,是我国发展生物柴油最理想重要的原料来源。种油菜不与主要粮食争地,且增肥地力,较同期冬小麦早熟半月,有利于后荐作物增产。所以,油菜原料的增长空间是非常大的。据统计,在不影响粮食生产的情况下,我国有2670万hm2以上的耕地可用于发展能源油菜生产,年生产4000万t 生物柴油,相当于建造1.5个永不枯竭的绿色大庆,具有十分重要的战略意义。 2、目前制备生物柴油的方法 生物柴油的制备方法有物理法和化学法。物理法包括直接使用法、混合法和微乳液法;化学法包括高温热裂解法和酯交换法。 2.1 直接使用法 即直接使用植物油作燃料.由于植物油黏度高、含有酸性组分,在贮存和燃烧过程中发生氧化和聚合以至于发动机内沉积多、喷油嘴结焦、活塞环卡以及排放性能不理想等问题,后来便被石油柴油所取代。

微藻制油技术

微藻制油技术 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

微藻制油 在全球变暖、能源危机的大背景下,世界各国都在积极寻找新的可替代能源。 提起全球变暖,大多数的企业为如何减少二氧化碳排放,为封存二氧化碳而投入了大量研发资金和人力;提起生物柴油的原料,人们会想到玉米和大豆,从它们“体内”提炼出的乙醇和生物柴油,能有效降低碳排放,减少环境污染。但与此同时,由于这两种作物的培育周期较长、占地面积较大,会产生“与粮争地”问题,从而导致“解决了能源危机,却出现粮食危机”的尴尬结果; 通过科学家的不断研究,一种新的技术进入了人们的视野:培养微藻吸收二氧化碳,并进行光合作用,最终形成生物柴油、类胡萝卜素等衍生品,将二氧化碳变废为宝,这就是“微藻制油”技术。 光合作用 光合作用(Photosynthesis)是绿色植物和藻类利用叶绿素等光合色素和某些细菌(如带紫膜的嗜盐古菌)利用其细胞本身,在可见光的照射下,将二氧化碳和水(细菌为硫化氢和水)转化为有机物,并释放出氧气(细菌释放氢气)的生化过程。植物之所以被称为食物链的生产者,是因为它们能够通过光合作用利用无机物生产有机物并且贮存能量。通过食用,食物链的消费者可以吸收到植物及细菌所贮存的能量,效率为10%~20%左右。对于生物界的几乎所有生物来说,这个过程是它们赖以生存的关键。而地球上的碳氧循环,光合作用是必不可少的。

微藻 微藻是指一些微观的单细胞群体,是最低等的、自养的释氧植物,微藻个体较小,除个别种类之外,一般只有十几个微米大小。它是低等植物中种类繁多、分布及其广泛的一个类群。无论是在海洋、淡水湖泊等水域,或在潮湿的土壤、树干等处,几乎在有光和潮湿的任何地方微藻都能生存。微藻很像一个太阳光光能驱动的细胞工厂,可以旺盛地消耗高浓度的CO2和NO2,源源不断地将CO2转化为潜在的生物燃料、食物、饲料以及高价值的生物活性物质。 微藻制油 微藻制油的原理其实就是利用光合作用,将二氧化碳转化为微藻自身的生物质从而固定了碳元素,再通过诱导反应使微藻自身的碳物质转化为油脂,然后利用物理或化学方法把微藻细胞内的油脂转化到细胞外,进行提炼加工从而生产出生物柴油。 据专家介绍,微藻的产油效率相当高,在一年的生长期内,一公顷玉米能产172升生物质燃油,一公顷大豆能产446升,一公顷油菜籽能产1190升,一公顷棕榈树能产5950升,而一公顷的微藻能产生物质燃油95000升。 微藻的个体小,木素含量很低,易被粉碎和干燥,用微藻来生产液体燃料所需的处理和加工条件相对较低,生产成本低。而且微藻热解所得生物质燃油热值高,平均高达33MJ/kg,是木材或农作物秸秆的1.6倍。 微藻在生长过程中还可利用废弃二氧化碳,从而与二氧化碳的处理和减排相结合,国外已经有利用发电厂排放的废弃二氧化碳生

生物柴油发展前景看好_访石科院长远性课题研究室副主任杜泽学教授

〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉行业sinopec monthly 2月1日,《生物柴油调和燃料(B5)》标准开始实施。在此之前,财政部、国家税务总局联合下发《关于对利用废弃的动植物油生产纯生物柴油免征消费税的通知》,明确对利用废弃动植物油脂生产的BD100生物柴油免征消费税。一系列标准、办法的出台,为我国生物柴油的发展带来了哪些机遇?生物柴油应用前景又存在哪些困难和不确定性?为此,记者采访了中国石化石油化工科学研究院长远性课题研究室副主任杜泽学教授。 生产:形成林油一体化产业链 记者:“十一五”期间我国可再生能源发展迅速,作为可再生能源的生物柴油在我国发展现状如何? 杜泽学:国家十分关注生物柴油的发展,在制定的“十一五”《可再生能源中长期发展规划》中指出,发展生物柴油应坚持不与粮油争地,采用绿色生产技术,不造成环境污染。早在2002年,我国就有民营企业进军生物柴油产业,使用地沟油、餐饮废油等作为生产原料。2007年前后是发展的高峰,当时已经投资建成的和计划投资的民营生物柴油企业近百家,产能超过300万吨/年。这些企业生产的产品按照自己制定的企业标准,销售给农用拖拉机、工程施工机械和渔船 等。由于采用的是常规的酸碱法技 术,三废排放多,污染环境。而产能扩 展过快导致原料供应吃紧,价格在1 年内从2000元/吨左右涨到超过6000 元/吨,再加上金融危机的影响,到 2009年,大部分企业倒闭或处于停产 状态。目前,国内生物柴油产量估计 30万吨/年左右,除中海油投产的装置 和生产的生物柴油进入车用领域外, 其他都是民营企业,产品质量满足国 标(BD100)要求的不多,而且没有得 到相关政策支持销售到车用领域。 记者:发展生物柴油是否会导致 “与民争粮”? 杜泽学:国家一直支持大规模发 展生物柴油产业,但不提倡采用可 食用油脂发展生物柴油。目前,国 家鼓励采用“林油一体化”的模式发 展生物柴油产业,对生物柴油产业 化示范的要求是原料(非食用林木 油脂)和生物柴油生产并举。为了 落实国家中长期可再生能源发展规 划,国家发改委于2008年6月核准 了中国石化、中国石油和中海油申 报的生物柴油示范工程项目,装置 的建设规模分别为5万吨、6万吨和 6万吨/年生物柴油。本着“林油一体 化”的示范模式,三家单位分别在贵 州、四川和海南建立麻风树种植基 地,培育种植和加工得到麻风树油, 为生物柴油装置提供原料。2010年 完成产业化示范,产量达到20万吨/ 年,此后进行产业化推广,到2020年 产量发展到200万吨/年。 记者:作为示范工程项目技术支 持的主要负责人,您认为“林油一体 生物柴油发展前景看好 □本刊记者王旸曹军生 ——访石科院长远性课题研究室副主任杜泽学教授 中海油海南东方6万吨/年生物柴油示范装置。杜泽学摄20 中国石化2011/2

生物柴油的发展现状以及问题

生物柴油的出现 第一次石油危机(1973~1974 年)使人类对非石油类的能源及可再生能源的开发产生了兴趣.从1983 年生物柴油的出现至今,美国、欧洲国家(德国、法国、意大利、奥地利、比利时等)、巴西、日本等众多国家和地区开始了对生物柴油的深入研究和大范围的应用, 国外生物柴油的发展现状 美国是最早研究生物柴油的国家。在政府和企业的支持下,美国的生物柴油业发展较迅速。美国政府出台了一系列政策来促进生物柴油的发展,除了减免燃油税意外,美国农业部决定今后两年每年拿出1.5×108 美元补贴生物柴油等生物燃料的使用。美国能源部(DOC)要求联邦、州和公共部门的车队都必须有一定比例的车辆使用替代燃油。至2005 年4 月,包括筹建的工厂在内,美国共有60 家生物柴油生产厂.计划到2011 年生产生物柴油1.15×106 t,2016 年达到3.3×106 t.目前,生物柴油已成为美国替代燃料中增长最快的产品, 主要的产品形式是B20 混合油(生物柴油20%,普通柴油80%). 德国是全世界最大的生物柴油生产国。至2003 年,德国已建成23 家工厂,其中每年生产1×105 t 的生物柴油工厂有7~8 家,全国总产量达到7.15×105 t(产能1.1×106 t),占整个欧洲消费量的50%[5],生物柴油加油站已达1 500 个,占加油站总数的10%,年销售量达5.5×105 t;2005 年生物柴油的产量达1.2×106 t,预计2010 年达3.4×107 t.德国生物柴油的零售价格约为1.45 马克/L,石油柴油为1.60 马克/L,具有很强的竞争力.奔驰、宝马、大众和奥迪汽车生产厂家生产的汽车均允许使用生物柴油,而无需对发动机进行改造. 2002年,巴西重启了生物柴油计划。,采用其丰产的蓖麻油为原料,建立了生物柴油工厂;2004 年,巴西政府颁布了使用生物柴油的法令,允许柴油批发商在柴油中添加一定比例的生物柴油。2010 年巴西使生物柴油在石油柴油中的掺入比达到了5% 日本是亚洲最早开始研究和应用生物柴油的国家,1995 年开始研究生物柴油,但受植物油资源贫乏制约,日本主要以废弃食用油脂为原料生产生物柴油.1999 年建立了耗用259 L/d 废煎炸油的工业化实验装置,目前日本的生物柴油生产能力已达每年4×105 t,理化性质可以达到德国标准,其生物柴油产品售价与石油柴油相当.同时日本政府正在组织科研机构与能源公司合作开发超临界酯交换技术. 中国生物柴油的发展现状 国内对柴油的需求量不断攀升,对石油进口的依赖程度不加大。发展生物柴油可以有效缓解我国柴油供应紧张的状况,减少石油进口,节省外汇,确保能源安全,改善生态环境等.并且我国有丰富的动植物油脂资源。仅仅废弃食用油我国每年产生约2.5×106 t,此数字还在逐年增长。2003 年清华大学的“生物酶法转化可再生油脂原料制备生物柴油新工艺”突破了传统酶法工艺瓶颈,产率达到90%以上,可以有效消除甲醇及副产物甘油对酶反应活性及稳定性的负面影响,酶的使用寿命也随之大大延长。目前国内正在开发以适应不同原料油、产品方案和工厂规模,以及适应原料收集、储存和产品市场的物流状况等需要的新工艺.

(生物科技行业)生物柴油与棕榈油

(生物科技行业)生物柴油 与棕榈油

棕榈硬脂制备生物柴油的研究与设计 1前言 柴油是一种重要的石油炼制产品,是重要的动力燃料之一。随着世界范围内车辆柴油化趋势的加快,未来柴油的需求量也会愈来愈大,而石油资源的日益枯竭和人类环保意识的提高,大大促进了世界各国加快柴油替代燃料的开发步伐,尤其是进入了20世纪90年代,生物柴油以其优越的环保性能受到了各国的重视。我国是最大的发展中国家,经济发展迅速。自1993年我国成为石油净进口国以来,石油进口量迅速增长,已从2001年的7000万t上升到2004年的1亿t以上,对外依存度达到了40%。生物柴油是用含植物油或动物油作为原料的可再生资源,是优质的石油柴油代用品。生物柴油是资源永续的可再生能源,而石油资源是可耗尽的,它和传统的柴油相比,具有润滑性能好,储存、运输、使用安全,抗爆性好,燃烧充分等优良性能。目前世界各国纷纷开发新能源,期望能在维持工业发展的同时,减少温室气体的排放量。生物柴油不仅具有可再生的特点,而且生物柴油可生物降解,发展生物柴油有益于保护生态环境。所以在石油资源短缺之际,开发生物可再生资源,对我国的整体发展显得非常重要[1]。 生物柴油,亦称燃料甲酯,是一种用植物油或动物油加工制取的新型燃料[2][3]。按其化学成分分析,生物柴油是一种通过甘油酯分解而获得的脂肪酸甲酯,其性能与零号柴油相近、使用生物柴油时无需对现有柴油机进行结构改进。 1.1生物柴油的优点 1.1.1具有优良的环保特性。生物柴油硫含量低,可使SO2和硫化物的排放量减少约30%。生物柴油不含对环境造成污染的芳香族烷烃、其废气对人体的损害低于石油柴油。检测表明,与普通柴油相比、使用生物柴油可降低90%的空气毒性。

微藻

微藻制备生物柴油的研究 一、微藻概述 藻类,尤其是海洋单细胞藻类,即微藻,是地球上最早的生物物种,它们中的某些物种已经在地球上生存了35亿年之久。它们能十分有效地利用太阳能将H2O、CO2和无机盐类转化为有机资源,是地球有机资源的最初级生产力,有了它们才有了大气中的氧气,才有了海洋和陆地的其他生物,也才有了人类。随着科技水平的不断提高,人口的不可逆性增长、人类生活水平的不可逆性提高、陆地资源和可耕种面积的不可逆性减少,全球性食品资源短缺压力日益增加。开发和利用海洋微藻是最长远的解决人类食品资源和能源的重要途径。因为藻类不仅富含蛋白质、脂肪和碳水化合物这三大类人类所必需的要素,而且还含有可燃性油类、各种氨基酸、多种维生素、抗生素、高不饱和脂肪酸以及其他多种生物活性物质,是人类向海洋索取食品、药品、燃料、生化试剂、精细化工产品以及其他重要材料的一把金钥匙。 微藻是一类单细胞生物,与陆地微生物相比,微藻具有如下特点: (1)微藻具有叶绿素等光合器官,是非常有效的生物系统,能有效地利用太阳能通过光合作用将H2O、CO2和无机盐转化为有机化合物,因其固定和利用CO2可以减少温室效应。 (2) 微藻一般是以简单的分裂式繁殖,细胞周期较短,易于进行大规模培养,由于微藻通常无复杂的生殖器官,使整体生物量容易采收和利用。 (3)可以用海水、咸水或半咸水培养微藻,因此是淡水短缺、土地贫瘠地区获得有效生物资源的重要途径。 (4) 微藻富含蛋白质、脂肪和碳水化合物,某些种类还富含油料、微量元素和矿物质,是人类未来重要的食品及油料的来源。 (5)微藻,尤其是海洋微藻,因其独特的生存环境使其能合成许多结构和生理功能独特的生物活性物质。特别是经过一定的诱导手段微藻可以高浓度地合成这些具有商业化生产价值的化合物,是人类未来医药品、保健品和化工原料的重要资源。 1、小球藻简介 小球藻(Chlorella)是小球藻属绿藻门,绿藻纲,绿球藻目,卵孢藻科,小球藻属,包括大约10 个种. 小球藻细胞组成中的蛋白质含量为7.3%~88%,碳水化合物为5.7%~38%,脂类为 4.5~86%。小球藻细胞中脂类含量的增加主要是由于脂肪酸积累的结果。在氮饥饿条件下,蛋白核小球藻在生长时可形成高达86%的脂类,而在正常的小球藻细胞中,脂类含量为25%。在正常和氮饥饿条件下生长的小球藻在脂肪酸组成上没有明显的差异。此外,小球藻的异养培养技术,特别是高细胞浓度培养技术的研究得到了较深入的发展,这对于我们制备生物柴油需要高生物量的微藻来说,也是具有重要价值的。 2、微藻油脂 美国国家可更新实验室(NREL)通过现代生物技术建成“工程微藻”,即硅藻类的一种“工程小球藻”,其利用“工程微藻”生产生物柴油,为生物柴油生产开辟了一条新的技术途径。在实验室条件下可使“工程微藻”中脂质含量增加到60%以上,户外生产也可增加到40%以上,而一般自然状态下微藻的脂质含量为5%-20%。“工程微藻”中脂质含量的提高主要由于乙酰辅酶A 羧化酶(ACC)基因在微藻细胞中的高效表达,在控制脂质积累水平方面起到了重要作用。目前,正在研究选择合适的分子载体,使ACC 基因在细菌、酵母和植物中充分表达,还进一步将修饰的ACC 基因引入微藻中以获得更高效表达。在国内,清华大学吴庆余,缪晓玲等也报道利用微藻快速热解的方法制备生物柴油。 利用微藻或“工程微藻”生产生物柴油的优越性在于:微藻生产能力高、用海水作为天然培养基可节约农业资源;比陆生植物单产油脂高出几十倍;生产的生物柴油不含硫,燃烧

微藻制油

微藻制油 一、目前的能源现状 1. 石油、煤炭等目前大量使用的传统化石能源接近枯竭,而且这些 传统能源造成大量的环境污染如 2.新能源太阳能、风能、地热能、生物质能等应用极具有局限性不能大规模的应用,不足以满足人们的需要。 3.生物能源不仅具有资源再生、技术可靠的特点,而且还具有对环境无害、经济可行、利国利农的发展优势。 总而言之,未来将是生物能源的天下。生物能源将会是人类不二的选择,未来生源的前景将不可估量。 二、微藻概述 1.海洋单细胞藻类,即微藻,是地球上最早的生物物种,它们中的某些物种已经在地球上生存了35亿年之久。它们能十分有效地利用太阳能将H2O、CO2和无机盐类转化为有机资源,是地球有机资源的最初级

生产力,有了它们才有了大气中的氧气,才有了海洋和陆地的其他生物,也才有了人类。 2.微藻的特点 (1)微藻具有叶绿素等光合器官,是非常有效的生物系统,能有效地利用太阳能通过光合作用将H2O、CO2和无机盐转化为有机化合物,因其固定和利用CO2可以减少温室效应。 (2) 微藻一般是以简单的分裂式繁殖,细胞周期较短,易于进行大规模培养,由于微藻通常无复杂的生殖器官,使整体生物量容易采收和利用。 (3)可以用海水、咸水或半咸水培养微藻,因此是淡水短缺、土地贫瘠地区获得有效生物资源的重要途径。 (4) 微藻富含蛋白质、脂肪和碳水化合物,某些种类还富含油料、微量元素和矿物质,是人类未来重要的食品及油料的来源。 (5)微藻,尤其是海洋微藻,因其独特的生存环境使其能合成许多结构和生理功能独特的生物活性物质。特别是经过一定的诱导手段微藻可以高浓度地合成这些具有商业化生产价值的化合物,是人类未来医药品、保健品和化工原料的重要资源。 3.微藻的种类 微藻的国内外研究发展概况,重点探讨了4种主要的可利用微藻螺旋藻、小球藻、杜氏藻和红球藻

生物柴油制备方法及国内外发展现状

生物柴油制备方法及国内外发展现状 摘要:通过查找文献,简要介绍了生物柴油的定义和优点,重点介绍它的制备方法,同时也对它在国内外的发展现状作了些介绍。 关键词:生物柴油;制备;现状; Abstract:This article gives a brief introduction to the definiton , advantages and development at home and abroad of the biodiesel,it also gives an emphasis introduction on prepation method . Keywords: biodiesel;prepation;actuality; 随着城市对能源需求的不断增加,石油资源的日益枯竭,全世界都将面临能源短缺的危机,而且石油燃烧对环境造成严重的污染,在很大程度上影响着人们的健康水平,于是对生物柴油的研究应用成为缓解日益恶化的能源和环境问题的焦点。 1生物柴油的定义及优点 1.1 定义 生物柴油是指以油料作物、野生油料植物、工程微藻等水生植物油脂以及动物油脂、餐饮废油等为原料,通过酯交换工艺制成的有机脂肪酸酯类燃料[1]。产业化生产中所说的生物柴油是指脂肪酸甲酯,是脂肪酸与甲醇发生酯化反应后的生成物。 基于美国生物柴油协会定义,生物柴油是指以植物、动物油脂等可再生生物资源生产的可用于压燃式发动机的清洁替代燃料。天然油脂由长链脂肪酸的甘油三酯组成,分子量大,接近700~1000,虽本身可以燃烧,但不能和普通柴油充分混合,直接用作柴油有很多缺陷,需要设计专门的柴油机。酯交换后得到脂肪酸甲酯,分子量降低至200-300,与柴油的分子量相近,性能也接近于柴油,可以按任意比例混合,也无需设计专门的柴油机。且具有接近于柴油的性能,是一种可以替代柴油使用的环境友好的环保燃料。 1.2 优点 生物柴油与石化柴油具有相近的性能,并具有显著的优越性[2,3]:(1)具有优良的环保特性。生物柴油中硫含量低,不含芳香烃,不含芳烃和硫(<10μg/g),燃烧尾气

利用微藻制备生物能源的研究进展

第33卷第5期 唐山师范学院学报 2011年9月 Vol. 33 No. 5 Journal of Tangshan Teachers College Sep. 2011 ────────── 收稿日期:2011-04-24 作者简介:郝国礼(1988-),男,河北张家口人,唐山师范学院生命科学系学生,研究方向为植物细胞工程。 利用微藻制备生物能源的研究进展 郝国礼,刘 佳,陈 超,李兴杰 (唐山师范学院 生命科学系,河北 唐山 063000) 摘 要:结合目前能源微藻在藻种选育、影响微藻产油因素以及生产工艺方面的研究现状和微藻综合利用发展中存在的问题,综述了近年来各国在微藻能源开发方面的重要科研工作,以及微藻能源与低碳的关系,并对微藻能源开发的相关研究方向和进展进行了评述。 关键词:能源微藻;低碳;工艺流程;综合利用 中图分类号: Q 77; TK6 文献标识码:A 文章编号:1009-9115(2011)05-0040-04 Review on the Progress of Producing Bio-Energy from Microalgae HAO Guo-li, LIU Jia, CHEN Chao, LI Xing-jie (Department of Life Science, Tangshan Teachers College, Tangshan 063000, China) Abstract: This review provides a brief overview on the screening and cultivation of the Microalgae, the factors influencing oil-producing of Microalgae, the research on the current production condition, and the problems existing in the comprehensive utilization of microalgae. Here, we review the global research progress of microalgae energy in recent years, and the relationship between microalgae energy and low carbon. Key words: energy microalgae; low-carbon; process technique; comprehensive utilization 世界经济的现代化,得益于化石燃料的开发与应用。然而,由于人们的过度开采,化石燃料终将会枯竭。化石燃料的利用,也造成环境的严重污染,因此,清洁、可再生能源的开发成为了各国研究的重点。目前专家学者研究的主要范围包括风能、水能、太阳能、生物能源等。生物能源是可再生能源的一种,它具有潜在大规模替代汽油和柴油的可能性,因此一直是国内外研究的热点。到目前为止,生物能源的发展已经经历了三代[1]。第一代生物能源是以玉米为主要原料生产乙醇。第二代生物能源以秸秆、枯草等非粮作物中的纤维素为主要原料,生产乙醇、纤维素乙醇和生物柴油等。第三代以产油微生物为主,其中又以海水微藻的研究最多。某些微藻因含油量高、易于培养、单位面积产量大等优点,而被视为新一代甚至是唯一能实现完全替代石化柴油的生物柴油原料[2]。René Wijffels 和 Maria Barbosa 预测,藻类可能在未来的10~15年中成为燃料给料的一个重要来源[3]。 微藻生物质与能源植物相比,具有光合作用效率高、生长周期短、生物质产量高的优势。在同样条件下,微藻细胞 生长加倍时间通常在24h 内, 对数生长期内细胞物质加倍时间可短至3.5h ,生物质生产能力远远高于陆地能源植物。就单位面积的产油量计算,微藻产油可达陆地油料作物产油量的30倍。微藻还可以利用盐碱地、沙漠、海域来养殖,存在不与粮争地及不与人争粮的巨大优势。获得大量的微藻生物质是微藻生物能源发展的首要前提,而优良的微藻种质是提高微藻生物质产量、降低原料成本的关键。产油量较高的部分藻类含油量占干重的比例分别是小球藻(Chlorella sp., 28%-32%)、葡萄藻(Botryococcus ,25%-75%)、三角褐指藻(Phaeodactylum tricornutum ,20%-30%)、杜氏盐藻(Dunaliella primolecta ,23%)等[4]。 1 微藻与低碳 从可持续发展的角度来看,利用微藻实现CO 2的减排符合自然界环保、经济、彻底的循环模式。因此藻类制备生物燃料成为了一种CO 2减排及利用的新方式。 陈明明等人利用诱变育种技术对用来固定CO 2的微藻进行育种,获得耐受高CO 2浓度、可高效固定CO 2的斜生

生物柴油研究与应用现状_吴慧娟

生物柴油研究与应用现状 吴慧娟,许世海,张文田(后勤工程学院,重庆400016) 摘要:随着环境污染问题的日益严重和能源危机的日益紧迫,迫使人们急需寻找一种不仅清洁的、对环境友好的、而且可再生的能源。生物柴油的可再生性和清洁性引起了世界各国的重视。综述了生物柴油在国内外的生产应用现状、发展趋势以及发展生物柴油对我国的意义。并对生物柴油生产方法的研究进展进行详细的介绍,重点介绍了酯交换反应,对生物柴油目前还存在的问题进行了分析。 关键词:生物柴油;可再生能源;酯交换反应中图分类号:TE626.24  文献标识码:C 文章编号:0253-4320(2007)S1-0013-04 Research and application situation of biodiesel W U Hui -juan ,XU Shi -hai ,ZHA NG Wen -tian (College of Logistical Engineering ,Chongqing 400016,China ) Abstract :With the increasin g urgency of both energy crisis and environ mental pollution ,there is an urgent need to find a kind of alternative fuel source which is clean ,environmental -friendly and reproducible .Biodiesel attracts notice all around the world because of its cleanness and reproducibility .The research and application situation of biodiesel in China and other countries ,as well as its importance to China are reviewed in this paper .The production technology ,especially transesterification ,is introduced in detail .The shortcomings of biodiesel are also discussed . Key words :biodiesel ;reproducible energy source ;transesterification  收稿日期:2006-11-27  作者简介:吴慧娟(1982-),女,硕士研究生,主要研究方向为燃料与燃料化学,sing4757@s ina .com 。 石油是国家经济社会发展和国防建设极其重要的战略物资。但近年来,石油供应出现紧缺,石油价格居高不下,各国从环境保护和资源战略的角度出发,积极探索发展一些可以再生、清洁的对环境友好的能源。生物柴油作为优质的柴油代用品,对经济可持续发展,推进能源替代,减轻环境压力,控制城市大气污染具有重要的战略意义。我国是一个石油短缺的国家,石油资源数量较少,生产能力增长缓慢。但随着生活水平的提高,石油的需求急剧增长,供应缺口越来越大。2005年我国生产原油1.815亿t ,进口原油1.27亿t ,成品油净进口1742万t ,石油对外依存度已达42.9%。这种状况不仅给石油供应带来很大的压力,而且也危及到国家能源安全。另一方面我国环境状况也不容乐观,而能源使用过程中带来的污染是一个重要方面。因此,在我国发展生物柴油具有更大的意义。 1 国内外生物柴油应用情况 1.1 美国 美国是最早研究生物柴油的国家之一,原料是以大豆油为主。生物柴油在美国的商业应用始于 20世纪90年代初,但直到近几年才逐渐形成规模,并已成为该国发展最快的替代燃油[1],产量从1999年的50万加仑猛增到2000年的500万加仑。目前美国已有4家生产厂家,总生产能力达30万t /a [2] , 预计到2011年美国生物柴油的生产能力将达115万t /a 。美国在生产柴油的研制过程中,生产成本的合理化,适宜原料的选择及理化特性的改进方面都取得了突破性的进展。为促进生物燃料的发展,美国政府采取了有力的补贴措施。1.2 欧洲 生物柴油使用最多的是欧洲,份额已占到成品油的5%,2001年生物柴油产量已超过100万t ,主要以油菜为原料,目前在欧盟各国以前通常被用来做饲料用的废食用油脂,现在也正转向生产生物柴油[3]。据Frost &Sulivan 企业咨询公司最新发表的“欧盟生物柴油市场”报告,为实现“京都议定书”规定的目标(在2008—2012年期间,减少二氧化碳排放量8%),欧盟即将出台鼓励开发和使用生物柴油的新规定,如对生物柴油免征增值税,规定机动车使用生物动力燃料占动力燃料营业总额的最低份额。为了便于推广使用,德国、意大利等国也都制定了生 · 13·第27卷增刊(1)现代化工 June 20072007年6月Modern Chemical Industry

生物柴油的现状与发展前景

生物柴油的现状与发展前景 柴油作为一种重要的石油连炼制产品,在各国燃料结构中占有较高的份额,以成为重要的动力燃料。随着世界范围内车辆柴油化趋势的加快,未来柴油的需求量会愈来愈大,而石油资源的日益枯竭和人们环保意识的提高,大大促进了世界各国加快柴油替代燃料的开发步伐,尤其是进入了20世纪90年代,生物柴油以其优越的环保性能受到了各国的重视。 目前世界每年新车产量大约5 000万辆,全世界汽车保有量大约7.5亿辆(含摩托车)。随着汽车工业的快速发展,汽油和柴油的用量随汽车保有量的增加而增加,同时也带来了汽车尾气污染等问题。近20年来,虽然在改善油品燃烧过程、尾气净化等方面都取得了很大进展,但仍然不能满足要求。为了改善汽车的运行性能和降低汽车尾气中害物质的排放量,美国、欧洲和日本汽车工业协会1998年6月4日提出了汽车燃料质量国际统一标准即”世界燃油规范”Ⅲ类标准。柴油”世界燃油规范”Ⅱ类、Ⅲ类标准(见表1、表2)。由表1、表2可以看出,Ⅱ类标准在目前基础上,提出了芳烃含量的限制,对硫含量、十六烷值等提出了更高的标准,Ⅲ类标准则在各项指标上比Ⅱ类标准都有更严格的规定。 随着我国汽车拥有量的急剧上升,大量的燃油被消耗,汽车尾气中污染物的排放量越来越大,汽车尾气已成为我国大气污染重要的原因。为保护环境,改善大气质量,我国国家质量技术监督局最近颁布了柴油机排放控制新标准(见表3)。新标准采用了联合国欧洲经济委员会汽车排放法规体系,使我国对新柴油机车的排放要求达到欧洲20世纪90年代初期的水平。 我国目前的车用无铅汽油和柴油标准介于世界燃油规范Ⅰ类油和Ⅱ类油水平之间,要满足汽车达到欧洲Ⅰ类排放标准都困难,更无法满足入世及举办奥运会的要求。为此,中国石化集团公司要求在清洁油品生产方面作出更大努力,以满足国家标准的要求。 炼油企业为了向市场提供清洁油品使燃烧柴油尾气排放达到标准要求,需要采取

生物柴油与棕榈油

棕榈硬脂制备生物柴油的研究与设计 1前言 柴油是一种重要的石油炼制产品,是重要的动力燃料之一。随着世界范围内车辆柴油化趋势的加快,未来柴油的需求量也会愈来愈大,而石油资源的日益枯竭和人类环保意识的提高,大大促进了世界各国加快柴油替代燃料的开发步伐,尤其是进入了20世纪90年代,生物柴油以其优越的环保性能受到了各国的重视。我国是最大的发展中国家,经济发展迅速。自1993年我国成为石油净进口国以来,石油进口量迅速增长,已从2001年的7000万t上升到2004年的1亿t以上,对外依存度达到了40%。生物柴油是用含植物油或动物油作为原料的可再生资源,是优质的石油柴油代用品。生物柴油是资源永续的可再生能源,而石油资源是可耗尽的,它和传统的柴油相比,具有润滑性能好,储存、运输、使用安全,抗爆性好,燃烧充分等优良性能。目前世界各国纷纷开发新能源,期望能在维持工业发展的同时,减少温室气体的排放量。生物柴油不仅具有可再生的特点,而且生物柴油可生物降解,发展生物柴油有益于保护生态环境。所以在石油资源短缺之际,开发生物可再生资源,对我国的整体发展显得非常重要[1]。 生物柴油,亦称燃料甲酯,是一种用植物油或动物油加工制取的新型燃料[2][3]。按其化学成分分析,生物柴油是一种通过甘油酯分解而获得的脂肪酸甲酯,其性能与零号柴油相近、使用生物柴油时无需对现有柴油机进行结构改进。 1.1生物柴油的优点 和硫化物的排放量减少约1.1.1具有优良的环保特性。生物柴油硫含量低,可使SO 2 30%。生物柴油不含对环境造成污染的芳香族烷烃、其废气对人体的损害低于石油柴油。检测表明,与普通柴油相比、使用生物柴油可降低90%的空气毒性。出于生物柴油含氧量高、燃烧时排烟少,一氧化碳的排放量可减少约10%。同时,生物柴油的地物降解性高。生物柴油没有怪味,排放气体无硫和铅的有毒物质,也不含苯及其它芳香化合物,生物柴油的生产和使用完全不会毒害人们的身体健康。 1.1.2具有较好的低温发动机启动性能、无添加剂冷滤点达-20℃。生物柴油可与矿物油混合(加10~30%)作“柴油清洁剂”,适合汽车和船只使用,达到国家环保标准。 1.1.3具有较好的润滑性能,可降低喷油泵、发动机缸体和连杆的磨损率、延长其使用寿命。 1.1.4具有较好的安全性能。生物柴油由于闪点高、不属于危险品。生物柴油不易挥发,生物降解率高达98%,降解速率是石油柴油的两倍,如发生故障时不会挥发到大气中,也不会污染地面和水体,属于环境友好的能源产品。因此、在运输、储存和使

利用微藻生产生物柴油的研究进展

收稿日期:2009-11-02;修回日期:2010-05-07 基金项目:国家杰出青年科学基金项目(20625308);西北师范大学青年教师基金项目(NWNU -LK QN -09-20)作者简介:孔维宝(1981),男,讲师,在读博士,主要从事微藻生物柴油和酶催化方面的研究工作。 通讯作者:夏春谷,研究员,博士生导师(E 2mail )cgxia@lzb . ac .cn 。 生物柴油 利用微藻生产生物柴油的研究进展 孔维宝 1,2,3 ,华绍烽1,宋 昊1,夏春谷 1 (11中国科学院兰州化学物理研究所,羰基合成与选择氧化国家重点实验室,兰州730000;21中国科学院研究生院,北京100049;31西北师范大学生命科学学院,兰州730070) 摘要:在世界能源危机的影响下,生物质能源由于可再生、低污染等优势,被认为是在未来一个较短时期内最有潜力缓解能源危机的石油替代品。而微藻由于具有生物量大、光合效率高、生长周期短、油脂含量高和环境友好等优点,有望破解后石油时代的能源危机。重点阐述了产油微藻的种类,提高微藻油脂含量的策略,微藻细胞的采收技术,微藻油脂的提取和转酯化反应等内容;分析了微藻生物柴油产业发展中亟待解决的一些问题。关键词:微藻;能源;生物燃料;生物柴油;油脂 中图分类号:T Q645;TK6 文献标志码:A 文章编号:1003-7969(2010)08-0051-06 Progress on b iod i esel producti on using m icroa lgae K ONG W eibao 1,2,3,HUA Shaofeng 1,S ONG Hao 1,X IA Chungu 1 (11State Key Laborat ory of Oxo Synthesis and Selective Oxidati on,Lanzhou I nstitute of Che m ical Physics, Chinese Acade my of Sciences,Lanzhou 730000,China;21Graduate University of Chinese Acade my of Sciences,Beijing 100049,China;31College of L ife Sciences, North west Nor mal University,Lanzhou 730070,China ) Abstract:B i omass energy was considered as the most potential petr oleum substitute in a shorter peri od of ti m e,f or its rene wable ability and l ower polluti on .M icr oalgae could s olve the energy crisis in the post -petr oleu m era because of its large bi omass,high phot osynthetic efficiency,short gr owth cycle,high li p id content,and envir on mental friendliness .The current situati on of bi odiesel p r oducti on fr om m icr oalgae was revie wed .The s pecies of li p id -p r oducing m icr oalgae,strategies t o i m p r ove the li p id content of m i 2cr oalgae,techniques f or cell harvesting,li p id extracti on and transesterificati on of m icr oalgae were dis 2cussed .The p r oble m s in m icr oalgae bi odiesel industry were analyzed .Key words:m icr oalgae;energy;bi ofuel;bi odiesel;li p id 在能源危机对各行业影响日益加剧的今天,社会各界对可再生能源的关注度不断提高。对于生物质能源的原料,人们的目光在一段时期内集中在传 统的油料经济作物(大豆、油菜)、粮食(玉米)、农林废弃物(木质素、纤维素和半纤维素)、动植物油脂等领域。其中,生物柴油作为化石能源的替代燃料, 已成为国际上发展最快、应用最广的环保可再生能源。但是,生物燃料“与粮争地、与人争粮”的情况及较高的原料成本限制了它的进一步推广。藻类作为一种重要的可再生资源,具有分布广、生物量大、光合效率高、环境适应能力强、生长周期短、油脂含量高和环境友好等突出特点 [1] 。藻类尤其是微型 藻类将会成为提供新能源和新资源的“明星”,微藻的能源化利用有望成为“后石油时代”破解能源危机的一把金钥匙。在最近两年,不管是国内外有关利用微藻生产生物燃料的基础研究,还是应用开发报道都呈现大幅增长的态势 [2] 。 本文结合国内外在微藻生物燃料研发方面的新近报道,综述微藻开发生物燃料的显著优势,能源微

相关主题