搜档网
当前位置:搜档网 › 基于ANSYS的齿轮静力学分析及模态分析

基于ANSYS的齿轮静力学分析及模态分析

基于ANSYS的齿轮静力学分析及模态分析
基于ANSYS的齿轮静力学分析及模态分析

学号:08507019

2011届本科生毕业论文(设计)题目:基于ANSYS的齿轮模态分析

学院(系):机械与电子工程学院

专业年级:机制072班

学生姓名:何旭栋

指导教师:杨创创

合作指导教师:

完成日期: 2011-06-

I

目录

第一章绪论 .......................................................................- 1 -

1.1课题的研究背景和意义..........................................................- 1 -

1.2 齿轮弯曲应力研究现状 .........................................................- 1 -

1.3 齿面接触应力研究现状 .........................................................- 2 -

1.4 齿轮固有特性研究现状 .........................................................- 2 -

1.5 论文主要研究内容..............................................................- 3 -第二章齿轮三维实体建模.........................................................- 3 -

2.1 三维建模软件的选择 ...........................................................- 3 -

2.2 齿轮参数化建模的基本过程.....................................................- 4 -

2.3 利用pro/e对齿轮进行装配.....................................................- 5 -第三章齿轮弯曲应力有限元分析..................................................- 6 -

3.1齿轮弯曲强度理论及其计算......................................................- 6 -

3.1.1 齿轮弯曲强度理论 .........................................................- 6 -

3.1.2 齿形系数的计算方法.......................................................- 7 -

3.2 齿轮弯曲应力的有限元分析.....................................................- 8 -

3.2.1选择材料及网格单元划分....................................................- 8 -

3.2.2约束条件和施加载荷........................................................- 8 -

3.2.3计算求解及后处理..........................................................- 9 -

3.3 齿轮弯曲应力的结果对比......................................................- 12 -第四章齿轮接触应力有限元分析.................................................- 13 -

4.1经典接触力学方法.............................................................- 13 -

4.2 接触分析有限元法思想 ........................................................- 14 -

4.3 ANSYS有限元软件的接触分析...................................................- 16 -

4.3.1 ANSYS的接触类型与接触方式 ..............................................- 16 -

4.3.2 ANSYS的接触算法.........................................................- 16 -

4.4 齿轮有限元接触分析 ..........................................................- 17 -

4.4.1将Pro/E 模型导入ANSYS 软件中 ...........................................- 17 -

4.4.2 定义单元属性和网格划分..................................................- 17 -

4.4.3 定义接触对...............................................................- 18 -

4.4.4 约束条件和施加载荷......................................................- 18 -

4.4.5 定义求解和载荷步选项....................................................- 19 -

4.4.6 计算求解及后处理 ........................................................- 19 -

4.5有限元分析结果与赫兹公式计算结果比较........................................- 21 -第五章齿轮模态的有限元分析 ...................................................- 22 -

5.1 模态分析的必要性.............................................................- 22 -

5.2 齿轮的固有振动分析 ..........................................................- 22 -

5.3 模态分析理论基础.............................................................- 22 -

5.4 模态分析简介.................................................................- 24 -

5.4.1模态提取方法.............................................................- 24 -

5.4.2模态分析的步骤...........................................................- 25 -

I

5.5 齿轮的模态分析...............................................................- 25 -

5.5.1 将Pro/E 模型导入ANSYS 软件中...........................................- 25 -

5.5.2 定义单元属性和网格划分..................................................- 25 -

5.5.3 加载及求解...............................................................- 26 -

5.5.4扩展模态和模态扩展求解...................................................- 26 -

5.5.5 查看结果和后处理 ........................................................- 27 -

5.6 ANSYS模态结果分析...........................................................- 28 -第六章全文总结与展望 ..........................................................- 31 -

6.1 全文总结.....................................................................- 31 -

6.2 本文分析方法的优点 ..........................................................- 31 -

6.3 本文缺陷及今后改进的方向....................................................- 32 -参考文献..........................................................................- 33 -附录1 外文翻译..................................................................- 34 -附录2 GUI操作步骤..............................................................- 41 -致谢 .............................................................................- 45 -

II

绪论

第一章绪论

1.1课题的研究背景和意义

本文研究的对象是履带式拖拉机变速箱齿轮。随着履带式拖拉机性能和速度的提高,对变速箱齿轮也提出了更高的要求。改善齿轮传动性能,如提高承载能力、减轻重量、缩小外形尺寸、提高使用寿命和工作可靠性等,成为齿轮设计中的重要内容。履带式拖拉机变速箱齿轮广泛应用的是圆柱齿轮和圆锥齿轮,其中大约90%是直齿圆柱齿轮。变速箱齿轮工作应力很高,结构上要求重量轻、精度高,并具有足够承载能力和可靠性。齿轮传动失效主要发生在轮齿,主要失效形式有轮齿折断、齿面磨损、齿面点蚀、齿面胶合和塑性变形等[1]。根据齿轮工作特点,在传递功率和运动过程中,轮齿齿根产生弯曲应力,齿面产生接触应力,齿面间相对滑动摩擦而产生磨损。齿轮主要失效特征是弯曲应力作用造成轮齿的变形和折断、接触应力作用而造成的表面疲劳剥落和摩擦作用而造成的磨损。在履带式拖拉机变速箱的维修中,失效齿轮有80%以上是由于面接触疲劳造成的。为了避免由于齿轮接触疲劳而引发的行驶事故,造成不必要的人员伤亡和经济损失,有必要对齿轮的齿面接触应力和齿根弯曲应力进行分析和评估,为变速箱齿轮传动的设计提供依据。

齿轮轮体破坏是重载机械齿轮必须避免的一种破坏形式,为避免由于齿轮共振引起的轮体破坏,有必要对齿轮进行固有特性分析,通过调整齿轮的固有振动频率使其共振转速离开工作转速。

1.2 齿轮弯曲应力研究现状

实验表明,齿轮的工作寿命与最大弯曲应力值的六次方成反比,因此最大弯曲应力略微减小,齿轮工作寿命即会大大提高[2]。齿轮的最大弯曲应力往往出现在齿轮的齿根过渡曲线处,因此精确计算渐开线齿轮齿根过渡曲线处的应力,进而合理设计过渡曲线,对延长齿轮工作寿命、提高齿轮承载能力至关重要。为了进行齿根弯曲强度计算,分析齿根弯曲状态,必须分析齿根的弯曲应力。因此,分析计算轮齿应力与变形的分布特点和变化规律具有重要的意义。而在渐开线齿轮过渡曲线处,轮齿形状发生变化,产生应力集中现象,会直接影响齿轮的寿命和承载能力。齿轮弯曲应力和变形计算大致有四种方法,即材料力学方法、弹性力学方法、试验分析方法和数值方法[3]。

随着计算技术的迅速发展与广泛应用,以有限元法为代表的数值计算方法为齿轮应力和变形分析提供了一种方便、可靠的研究方法.目前齿轮工程中实用的数值解法主要有三种:有限差分法(FDM)、边界元法(BEM)和有限元法(FEM)[3]。在数值计算方法中最引人注目的是有限元法。有限元法用于齿根应力分析大约起始于二十世纪六十年代末、七十年代初,此后迅速发展,国外不少研究人员如Chabert、Wilcox、户部、Chang、Bibel

- 1 -

基于ANSYS的齿轮模态分析

等都进行过这方面的研究工作.因此,在用有限元方法对直齿轮的齿根应力进行分析时,都把它简化为力学中的平面应变问题。

1.3 齿面接触应力研究现状

为了进行齿面接触强度计算,分析齿面失效和润滑状态,必须分析齿面的接触应力。经典的齿面接触应力计算公式是建立在弹性力学基础上,而对于齿轮的接触强度计算均以两平行圆柱体对压的赫兹公式为基础。1908年,威迪基(E.Videky)最先把Hertz公式应用于直齿圆柱齿轮的齿面接触强度计算中,明确提出了齿面接触应力的概念,为以后的齿面接触强度计算方法奠定了基础。由于齿轮副啮合齿面的几何形状十分复杂,采用上面的方法准确计算轮齿应力和载荷分配等问题非常困难甚至无法实现。随着计算机的普及,齿轮接触问题的数值解法获得了越来越广泛的应用。数值解法可以求解复杂的齿面接触问题,但不能给出一般性的函数关系。在工程应用上数值解法具有很大的实用价值,己经取得了很多重要成果,例如有限元法、边界元法、有限差分法以及与数值方法相配合的各种变分法、实变函数法、泛函分析法等。在所有这些方法中,有限元法的应用最为广泛,可以求解边界条件、几何形状和载荷方式复杂的工程接触问题。Filiz和Eyercioglu采用有限元法,对在集中、分布和模拟接触三种载荷形式下的三个轮齿模型进行了应力分析。他们采用三维模型使用自动接触单元对修形、修形和偏斜安装等不同情况的齿轮啮合进行了分析。

1.4 齿轮固有特性研究现状

齿轮副在工作时,在内部和外部激励下将发生机械振动。振动系统的固有特性,一般包括固有频率和主振型,它是系统的动态特性之一,同时也可以作为其它动力学分析的起点,对系统的动态响应、动载荷的产生与传递以及系统振动的形式等都具有重要的影响。在进行结构设计时,使激振力的频率与系统的固有频率错开,可以有效的避免共振的发生。

然而,在齿轮的设计阶段,往往很难得到齿轮固有特性的实验数据,只能通过理论计算得到进行动力学分析的参数,目前最好的方法是有限元分析法。

对齿轮进行模态分析方面[4],叶友东等研究了直齿圆柱齿轮的固有特性,采用有限元法建立了直齿圆柱齿轮的动力学模型,通过有限元分析软件ANSYS对齿轮进行了模态分析,得到了齿轮的低阶固有频率和主振型,为齿轮系统的动态响应计算和分析奠定了基础。陶泽光等建立了单级齿轮减速器的有限元模型,用I-DEAS软件研究了该系统的固有特性。马红采用有限元法分析了齿轮-轴承-转子系统的弯扭耦合振动,讨论了弯扭藕合对系统固有频率、振型及稳定性的影响。Choy等人提出了一个分析方法来模拟齿轮转动系统中的振动,该方法把转子-轴承-齿轮系统的动态特性同齿轮箱结构的振动相耦合,用有限元模型表示齿轮箱结构,使用NASTRAN软件求解模态参数。杨晓宇建立了齿

- 2 -

绪论

轮传动系统和结构系统的三维动力有限元模型,计算了由齿轮-传动轴-轴承-箱体组成的齿轮系统的动态响应,给出了齿轮箱受迫振动的位移-时间历程,并对整个齿轮系统进行了试验模态分析。刘辉等研究了斜齿轮体的固有振动特性并归纳了齿轮本体和轮齿的主要振型类型,分析了齿轮本体结构对固有频率的影响以及相邻齿对轮齿模态特性的影响,所得结论为动态设计提供参考。于英华等采用Pro/E软件实现斜齿轮的参数化建模并利用ANSYS有限元软件对斜齿轮进行模态分析,研究斜齿轮的固有振动特性,得到了斜齿轮的低阶固有振动频率和主振型。

1.5 论文主要研究内容

开发用于履带式拖拉机变速箱齿轮的设计平台,在此平台上完成齿轮的三维模型设计,对轮齿进行弯曲和接触有限元分析,获得齿轮弯曲应力和接触应力,为齿轮的参数设计和工作可靠性提供依据。最后对齿轮进行固有特性分析,得到系统的固有频率和主振型,具体研究内容如下:

1.建立直齿圆柱齿轮的三维实体模型

利用Pro/e软件强大参数建模方法建立渐开线齿轮的三维实体模型。

2.轮齿弯曲应力分析

利用Pro/e与ANSYS软件之间良好的数据交换接口,将Pro/e中的齿轮以IGES格式文件导入到ANSYS中划分网格生成有限元模型,并施加约束和载荷,最终求解可获得齿轮的弯曲应力。

3.齿面接触应力分析

将Pro/e中的一对齿轮以IGES格式文件导入到ANSYS中生成有限元模型并设置合理的接触对,再施加约束和载荷,运用完全牛顿-拉普森迭代算法对考虑摩擦的齿轮进行接触应力的静力学求解,并与传统的计算方法进行对比验证。

4.齿轮系统的模态分析

在ANSYS中对齿轮副进行模态分析,利用Block Lanczos法提取系统的低价固有频率和主振型。为了避免齿轮传动系统发生共振,激振力的频率应与系统的固有频率错开。

第二章齿轮三维实体建模

2.1 三维建模软件的选择

ANSYS 软件是集结构、热、流体、电磁场、声场和耦合场分析于一体的大型通用有限元分析软件。虽然ANSYS 本身具有建模功能,但是其建模能力非常有限,只能处理一些相对简单的模型。随着ANSYS 的应用日益广泛,它需要处理的模型也越来越复杂,ANSYS 自带的建模功能就显得非常不足,Pro/e拥有强大的参数化设计能力,可以进行复杂的实体造型。所以,利用ANSYS 与Pro/e 软件之间的模型数据转换,就可以充分

- 3 -

基于ANSYS 的齿轮模态分析

- 4 -

发挥Pro/e 软件强大的造型能力与ANSYS 软件强大的分析功能。

在有限元分析过程中,建模是非常关键的步骤,模型是否准确将直接影响计算结果的正确性,如果模型错误或者误差太大,即使算法再精确,得到的分析结果将是错误的。一个渐开线轮齿,其截面曲线是由齿顶圆、渐开线、齿根过渡曲线和齿根圆四部分组成。建模的关键是如何获得精确的齿面曲线方程及如何生成齿面曲线。表2-1为齿轮的基本参数。

表2-1 齿轮的基本参数

齿轮 模数 Mn 齿数 Z 压力角

Alpha

螺旋角 Beta 齿宽 B 齿顶高系数 Hax 顶隙系数 Cx 变位系数 X 齿轮1

2.5 20 20 0 14 1.0 0.2 0 齿轮2 2.5 46 20 0 15 1.0 0.2 0

2.2 齿轮参数化建模的基本过程

(1)创建齿轮参数及驱动方程,并绘制齿轮基本圆

启动Pro /e 之后,建立一个新文件,文件类型选择为零件,子类型为实体,文件名为gear1。利用“工具”“参数”命令,设置标准直齿圆柱齿轮的基本参数,在以后的零件设计中,可直接调用这些参数,达到参数化设计的目的,这样能有效的提高设计效率,避免重复性工作。齿轮模型添加的参数按表2-1所示齿轮的参数添加。

利用“工具”“关系”命令,在关系对话框中添加关系式[5]:

d=m*z

db=d*cos(alpha)

da=d+2*m*ha

df=d-2*m*(ha+c)

利用“草绘”命令,选择Front 面作为草绘平面,绘制4个同心圆,分别为分度圆、齿顶圆、齿根圆和基圆,定义它们的直径分别为d 、da 、df 和db 。确定后,就可重新生成新的尺寸。

(2)创建一个渐开线齿廓曲线

利用“曲线”“从方程”命令,在记事本中输入以下关系式,即可生成一个渐开线齿廓曲线。在笛卡尔坐标系下输人下列方程[5]:

x=t*sqrt((da/db)^2-1)

y=180/pi

r=0.5*db*sqrt(1+x^2)

theta=x*y-atan(x)

z=0

齿轮三维实体建模

- 5 -

绘制出一侧的渐开线后即可“镜像”出齿轮另一侧的渐开线,从而生成渐开线齿廓曲线,如图2-1所示。然后对齿廓曲线进行“倒角”等处理,继而由“拉伸”和“实体化”功能,可产生第一个齿形轮廓的完整三维实体造型,如图2-2所示。

图2-1 创建4个圆 图2-2 创建一个轮齿 (3)创建完整的直齿轮

运用“特征操作”“复制”命令将创建的一个齿糟绕齿轮中心轴旋转360/Z 创建副本,然后利用“阵列”命令生成其它的齿廓,如图2-3所示。然后可以利用“拉伸工具”“去除材料”命令,创建齿轮轮毂和腹板等。再开键槽、倒角,最终生成直齿轮模型,如图2-4所示。

图2-3 齿轮胚体 图2-4 齿轮1模型图

(4)实现齿轮参数化的自动生成 第(1)步中确定的控制参数是可以实现模型参数的改变。当齿轮设计要求改变时,其结构尺寸也应作相应改变以满足新的需要,为达到这一要求,只需要修改特征参数即可将前述实体模型转换为满足要求的齿轮。从设计角度上极大地提高没计者的工作效率,能更加快捷地参与到后续的有限元分析工作。

2.3 利用pro/e 对齿轮进行装配

(1)对齿轮2进行三维实体造型

因为齿轮2的齿数为46,大于42,无法利用齿轮1的模型进行重生成,启动Pro/

基于ANSYS 的齿轮模态分析

- 6 -

e 之后,命名文件为gear2。利用上述操作构建齿轮2的三维实体造型。完成后退出Pro /e 。

(2)装配前的准备

启动Pro /E 之后,建立一个新文件,文件类型选择为组件,子类型为实体,文件名为

gear 。接着创建2条相互平行的线1AA -和2AA -,2条线之间的距离为121**()2d m z z =+,

如图2-5所示。

(3)齿轮的装配

首先调入gear1,使齿轮1的轴线与1AA -对齐,中心面和FRONT 面对齐。接着调入

gaer2,使齿轮2的轴线与2AA -对齐,并且使齿轮2的中心面和FRONT 面对齐即可。具

体装配体如图2-6所示。

图2-5 创建2条中心线 图2-6 齿轮装配图 第三章 齿轮弯曲应力有限元分析

表3-1 齿轮材料特性

材料 弹性模量 E 泊松比 μ 密度 ρ 齿轮 40Cr 206GPa 0.28 7.8×310kg/3

cm 3.1齿轮弯曲强度理论及其计算

3.1.1 齿轮弯曲强度理论

目前的齿轮弯曲强度计算公式是以路易斯所提出的计算公式为基础,采用各种系数修正材料强度和齿轮的载荷,并考虑齿轮精度的影响,以接近临界载荷的计算法作为主要的方法[6]。

路易斯的计算法是把轮齿当作与其内切的抛物线梁来考虑的,以这个抛物线梁的弯

齿轮弯曲应力有限元分析

- 7 -

曲应力作为齿根应力。如图3-1所示,垂直于齿面的载荷作用线和齿形中心线的交点A 是抛物线的顶点,连接齿形的内切抛物线和齿根过渡曲线的切点的断面BC 即是危险断面。当弯曲载荷作用在抛物线梁的顶端时,该梁断面上无论那个位置的最大应力都是相等的,因此,可以把抛物线在齿形的内切位置作为危险断面,而在这个危险断面的位置上

考虑弯曲应力。在图3-1中,如齿面法向载荷为n F ;危险断面齿厚为r S ;从内切抛物线

梁顶端到危险断面的高度为r h ;齿宽为b ,模数为m 时,则齿根应力F σ如下式:

22h cos 6(h /)cos =(/)6N f f N N F BV F F F m F F Y S b

bm S m bm

==ωωσ (2-1)

式中: 2

6(h /)cos (/)f BV F m Y S m =ω

图3-1 路易斯法 图3-2 30o 切线法 3.1.2 齿形系数的计算方法

在计算渐开线齿轮的齿根应力时,不能像计算简单的悬臂梁的弯曲应力那样给定梁的参数。目前计算方法有霍法(H .Hofer)提出的30o 切线法[7]。该法如图3-2所示,连接与齿形中心线成30o 的直线在齿根圆角处的切点的平面作为危险断面,取载荷作用线和齿形中心线的交点与危险断面的距离作为梁的高度,利用内切抛物线法的齿形系数计算式计算系数值。

有限元法与经典的解析法不同。在经典的解析法中,通常都是从研究连续体中微元体的性质着手,在分析中允许微元体无限多而它的大小趋近于零,从而得到描述弹性体性质的偏微分方程,求解微分方程可以得到一个解析解。这种解是一个数学表达式,它给出物体内每一点上所要求的未知量的值。然而,对于大多数工程实际问题,由于物体

基于ANSYS 的齿轮模态分析

- 8 -

的几何形状的不规则,材料的非线性或不均匀等原因,要得到问题的解析解,往往十分困难。有限元法则从研究有限大小的单元力学特性着手,最后得到一组以节点位移为未知量的代数方程组。应用现成的计算方法,总是可以得到在节点处需要求解的未知量的近似值。

3.2 齿轮弯曲应力的有限元分析

大小齿轮材料相同,接触应力在两相互啮合齿轮的齿面上大小相同,而对于没对接触的齿来说,小齿轮的齿根应力均大于大齿轮的齿根应力,所以在进行齿根弯曲强度校核的时候只需对小齿轮进行校核即可。

齿轮弯曲应力的限元分析的步骤为:1选择材料及网格单元划分; 2 约束条件和施加载荷; 3计算求解及后处理[8]。

3.2.1选择材料及网格单元划分

首先打开软件ANSYS11.0,改文件名为“Bending stress ”,并将标题名改为“Bending Anasys of a gear ”;

启动PRO/E ,打开gear1,.将文件保存IGES 格式文件副本;

将gear1.igs 导入到ANSYS11.0中;

根据计算对象的具体情况(边界变化情况、应力变化情况等)、计算的精度要求、计算机容量大小、计算的经济性,以及是否有合适的程序等等因素进行全面分析比较,选择合适的单元形式。为了提高计算精度并减少计算量,选择单元类型为8节点四面体单元So1id45;

定义材料的弹性模量E ,泊松比υ,密度ρ。其中弹性模量E=206GPa ,泊松比υ= 0.28,密度ρ=7.8×310kg/3cm 。

对齿轮进行网格单元划分。选择自由网格划分方式。网格划分结果见图3-3。

图3-3 列表显示节点数和单元数

3.2.2约束条件和施加载荷

施加边界约束条件是有限元分析过程中的重要一环。边界条件是根据物理模型的实际工况在有限元分析模型边界节点上施加的必要约束。边界约束条件的准确度直接影响

齿轮弯曲应力有限元分析

- 9 -

有限元分析的结果。在有限元分析中确定边界条件一般应做到以下几条:要施加足够的约束,保证模型不产生刚体位移;施加的边界条件必须符合物理模型的实际工况;力求简单直观,便于计算分析。

轮齿在受载时,齿根所受的弯矩最大。根据分析,齿根所受的最大弯矩发生在轮齿啮合点位于单对啮合区最高点。因此,齿根弯曲强度也应该按载荷作用于单对啮合区最高点来计算。由于这种算法比较复杂,通常只用于高精度的齿轮传动。为了便于计算和施加载荷,通常将全部载荷作用于齿顶,作用方向为齿顶圆压力角。为了加载方便,将沿啮合线作用在齿面上的法向载荷n F 在节点处分解为2个相互垂直的分力,即圆周力t F 与径向力r F 。载荷的大小[9]可以根据设计承载的扭矩按公式求得。

2*t T F d

= (3-1) r *tan t F F =α (3-2)

式中,t F 为圆周力;r F 为径向力;T 为扭矩;d 为载荷作用点处齿轮直径。

施加位移约束:对齿轮内孔分别对X 、Y 、Z 三个方向上的平动和转动进行约束。 施加载荷:对齿轮其中一个轮齿

的齿顶圆上的节点施加圆周力t F 与径向

力r F 。每个节点上施加的力[9]按式(3-3)和(3-4)计算。其中圆周力t F 为6496N ,径向力r F 为2364.25N ,单个轮齿的齿

顶圆上的节点数为16个,故求得

x F =147.77N,y F =406N 。施加约束和载荷具 体结果见图3-4所示。 图3-4 施加约束和载荷

r x F F n

= (3-3) t y F F n

= (3-4) 3.2.3计算求解及后处理

有限元模型的求解不是目的,求解得出的数学模型的计算结果才是所关心的。ANSYS 提供了2个后处理器:通用后处理器和时间历程后处理器。本文对齿轮进行的是静态分析,采用通用后处理器对求解结果进行后处理。

利用ANSYS 求解器对齿轮进行求解:采用通用后处理器对齿轮分析结果进行显示。

(1)浏览节点各分量的位移和应力值。依次选择Main Menu>General Postproc>Plot X

Y

Z STATIC ANSYS OF A GEAR JUN 4 2011

基于ANSYS 的齿轮模态分析

- 10 -

Results>Contour Plot>Nodal Solu ,弹出【Contour Nodal Solution Data 】对话框。在【Item to be contoured 】列表框中分别选择“DOF Solution ”和“stress ”选项,再在“DOF Solution ”和“stress ” 选项中分别选择X,Y ,Z 三个方向,单击OK 按钮,生成结果如图3-5~图3-10所示。 图3-5 齿轮1X 方向位移 图3-6 齿轮1X 方向应力

MN MX

X

Y

Z STATIC ANSYS OF A GEAR -.003788-.002462-.001137.189E-03.001515.002841.004167JUN 4 2011MN MX X Y Z

STATIC ANSYS OF A GEAR

-357.579-255.945-154.311-52.67748.957150.591252.225JUN 4 2011 图3-7 齿轮1Y 方向位移 图3-8 齿轮1Y 方向应力

MN MX X Y

Z

STATIC ANSYS OF A GEAR -.001464-.00104-.615E-03-.190E-03.234E-03.659E-03.001084JUN 4 2011MN MX X Y Z STATIC ANSYS OF A GEAR -165.674-127.29-88.905-50.521-12.13726.24764.632JUN 4 2011 图3-9 齿轮1Z 方向位移 图3-10齿轮1Z 方向应力

MN MX X

Y

Z

STATIC ANSYS OF A GEAR .002754.005626.008498.011369.014241.017113.019985JUN 4 2011MN MX X Y Z

STATIC ANSYS OF A GEAR -631.621-525.671-419.721-313.771-207.821-101.8714.079JUN 4 2011

齿轮弯曲应力有限元分析

- 11 -

(2)浏览节点上的等效应变和应力值。依次选择Main Menu>General Postproc>Plot Results>Contour Plot>Nodal Solu ,弹出【Contour Nodal Solution Data 】对话框。在【Item to be contoured 】列表框中分别选择“DOF Solution ”和“stress ”选项”,接着分别选择“Displacement vector sum ”和“von Mises stress ”选项,单击OK 按钮,生成结果如图3-11和图3-12所示。 MN MX

X

Y

Z

STATIC ANSYS OF A GEAR .002913.005826.008739.011652.014565.017478.020391图3-11 Displacement vector sum(位移矢量图)

MN

MX X

Y

Z

STATIC ANSYS OF A GEAR 74.342148.682223.023297.363371.704446.044520.385图3-12 von Mises 等效应力图

(3)列出节点的列表结果。依次选择Main Menu >General Postproc >List Result >Nodal Solution ,弹出【List Nodal Solution 】对话框。在【Item to be listed 】

基于ANSYS 的齿轮模态分析

- 12 -

列表中选择“Stress ”选项和“von Mises stress ”选项,单击【OK 】按钮。每个单元角节点的6个应力分量将以列表的形式显示,如图3-13所示。

图3-13 列表显示节点结果

3.3 齿轮弯曲应力的结果对比

V on Mises 是一种屈服准则,它遵循材料力学第四强度理论(形状改变比能理论)[10]。由图3-10可得,齿轮在外力的作用下齿轮的最大变形量为0.026217cm ,变形量不大;由图3-11可得,齿轮在外力的作用下齿轮的最大应力为669.066MPa 。齿轮的需用弯曲应力为722.9MP ,因此符合强度要求。除了齿顶圆上的最大应力,其他部分的应力分布远远小于许用应力。

由由图3-11可得最大应力分布在齿顶圆施加载荷的地方,而不是出现在传统的齿根部分,这可能是由于在齿顶圆的线宽上出现了应力集中。

用传统方法计算了齿根弯曲疲劳强度[1],按式(3-5)计算可得齿根弯曲疲劳强度为454MPa 。有限元分析的弯曲应力的结果和传统方法的结果具体见表3-2所示。 14a14a142bdm

F F F S K T Y Y Y σε= (3-5) 表3-2 结果比较

有限元法 传统方法 整个轮齿

669.066MPa 454MP 阿 齿根 223.023MPa 454MPa

由上表可知,有限元法分析的是整个轮齿的应力分布情况,而传统方法只能计算齿根处的弯曲应力,没有将齿顶处的应力集中考虑在内;对于齿根处的弯曲应力,从图3-11中可以看出齿根处得应力为223.023左右,而传统方法计算为454MPa ,用传统方法得到的结果具有一定的裕度。

齿轮接触应力有限元分析

- 13 -

第四章 齿轮接触应力有限元分析

4.1经典接触力学方法

渐开线齿轮齿面为形状较为复杂的曲面。然而由于接触区宽度远小于齿面在接触点的曲率半径,因而可对啮合齿面作适当简化。Weck 等人的试验结果表明:当运转条件相同时,轮齿间的接触状态可用一对滚子来模拟,所以图4-1中的一对轮齿之间的啮合可以转换为如图4-2所示的两个圆柱体沿其母线的接触,两圆柱体的半径分别与啮合点大小齿轮的齿面曲率半径相等[11]。

在法向压力Fn 作用下,由于接触表面局部弹性变形,形成宽为2b ,长为L 的长方形接触面,如图 所示。根据赫兹公式[1],使用公式(4-1)计算赫兹半宽b 。

b = (4-1) 式中: 1E 、2E 分别是两圆柱材料的弹性模量, 1μ 、2μ是两圆柱材料的泊松比。

接触表面上所承受的压力是处处不等的,此压力向量的分布呈半椭圆柱形。最大压力发生在初始接触线处的各点上,并等于平均压力的π/4 。若接触应力为max H σ,则接触面上压力的合力为max H πσbL/2 。接触面上的应力应与外力n F 平衡,故有:

max 2

H n bL F =πσ (4-2) max 2n H F =σπbL

(4-3) 接触应力的基本公式如下:

max

H =σ (4-4)

图4-1 齿轮啮合图 图4-2 两圆柱体接触

基于ANSYS 的齿轮模态分析

- 14 -

4.2 接触分析有限元法思想

弹性接触问题属于边界非线性问题,其中既有接触区变化引起的非线性,又有接触压力分布变化引起的非线性以及摩擦作用产生的非线性,求解过程是搜寻准确的接触状态的反复迭代过程[12]。为此,需要先假定一个可能的接触状态,然后带入定解条件,得到接触点的接触内力和位移,判断是否满足接触条件。当不满足接触条件时修改接触点的接触状态重新求解,直到所有接触点都满足接触条件为止。

接触过程通常是依赖于时间的,并伴随着材料非线性和几何非线性的变化过程。特别是在接触过程中,接触界面的区域和形状以及接触界面上的运动学和动力学的状态也是未知的。这些特点决定了接触问题通常采用增量方法求解。

所谓增量解法,是首先将载荷分为若干步0f ,1f ,2f ……,相应的位移也分为若干

步0a ,1a ,2a ……。每两步之间的增长量为增量。增量解法的一般做法是假设第m 步载

荷m f 和相应的位移m a 己知,而后载荷增加为1()m m m f f f +=+?,再求解1()m m m a a a +=+?,。如果每步载荷增量足够小,则解的收敛性是可以保证的。同时,可以得到加载过程中各个阶段的中间值数值结果,便于研究结构位移和应力等随着载荷变化的情况。图4-3表示了用Newton ——R 即hson 方法求解增量方程的过程。

根据接触状态的判定条件,接触条件都是不等式约束,也称之为单边约束。此外,接触面的范围和接触状态也是未知的,所以如何将接触面条件适当的引入求解过程是接触问题求解的关键。鉴于接触问题的特殊性,求解过程需要采用试探一校核的迭代方法进行,每一增量步的迭代过程[12]可一般性的表述如下:

(l)根据前一增量步的结果和当前增量步给定的载荷条件,通过接触状态的检查和搜索,假设此增量步第一次迭代求解的接触区域和接触状态—指两物体的“粘着”或“滑动”状态。

(2)根据上述对接触面区域和状态所作的假设,对于接触面上的每一点,将运动学或动力学上的不等式约束改为等式约束作为定解条件引入方程并进行求解。

(3)利用接触面上的计算结果和上述等式约束

所对应的动力学或运动学的不等式约束条件作为

校核条件对假定的接触状态进行检查。如果接触

面上的每一点都不违反校核条件,则完成本增量

步的求解并转入下一增量步的计算;否则修改接触

状态,回到步骤。

(4)再次进行搜寻和迭代求解,直至每一点的解

都满足校核条件。然后再转入下一增量步的求解。 图4-3 用N 一R 法解增量方程 综合以上的分析,给出接触问题求解算法的一般流程图(见图4-4),以方便理解其整个求解过程。

齿轮接触应力有限元分析

图4-4 求解算法的流程图

- 15 -

基于ANSYS的齿轮模态分析

4.3 ANSYS有限元软件的接触分析

4.3.1 ANSYS的接触类型与接触方式

ANSYS软件提供了两种接触类型[13]:刚体一柔体接触与柔体一柔体接触。刚体一柔体接触,适用于两接触面的刚度相差较大的物体间接触,假定刚度较大的面是刚体。一般情况下,一种软材料和一种硬材料的接触可被假定为此类接触;柔体一柔体接触是一种更普遍的类型,它假定两接触体均为变形体,适用于两个弹性模量和结构刚性比较接近的物体间接触。本文中分析的一对啮合齿轮材料相同,有近似的刚度,故采用柔体一柔体接触。

ANSYS软件支持三种接触方式[13]:点一点接触、点一面接触与面一面接触。点一点接触主要用于模拟点一点的接触行为,用户需预先知道确切的接触位置,只适于模拟接触面间有较小相对滑动的情况。点一面接触允许接触面上某一节点和被接触体上的某一单元相接触,不需预先知道确切的接触位置,接触面之间也不需要保持一致的网格,并且允许有热传导、有大的变形和大的相对滑动等非线性行为。面一面接触方式,计算量相对较少,适合于复杂表面、大变形、含摩擦力的接触问题求解。圆柱齿轮传动过程中,由于接触部刚度的变化,导致齿面的接触实际上是发生在接触线附近有限的面上。接触面上的节置在发生相互作用时并不固定,且存在齿面的相对滑动,显然点一点型不适合用于轮的接触分析。点一面型可以指定接触面为一组节点,从而代替面一面型接触。但是面-面单元与点一面单元相比有许多优点,例如:没有刚体表面形状限制,允许有自或网格离散引起的表面不连续;支持有大滑动和摩擦的大变形,协调刚度阵计算,提供不对称刚度选项;提供为工程目的所采用的更好的接触结果,如法向应力和摩擦应力。综合以上,选用面一面单元进行齿轮的接触分析比较合理。

4.3.2 ANSYS的接触算法

ANSYS在对接触问题的求解上提供三类算法[14]:拉格朗日乘子(Lagrangemethod),罚函数法 (penaltymethod)和增广拉格朗日乘子法(AugmentedLagrangemethod),下面对这三种算法作简单的介绍。

(l)拉格朗日乘子法

拉格朗日乘子法通过增加一个独立自由度,即接触压力,来满足无穿透条件,不需要定义人为的接触刚度去满足接触面间不可穿透的条件,可以直接实现穿透为零的真实接触条件,计算结果较精确。但是该方法增加了系统变量数目,并使刚度阵中出现了对角线元素为零的子矩阵,需要实施额外的操作才能保证计算精度,给计算带来麻烦,这对圆柱齿轮这类三维接触问题尤为不利。还有一个可能发生的严重问题,就是在接触状态发生变化时,接触力有个突变,接触状态的振动式交替改变,如何控制这种改变是纯粹的拉格朗日算法所难以解决的。这种算法主要用于采用特殊的界面单元描述接触的问题分析。该方法限制了接触物体之间的相对运动量,并需要预先知道接触发生的确切位

- 16 -

ANSYS高速旋转轮盘模态分析全面讲解

全面讲解ANSYS高速旋转轮盘模态分析讲解 高速旋转轮盘模态分析 在进行高速旋转机械的转子系统动力设计时,需要对转动部件进行模态分析,求解出其固有频率和相应的模态振型。通过合理的设计使其工作转速尽量远离转子系统的固有频率。而对于高速部件,工作时由于受到离心力的影响,其固有频率跟静止时相比会有一定的变化。为此 ,在进行模态分析时需要考虑离心力的影响。我通过该例子学习到了如何用ANSYS进行有预应力的结构的模态分析。 一.例子描述 本例子是对某高速旋转轮盘进行考虑离心载荷引起的预应力的模态分析,求解出该轮盘的 前10阶固有频率及其对应的模态振型。轮盘截面形状如图1所示,该轮盘安装在某转轴上以120 00转/分的速度高速旋转。相关参数为:弹性模量EX=2.1E5Mpa,泊松比PRXY=0.3,密度DE NS=7.8E-9T/mm3。 图1、轮盘截面图 1-5关键点坐标: 1(-10, 150, 0) 2(-10, 140, 0) 3(-3, 140, 0) 4(-4, 55, 0)

5(-15, 40, 0) L=15 RS=5 二.A nsys求解的具体步骤 1.启动ansys,定义工作名、工作标题 ①定义工作名:Example of dynamic ②工作标题:dynamic analysis of a disc 2、选择单元类型 本例将选用六面体结构实体单元来分析,但在建模过程中需要使用四边形平面单元,所有需要定义两种单元类型:PLANE42和SOLID45,设置完成后,如图2,在Element Types (单元类型定义)对话框的列表框中将会列出刚定义的两种单元类型:PLANE42、 SOLID45, 图2、定义单元类型 3、设置材料属性 由于要进行的是考虑离心力引起的预应力作用下的轮盘的模态分析,材料的弹性模量EX 和密度DENS必须定义。 ①定义材料的弹性模量EX 弹性模量 EX=2.1E5 泊松比 PRXY=0.3 ②定义材料的密度DENS DENS =7.8E-9 4、建立实体模型 对于本实例的有限元模型,首先需要建立轮盘的截面几何模型,然后对其进行网格划分,最后通过截面的有限元网格扫描出整个轮盘的有限元模型。具体的操作过程如下。

基于ANSYS的机翼振动模态分析

机翼模型的振动模态分析 摘要:本文在ANSYS13.0平台上,采用有限元方法对机翼模态进行了建模和数值分析,为机翼翼型的设计和改进提供基础数据。 1.引言 高空长航时飞机近年来得到了世界的普遍重视。由于其对长航时性能的要求,这种飞机的机翼往往采用非常大的展弦比,且要求结构重量非常低。大展弦比和低重量的要求,往往使得这类结构受载时产生一系列气动弹性问题,这些问题构成飞行器设计和其它结构设计中的不利因素,解决气动弹性问题历来为飞机设计中的关键技术。颤振的发生与机翼结构的振动特性密切相关。通过对机翼模态的分析,可以获得机翼翼型在各阶频率下的模态,得出振动频率与应变之间的关系,从而可以改进设计,避免或减小机翼在使用过程中因为振动引起的变形。 同时,通过实践和实际应用,可以掌握有限元分析的方法和步骤,熟悉ANSYS有限元分析软件的建模和网格划分技巧和约束条件的确定,为以后进一步的学习和应用打下基础。 2.计算模型 一个简化的飞机机翼模型如图1所示,机翼的一端固定在机体上,另一端为悬空自由端,该机翼沿延翼方向为等厚度,有关的几何尺寸见图1。 图1.机翼模型简图 在分析过程采用直线段和样条曲线简化描述机翼的横截面形状,选取5个keypoint,A(0,0,0)为坐标原点,同时为翼型截面的尖点;B(0.05,0,0)为下表面轮廓截面直线上一点,同时是样条曲线BCDE的起点;D(0.0475,0.0125,0)为样曲线上一点。C(0.0575, 0.005,0)为样条曲线曲率最大点,样条曲线的顶点;点E(0.025,0.00625,0)与点A构成直线, 斜率为0.25。通过点A、B做直线和点B、C、D、E作样条曲线就构成了截面的形状,如图2。沿Z方向拉伸,就得到机翼的实体模型,如图1。

ansys齿轮模态分析

基于ANSYS 的齿轮模态分析 齿轮传动是机械传动中最重要的传动部件,被广泛的应用在各个生产领域中,经常用在重要的场合;传动齿轮在工作过程中受到周期性载荷力的作用,有可能在标定转速内发生强烈的共振,动应力急剧增加,致使齿轮过早出现扭转疲劳和弯曲疲劳。静力学计算不能完全满足设计要求,因此有必要对齿轮进行模态分析,研究其振动特性,得到固有频率和主振型(自由振动特性)。同时,模态分析也是其它动力学分析如谐响应分析、瞬态动力学分析和谱分析的基础。 本文运用UG 对齿轮建模并用有限元软件ANSYS 对齿轮进行模态分析,为齿轮动态设计提供了有效的方法。 1.模态分析简介 由弹性力学有限元法,可得齿轮系统的运动微分方程为: []{}[]{}[]{}{()}M X C X K X F t ++= (1) 式中,[]M ,[]C ,[]K 分别为齿轮质量矩阵、阻尼矩阵和刚度矩阵;分别为齿轮振动加速度向量、速度向量和位移向量,{}X 、{}X 、{}X 分别为齿轮振动加速度向量、速度向量和位移向量,12{}{,, ,}T n X x x x =;{()}F t 为齿轮所受外界激振力向量,{}12{()},,T n F t f f f =。若无外力作用,即{}{()}0F t =,则得 到系统的自由振动方程。在求齿轮自由振动的频率和振型即求齿轮的固有频率和固有振型时,阻尼对它们影响不大,因此,可以作为无阻尼自由振动问题来处理 [2]。无阻尼项自由振动的运动方程为: []{}[]{}0M X K X += (2) 如果令 {}{}sin()X t φωφ=+ 则有 2{}{}sin()X t ωφωφ=+ 代入运动方程,可得 2([][]){}0i i K M ωφ-= (3) 式中i ω为第I 阶模态的固有频率,i φ为第I 阶振型,1,2, ,i n =。 2.齿轮建模 在ANSYS 中直接建模有一定的难度,考虑到其与多数绘图软件具有良好的数据接口,可以方便的转化,而UG 软件以其参数化、全相关的特点在零件造型方面表现突出,可以通过参数控制模型尺寸的变化,因此本文采用通过UG 软件对齿轮进行参数化建模,保存为IGES 格式,然后将模型导入到ANSYS 软件中的方法。设有模数m=2.5mm ,齿数z=20,压力角β=20°,齿宽b=14mm ,孔径为¢20mm 的标准齿轮模型。如图1

ansys模态分析及详细过程

压电变换器的自振频率分析及详细过程 1.模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。 ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。 2.模态分析操作过程 一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。 (1).建模 模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。 (2).施加载荷和求解 包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。 指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。 指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND. 定义主自由度,仅缩减法使用。 施加约束,Main Menu-Solution-Define Loads-Apply-Structural-Displacement。 求解,Main Menu-Solution-Solve-Current LS。 (3).扩展模态 如果要在POSTI中观察结果,必须先扩展模态,即将振型写入结果文件。过程包括重新进入求解器、激话扩展处理及其选项、指定载荷步选项、扩展处理等。 激活扩展处理及其选项,Main Menu-Solution-Load Step Opts-Expansionpass-Single Expand-Expand modes。 指定载荷步选项。 扩展处理,Main Menu-solution-Solve-Current LS。 注意:扩展模态可以如前述办法单独进行,也可以在施加载荷和求解阶段同时进行。本例即采用了后面的方法 (4).查看结果 模态分析的结果包括结构的频率、振型、相对应力和力等

ANSYS模态分析实例

高速旋转轮盘模态分析 在进行高速旋转机械的转子系统动力设计时,需要对转动部件进行模态分析,求解出其固有频率和相应的模态振型。通过合理的设计使其工作转速尽量远离转子系统的固有频率。而对于高速部件,工作时由于受到离心力的影响,其固有频率跟静止时相比会有一定的变化。为此,在进行模态分析时需要考虑离心力的影响。通过该实验掌握如何用ANSYS进行有预应力的结构的模态分析。 一.问题描述 本实验是对某高速旋转轮盘进行考虑离心载荷引起的预应力的模态分析,求解出该轮盘的前5阶固有频率及其对应的模态振型。轮盘截面形状如图所示,该轮盘安装在某转轴上以12000转/分的速度高速旋转。相关参数为:弹性模量EX=2.1E5Mpa,泊松比PRXY=0.3, 密度DENS=7.8E-9Tn/mm 3。 1-5关键点坐标: 1(-10, 150, 0) 2(-10, 140, 0) 3(-3, 140, 0) 4(-4, 55, 0) 5(-15, 40, 0) L=10+(学号×0.1) RS=5 二.分析具体步骤 1.定义工作名、工作标题、过滤参数 ①定义工作名:Utility menu > File > Jobname ②工作标题:Utility menu > File > Change Title(个人学号) 2.选择单元类型 本实验将选用六面体结构实体单元来分析,但在建模过程中需要使用四边形平面单元,所有需要定义两种单元类型:PLANE42和SOLID45,具体操作如下: Main Menu >Preprocessor > Element Type > Add/Edit/Delete

①“ Structural Solid”→“ Quad 4node 42” →Apply(添加PLANE42为1号单元) ②“ Structural Solid”→“ Quad 8node 45” →ok(添加六面体单元SOLID45为2号单元) 在Element Types (单元类型定义)对话框的列表框中将会列出刚定义的两种单元类型:PLANE42、SOLID45,关闭Element Types (单元类型定义)对话框,完成单元类型的定义。 3.设置材料属性 由于要进行的是考虑离心力引起的预应力作用下的轮盘的模态分析,材料的弹性模量EX 和密度DENS必须定义。 ①定义材料的弹性模量EX Main Menu >Preprocessor > Material Props > Material Models> Structural > Linear > Elastic >Isotropic 弹性模量EX=2.1E5 泊松比PRXY=0.3 ②定义材料的密度DENS Main Menu >Preprocessor > Material Props > Material Models>density DENS =7.8E-9 4.实体建模 对于本实例的有限元模型,首先需要建立轮盘的截面几何模型,然后对其进行网格划分,最后通过截面的有限元网格扫描出整个轮盘的有限元模型。具体的操作过程如下。 ①创建关键点操作:Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS 列出各点坐标值Utility menu >List > Keypoints >Coordinate only

ansys模态分析步骤

模态分析步骤 第1步:载入模型 Plot>Volumes 第2步:指定分析标题并设置分析范畴 1 设置标题等Utility Menu>File>Change Title Utility Menu>File> Change Jobname Utility Menu>File>Change Directory 2 选取菜单途径 Main Menu>Preference ,单击 Structure,单击OK 第3步:定义单元类型 Main Menu>Preprocessor>Element Type>Add/Edit/Delete,出现Element Types对话框,单击Add出现Library of Element Types 对话框,选择Structural Solid,再右滚动栏选择Brick 20node 95,然后单击OK,单击Element Types对话框中的Close按钮就完成这项设置了。 第4步:指定材料性能 选取菜单途径Main Menu>Preprocessor>Material Props>Material Models。出现Define Material Model Behavior对话框,在右侧Structural>Linear>Elastic>Isotropic,指定材料的弹性模量和泊松系数,Structural>Density指定材料的密度,完成后退出即可。 第5步:划分网格 选取菜单途径Main Menu>Preprocessor>Meshing>MeshTool,出

现MeshTool对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小(太小的计算比较复杂,不一定能产生好的效果,一般做两三组进行比较),保留其他选项,单击Mesh出现Mesh Volumes对话框,其他保持不变单击Pick All,完成网格划分。 第6步:进入求解器并指定分析类型和选项 选取菜单途径Main Menu>Solution>Analysis Type>New Analysis,将出现New Analysis对话框,选择Modal单击 OK。 选取Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis 对话框,选中Subspace模态提取法,在 Number of modes to extract处输入相应的值(一般为5或10,如果想要看更多的可以选择相应的数字),单击OK,出现Subspace Model Analysis对话框,选择频率的起始值,其他保持不变,单击OK。 第7步:施加边界条件. 选取Main Menu>Solution>Define loads>Apply>Structural>Displacement,出现ApplyU,ROT on KPS对话框,选择在点、线或面上施加位移约束,单击OK会打开约束种类对话框,选择(All DOF,UX,UY,UZ)相应的约束,单击apply或OK即可。第8步:指定要扩展的模态数。选取菜单途径Main Menu>Solution>Load Step Opts>ExpansionPass>Expand Modes,出现Expand Modes对话框,在number of modes to expand 处输入第6步相应的数字,单击 OK即可。(当选取Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis 对话框,选中Subspace模态提取法,在 Number of modes to extract处输入相应

ansys模态分析步骤

模态分析步骤 第1步: 载入模型Plot>Volumes 第2步: 指定分析标题并设置分析范畴 1设置标题等Utility Menu>File>Change Title Utility Menu>File> Change Jobname Utility Menu>File>Change Directory 2选取菜单途径MainMenu>Preference ,单击Structure,单击OK第3步: 定义单元类型 MainMenu>Preprocessor>ElementType>Add/Edit/Delete,出现Element Types 对话框,单击Add出现Library of Element Types对话框,选择Structural Solid,再右滚动栏选择Brick 20node 95,然后单击OK,单击Element Types对话框中的Close 按钮就完成这项设置了。 第4步: 指定材料性能 选取菜单途径MainMenu>Preprocessor>MaterialProps>MaterialModels。出现DefineMaterialModelBehavior对话框,在右侧Structural>Linear>Elastic>Isotropic,指定材料的弹性模量和泊松系数,Structural>Density指定材料的密度,完成后退出即可。 第5步: 划分网格

选取菜单途径Main Menu>Preprocessor>Meshing>MeshTool,出现MeshTool 对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小(太小的计算比较复杂,不一定能产生好的效果,一般做两三组进行比较),保留其他选项,单击Mesh出现Mesh Volumes对话框,其他保持不变单击Pick All,完成网格划分。 第6步: 进入求解器并指定分析类型和选项 选取菜单途径Main Menu>Solution>Analysis Type>New Analysis,将出现New Analysis对话框,选择Modal单击OK。 选取Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis对话框,选中Subspace模态提取法,在Number ofmodes to extract处输入相应的值(一般为5或10,如果想要看更多的可以选择相应的数字),单击OK,出现Subspace Model Analysis对话框,选择频率的起始值,其他保持不变,单击OK。 第7步: 施加边界条件.选取 MainMenu>Solution>Defineloads>Apply>Structural>Displacement,出现 ApplyU,ROTonKPS对话框,选择在点、线或面上施加位移约束,单击OK会打开约束种类对话框,选择(AllDOF,UX,UY,UZ)相应的约束,单击apply或OK即可。 第8步: 指定要扩展的模态数。选取菜单途径 MainMenu>Solution>LoadStepOpts>ExpansionPass>ExpandModes,出现Expand Modes对话框,在number of modes to expand处输入第6步相应的数字,单击OK 即可。(当选取MainMenu>Solution>AnalysisType>AnalysisOptions,将出现ModalAnalysis对话框,选中Subspace模态提取法,在Number of modes to extract处输入相应的值(一般为5或10,如果想要看更多的可以选择相应的数字),同时选择number of modes to expand输入相应值时,这步可以省略)

齿轮模态分析

齿轮模态分析 1.改变工作名:定义文件目录 2.定义单元类型 (1)从主菜单Main Menu 中选择:Preferences->structual->OK,再Preprocessor -> Element Type -> Add/Edit/Delete 命令,将打开单元类型Element Type 对话框 (2)单击Add ,打开单元类型库Library of Element Types 对话框,在左边列表框中选择实体类型Solid ,在右边列表框中选择单元类型Brick 8node 45 3.定义材料属性 (1)从主菜单Main Menu 中选择:Preprocessor->Material Props->Material Models->Structural->Linear->Elastic->Isotropic输入2e11和0.3。

(2)Preprocessor->Material Props->Material Models->Structural->Density输入7800 . 4、建立关键点 Main Menu->Preprocessor->Modeling->create->Keypoints->In Active Plane 依次输入1(21.87e-3,0,0),2(22.82e-3,1.13e-3,0), 3(24.02e-3,1.47e-3,0),4(24.62e-3,1.73e-3,0), 5(25.22e-3,2.08e-3,0),6(25.82e-3,2.4e-3,0), 7(26.92e-3,3.23e-3,0), 8(27.11e-3,0,0). 5、建立曲线 Main Menu->Preprocessor->Modeling->Create->Lines->Splines->Spline thru KPs,依次拾取关键点2、3、4、5、6、7 6、镜像曲线Preprocessor->Modeling->Refiect->Lines,拾取曲线单击ok,选择X-Z plane Y,单击ok 7、生成圆弧 Main Menu->Preprocessor->Modeling->Create->Lines->Arcs->Through 3 KPs,先拾取2、10、1再拾取7、11、9

ANSYS模态分析步骤

ANSYS模态分析步骤 第1步:载入模型Plot>V olumes,输入/units,SI(即统一单位M/Kg/S)。若为组件,则进行布尔运算:Main Menu>Preprocessor>Modeling>Operate>Booleans>Glue(或Add)>V olumes 第2步:指定分析标题/工作名/工作路径,并设置分析范畴 1 设置标题等Utility Menu>File>Change Title/ Change Jobname/ Change Directory 2 设置分析范畴Main Menu>Preference,单击Structure,OK 第3步:定义单元类型 Main Menu>Preprocessor>Element Type>Add/Edit/Delete,→Element Types对话框,单击Add→Library of Element Types对话框,选择Structural Solid,再右滚动栏选择Brick 20node 95,然后单击OK,单击Element Types对话框中的Close按钮就完成这项设置了。 第4步:指定材料性能 Main Menu>Preprocessor>Material Props>Material Models→Define Material Model Behavior,右侧Structural>Linear>Elastic>Isotropic,指定弹性模量EX、泊松系数PRXY;Structural>Density指定密度。第5步:划分网格 Main Menu>Preprocessor>Meshing>MeshTool,出现MeshTool对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小,保留其他选项,单击Mesh出现Mesh V olumes对话框,其他保持不变单击Pick All,完成网格划分。当内存不足时,取消SmartSize 第6步:进入求解器并指定分析类型和选项 Main Menu>Solution>Analysis Type>New Analysis,出现New Analysis对话框,选择Modal,OK。Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis对话框,选中Subspace 模态提取法,在No. of modes to extract处输入相应的值(一般为5或10),单击OK,出现Subspace Model Analysis对话框,输入Start Freq值,即频率的起始值,其他保持不变(也可输入End Frequency,即输入频率范围;此时扩展模态仅在此范围内取值),单击OK。 第7步:施加边界条件 Main Menu>Solution>Define loads>Apply>Structural>Displacement,出现ApplyU,ROT on KPS对话框,选择在点、线或面上施加位移约束,单击OK会打开约束种类对话框,选择(All DOF,UX,UY,UZ)相应的约束,单击apply(多次选择)或OK即可。 第8步:指定要扩展的模态数 Main Menu>Solution>Load Step Opts>ExpansionPass>Single Expand>Expand Modes,出现Expand Modes对话框,在No. of modes to expand 处输入第6步相应的数字,单击OK即可。 注意:在第6步NMODE No. of modes to expand输入扩展模态数后,第8步可省略。 第9步:进行求解计算 Main Menu>Solution>Solve>Current LS。浏览在/STAT命令对话框中出现的信息,然后使用File>Close 关闭该对话框,单击OK。在出现警告(不一定有)“A check of your model data produced 1 Warning。Should the SOLV command be executed?”时单击Yes,求解过程结束后单击close。 第10步:列出固有频率 Main Menu>General Postproc>Results Summary。 第11步:动画显示模态形状 查看某阶模态的变形,先读入求解结果。执行Main Menu>General Postproc>Read results>first Set,然后执行1.Main Menu>General Postproc>Plot Results>Deformed Shape,在弹出对话框中选择“Def+undefe edge”或执行 2.PlotCtrls>Animate>mode shape,出现对话框,左边滚动栏不变,在右边滚动栏选择“Def+undefe edge”,单击OK,可查看动画效果。如果需要看其他阶模态,执行Main Menu>General Postproc>Read results>Next Set,重复执行上述步骤即可。 第12步:结束分析SA VE_DB; Main Menu>Finish 1

ansys动力学分析全套讲解

第一章模态分析 §模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS产品家族中的模态分析是一个线性分析。任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。ANSYS提供了七种模态提取方法,它们分别是子空间法、分块Lanczos法、PowerDynamics法、缩减法、非对称法、阻尼法和QR阻尼法。阻尼法和QR阻尼法允许在结构中存在阻尼。后面将详细介绍模态提取方法。 §模态分析中用到的命令 模态分析使用所有其它分析类型相同的命令来建模和进行分析。同样,无论进行何种类型的分析,均可从用户图形界面(GUI)上选择等效于命令的菜单选项来建模和求解问题。 后面的“模态分析实例(命令流或批处理方式)”将给出进行该实例模态分析时要输入的命令(手工或以批处理方式运行ANSYS时)。而“模态分析实例(GUI方式)” 则给出了以从ANSYS GUI中选择菜单选项方式进行同一实例分析的步骤。(要想了解如何使用命令和GUI选项建模,请参阅<>)。<>中有更详细的按字母顺序列出的ANSYS命令说明。 §模态提取方法 典型的无阻尼模态分析求解的基本方程是经典的特征值问题: 其中: =刚度矩阵, =第阶模态的振型向量(特征向量), =第阶模态的固有频率(是特征值), =质量矩阵。 有许多数值方法可用于求解上面的方程。ANSYS提供了7种方法模态提取方法,下面分别进行讨论。 1.分块Lanczos法 2.子空间(Subspace)法 Dynamics法

ansys模态分析详解

?ANSYS动力学分析指南 作者: 安世亚太 第一章模态分析 §1.1模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS产品家族中的模态分析是一个线性分析。任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。ANSYS提供了七种模态提取方法,它们分别是子空间法、分块Lanczos法、PowerDynamics法、缩减法、非对称法、阻尼法和QR阻尼法。阻尼法和QR阻尼法允许在结构中存在阻尼。后面将详细介绍模态提取方法。 §1.2模态分析中用到的命令 模态分析使用所有其它分析类型相同的命令来建模和进行分析。同样,无论进行何种类型的分析,均可从用户图形界面(GUI)上选择等效于命令的菜单选项来建模和求解问题。 后面的“模态分析实例(命令流或批处理方式)”将给出进行该实例模态分析时要输入的命令(手工或以批处理方式运行ANSYS时)。而“模态分析实例(GUI方式)” 则给出了以从ANSYS GUI中选择菜单选项方式进行同一实例分析的步骤。(要想了解如何使用命令和GUI选项建模,请参阅<>)。<>中有更详细的按字母顺序列出的ANSYS命令说明。§1.3模态提取方法 典型的无阻尼模态分析求解的基本方程是经典的特征值问题: 其中: =刚度矩阵, =第阶模态的振型向量(特征向量), =第阶模态的固有频率(是特征值), =质量矩阵。 有许多数值方法可用于求解上面的方程。ANSYS提供了7种方法模态提取方法,下面分别进行讨论。

ANSYS 模态分析

模态分析 过程模态分析过程由四个主要步骤组成:1.建模;2.加载及求解; 3.扩展模态; 4.观察结果。下面分别展开进行详细讨论 §1.6建模 主要完成下列工作:首先指定工作名和分析标题,然后在前处理器(PREP7)中定义单元类型、单元实常数、材料性质以及几何模型。ANSYS的《建模和网格指南》中对这些工作有更详细的说明。 注意以下两点: ?在模态分析中只有线性行为是有效的。如果指定了非线性单元,它们将被当作是线性的。例如,如果分析中包含了接触单元,则系统取其初始状态的刚度值并且不再改变此刚度值。 ?材料性质可以是线性的,各向同性的或正交各向异性的,恒定的或和温度相关的。在模态分析中必须指定杨氏模量EX(或某种形式的刚度)和密度DENS(或某种形式的质量)。而非线性特性将被忽略。 §1.7加载及求解 主要完成下列工作:首先定义分析类型、指定分析设置、定义载荷和边界条件和指定加载过程设置,然后进行固有频率的有限元求解。在得到初始解后,再对模态进行扩展,以供查看。扩展模态将在下一节“扩展模态”中进行详细说明。 §1.7.1进入ANSYS求解器

命令:/SOLUGUI:Main Menu>Solution §1.7.2指定分析类型和分析选项 ANSYS提供的用于模态分析的选项如下表所示,表中的每一个选项都将在随后详细解释。分析类型和分析选项选项命令GUI 选择途径 New Analysis ANTYPE Main Menu>Solution>-Analysis Type-New Analysis Analysis Type: Modal ANTYPE Main Menu>Solution>-Analysis Type-New Analysis>ModalMode Extraction Method MODOPT Main Menu>Solution>Analysis OptionsNumber of Modes to Extract MODOPT Main Menu>Solution>Analysis OptionsNo. Of Modes to Expand MXPAND Main Menu>Solution>Analysis OptionsMass Matrix Formulation LUMPM Main Menu>Solution>Analysis OptionsPrestress Effects Calculation PSTRES Main Menu>Solution>Analysis Options 注意:选择模态分析时,求解菜单将显示与模态分析相关的菜单项。求解菜单有两种可能的状态“简洁式(abridged )”或者“展开式(unabridged )”,它总是与上一个ANSYS 任务是的状态相同。简洁式菜单仅仅包括模态分析有用的或建议的求解设置。当显示的是简洁式求解菜单,如果想访问其他求解设置( 即,

ANSYS模态分析报告实例和详细过程

均匀直杆的子空间法模态分析 1.模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。 ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。 2.模态分析操作过程 一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。 (1).建模 模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。 (2).施加载荷和求解 包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。 指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。 指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND. 定义主自由度,仅缩减法使用。 施加约束,Main Menu-Solution-Define Loads-Apply-Structural-Displacement。 求解,Main Menu-Solution-Solve-Current LS。 (3).扩展模态 如果要在POSTI中观察结果,必须先扩展模态,即将振型写入结果文件。过程包括重新进入求解器、激话扩展处理及其选项、指定载荷步选项、扩展处理等。 激活扩展处理及其选项,Main Menu-Solution-Load Step Opts-Expansionpass-Single Expand-Expand modes。 指定载荷步选项。 扩展处理,Main Menu-solution-Solve-Current LS。 注意:扩展模态可以如前述办法单独进行,也可以在施加载荷和求解阶段同时进行。本例即采用了后面的方法 (4).查看结果 模态分析的结果包括结构的频率、振型、相对应力和力等

ANSYS模态分析详细解释

Ansys模态分析详细论述 1、有限元概述 将求解域分解成若干小域,有限元模型由单元组成,单元之间通过节点连接,并承受载荷,节点自由度是随着连接该点单元类型变化的。 1.1分析前准备 (1)研读相关理论基础; (2)参考别人的分析方法和思路; (3)考虑时间和设备,做适当的简化假设,设定条件、材料并决定分析方式;(4)了解力学现象、分析关键位置并预先评估。 1.2 Von Mises 应力 Von Mises 应力是非负值,应力表达式可表示为: 1.3结果的分析 (1)建立疏密不同的三至五种网络,选择适中密度,不能以存在应力集中点处的结果做对比; (2)检验网格,分析结果的合理性,选择安全系数,并且要分析应力集中的真实性与危险性。 (3)接触收敛速度的提高:在不影响结构的前提下,控制或减少接触单元生成数目,并采用线性搜索,与打开自适应开关来提高收敛速度。 2、模态分析中的几个基本概念 物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示,这个就称之为模态。模态这个概念一般是在振动领域所用,可以初步的理解为振动状态,我们都知道每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性。2.1主要模态 一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型;二阶模态是外力的激励频率是物体固有频率

的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。一般来讲,外界激励的频率非常复杂,物体在这种复杂的外界激励下的振动反应是各阶振型的复合。模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。有限元中模态分析的本质是求矩阵的特征值问题,所以“阶数”就是指特征值的个数。将特征值从小到大排列就是阶次。 实际的分析对象是无限维的,所以其模态具有无穷阶。但是对于运动起主导作用的只是前面的几阶模态,所以计算时根据需要计算前几阶的。一个物体有很多个固有振动频率(理论上无穷多个),按照从小到大顺序,第一个就叫第一阶固有频率,依次类推。 所以模态的阶数就是对应的固有频率的阶数。振型是指体系的一种固有的特性。它与固有频率相对应,即为对应固有频率体系自身振动的形态。每一阶固有频率都对应一种振型。振型与体系实际的振动形态不一定相同。振型对应于频率而言,一个固有频率对应于一个振型。按照频率从低到高的排列来说,有第一振型,第二振型等等,此处的振型就是指在该固有频率下结构的振动形态,频率越高则,振动周期越小。在实验中,我们就是通过用一定的频率对结构进行激振,观测相应点的位移状况,当观测点的位移达到最大时,此时频率即为固有频率。实际结构的振动形态并不是一个规则的形状,而是各阶振型相叠加的结果。 固有频率也称为自然频率(natural frequency)。物体做自由振动时,其位移随时间按正弦或余弦规律变化,振动的频率与初始条件无关,而仅与系统的固有特性有关(如质量、形状、材质等),称为固有频率,其对应周期称为固有周期。物体做自由振动时,其位移随时间按正弦规律变化,又称为简谐振动。简谐振动的振幅及初相位与振动的初始条件有关,振动的周期或频率与初始条件无关,而与系统的固有特性有关,称为固有频率或者固有周期。 物体的频率与它的硬度、质量、外形尺寸有关,当其发生形变时,弹力使其恢复。弹力主要与尺寸和硬度有关,质量影响其加速度。同样外形时,硬度高的频率高,质量大的频率低。一个系统的质量分布,内部的弹性以及其他的力学性质决定。 2.2模态扩展

基于ANSYS Workbench的齿轮齿条系统模态分析

龙源期刊网 https://www.sodocs.net/doc/db10124140.html, 基于ANSYS Workbench的齿轮齿条系统模态分析 作者:马海龙 来源:《中国科技纵横》2016年第18期 【摘要】齿轮齿条传动模态分析研究的主要内容是确定齿轮齿条部件的振动特性(固有 频率和主振型),它们是承受动载荷结构设计中的重要参数。由于系统的固有特性表明了在哪些频率下结构会产生共振以及在各阶频率下结构的相对变形,因此对于改善结构动态特性具有重要意义。由模态分析就可判断出齿轮的转速是否合理,这样可以确定齿轮与齿轮转速合理匹配,进而避开其固有频率。 【关键词】齿轮齿条模态分析 ANSYS Workbench 共振 1引言 模态分析是用来分析、确定系统振动特性的一种动力学分析技术。振动特性包括固有频率、振型等。在进行结构设计时可以利用模态分析避免共振,还可以为其他动力学分析模块提供求解控制参数,如时间步长等。在准备进行其他动力学问题之前首先要进行模态分析,模态分析是最基础的内容。 2模态分析基本概念和理论 模态的定义是结构在进行自由振动时所具有的振动特性。结构本身的物理几何特性和材料属性决定着自身的模态,结构模态与外部是否添加载荷无关。进行模态分析时可以有两种方法:(1)理论模态分析,它的基础是线性振动理论。主要方法是利用有限元方法对所研究的结构进行离散,建立数学模型,求解系统特征值和特征向量,即求得系统的固有频率和固有振型。(2)实验模态分析,又叫模态分析的实验过程。首先,利用实验测得结构的激励和响应时间,运用数字处理技术求得频响应函数。然后运用参数识别方法得到系统结构模态参数。 3齿轮齿条系统模态分析有限元建模 3.1齿轮齿条有限元模型的建立及材料的定义 利用UG软件建立三维模型以后,以x_t 格式导入到 ANSYS Workbench 12.0中,得到在ansys中的齿轮齿条装配模型。在Geometry菜单中给齿轮齿条进行切片,为下面的局部网格划分打下基础。对模型的材料进行定义,在Engineering Data菜单中添加新材料,齿轮齿条采用的材料选用40Cr,40Cr作为为中碳合金结构钢,经调质并高频表面淬火后,可制作要求较高的表面硬度及耐磨性并带有一定冲击的零件,如齿轮、轴、连杆等。

相关主题