搜档网
当前位置:搜档网 › LU消去法MATLAB程序

LU消去法MATLAB程序

LU消去法MATLAB程序
LU消去法MATLAB程序

LU消去法MATLAB程序:

function y=LU(A,B);

n=length(A);

A=[A B];

for k=1:n-1;

for i=k:n;

if(abs(A(i,k))==max(abs(A(k:n,k))))

P(k)=i;

temp=A(k,:);

A(k,:)=A(i,:);

A(i,:)=temp;

end

end

for j=k+1:n;

A(j,k)=A(j,k)/A(k,k);

A(j,k+1:n+1)=A(j,k+1:n+1)-A(j,k)*A(k,k+1:n+1);

end

end

P(n)=n;

L(1,1)=1;

L(2:n,1)=A(2:n,1);

L(1,2:n)=0;

U(1,1)=A(1,1);

U(2:n,1)=0;

U(1,2:n)=A(1,2:n);

for i=2:n;

L(i,1:i-1)=A(i,1:i-1);

L(i,i)=1;

L(i,i+1:n)=0;

U(i,1:i-1)=0;

U(i,i:n)=A(i,i:n);

end

x(n) = A(n,n+1)/U(n,n);

for k = n-1:-1:1

x(k)=A(k,n+1);

for p=n:-1:k+1;

x(k) = x(k)-U(k,p)*x(p);

end

x(k)=x(k)/U(k,k);

end

x

L

U

P

End

LU

a=[0 3 4;1 -1 1;2 1 2];

b=[1;2;3];

LU(a,b)

运行结果;

牛顿插值法原理及应用

牛顿插值法 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。为了克服这一缺点,提出了牛顿插值。牛顿插值通过求各阶差商,递推得到的一个公式: f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。 插值函数 插值函数的概念及相关性质[1] 定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点 x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数. 称x1,x2,…xn 为插值节点,称[a,b]为插值区间。 定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序 程序框图#include void main() { float x[11],y[11][11],xx,temp,newton; int i,j,n; printf("Newton插值:\n请输入要运算的值:x="); scanf("%f",&xx); printf("请输入插值的次数(n<11):n="); scanf("%d",&n); printf("请输入%d组值:\n",n+1); for(i=0;i

matlab插值法实例

Several Typical Interpolation in Matlab Lagrange Interpolation Supposing: If x=175, while y=? Solution: Lagrange Interpolation in Matlab: function y=lagrange(x0,y0,x); n=length(x0);m=length(x); for i=1:m z=x(i); s=0.0; for k=1:n p=1.0; for j=1:n if j~=k p=p*(z-x0(j))/(x0(k)-x0(j)); end end s=p*y0(k)+s; end y(i)=s; end input: x0=[144 169 225] y0=[12 13 15] y=lagrange(x0,y0,175) obtain the answer: x0 = 144 169 225 y0 = 12 13 15 y = 13.2302

Spline Interpolation Solution : Input x=[ 1 4 9 6];y=[ 1 4 9 6];x=[ 1 4 9 6];pp=spline(x,y) pp = form: 'pp' breaks: [1 4 6 9] coefs: [3x4 double] pieces: 3 order: 4 dim: 1 output : pp.coefs ans = -0.0500 0.5333 -0.8167 1.0000 -0.0500 0.0833 1.0333 2.0000 -0.0500 -0.2167 0.7667 4.0000 It shows the coefficients of cubic spline polynomial , so: S (x )=, 169,3)9(1484.0)9(0063.0)9(0008.0,94,2)4(2714.0)4(0183.0)4(0008 .0, 41,1)1(4024.0)1(0254.0)1(0008.0232 3 23≥≤+-+---≥≤+-+---≥≤+-+---x x x x x x x x x x x x Newton’s Interpolation Resolve 65 Solution: Newton’s Interpolation in matlab : function yi=newint(x,y,xi); n=length(x); ny=length(y); if n~=ny error end Y=zeros(n);Y(:,1)=y';

时域有限差分法的Matlab仿真

时域有限差分法的Matlab仿真 关键词: Matlab 矩形波导时域有限差分法 摘要:介绍了时域有限差分法的基本原理,并利用Matlab仿真,对矩形波导谐振腔中的电磁场作了模拟和分析。 关键词:时域有限差分法;Matlab;矩形波导;谐振腔 目前,电磁场的时域计算方法越来越引人注目。时域有限差分(Finite Difference Time Domain,FDTD)法[1]作为一种主要的电磁场时域计算方法,最早是在1966年由K. S. Yee提出的。这种方法通过将Maxwell旋度方程转化为有限差分式而直接在时域求解,通过建立时间离散的递进序列,在相互交织的网格空间中交替计算电场和磁场。经过三十多年的发展,这种方法已经广泛应用到各种电磁问题的分析之中。 Matlab作为一种工程仿真工具得到了广泛应用[2]。用于时域有限差分法,可以简化编程,使研究者的研究重心放在FDTD法本身上,而不必在编程上花费过多的时间。 下面将采用FDTD法,利用Matlab仿真来分析矩形波导谐振腔的电磁场,说明了将二者结合起来的优越性。 1FDTD法基本原理 时域有限差分法的主要思想是把Maxwell方程在空间、时间上离散化,用差分方程代替一阶偏微分方程,求解差分方程组,从而得出各网格单元的场值。FDTD 空间网格单元上电场和磁场各分量的分布如图1所示。 电场和磁场被交叉放置,电场分量位于网格单元每条棱的中心,磁场分量位于网格单元每个面的中心,每个磁场(电场)分量都有4个电场(磁场)分量环绕。这样不仅保证了介质分界面上切向场分量的连续性条件得到自然满足,而且

还允许旋度方程在空间上进行中心差分运算,同时也满足了法拉第电磁感应定律和安培环路积分定律,也可以很恰当地模拟电磁波的实际传播过程。 1.1Maxwell方程的差分形式 旋度方程为: 将其标量化,并将问题空间沿3个轴向分成若干网格单元,用Δx,Δy和Δz 分别表示每个网格单元沿3个轴向的长度,用Δt表示时间步长。网格单元顶点的坐标(x,y,z)可记为: 其中:i,j,k和n为整数。 同时利用二阶精度的中心有限差分式来表示函数对空间和时间的偏导数,即可得到如下FDTD基本差分式: 由于方程式里出现了半个网格和半个时间步,为了便于编程,将上面的差分式改写成如下形式:

matlab实现数值分析报告插值及积分

Matlab实现数值分析插值及积分 摘要: 数值分析(numerical analysis)是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,是数学的一个分支,它以数字计算机求解数学问题的理论和方法为研究对象。在实际生产实践中,常常将实际问题转化为数学模型来解决,这个过程就是数学建模。学习数值分析这门课程可以让我们学到很多的数学建模方法。 分别运用matlab数学软件编程来解决插值问题和数值积分问题。题目中的要求是计算差值和积分,对于问题一,可以分别利用朗格朗日插值公式,牛顿插值公式,埃特金逐次线性插值公式来进行编程求解,具体matlab代码见正文。编程求解出来的结果为:=+。 其中Aitken插值计算的结果图如下: 对于问题二,可以分别利用复化梯形公式,复化的辛卜生公式,复化的柯特斯公式编写程序来进行求解,具体matlab代码见正文。编程求解出来的结果为: 0.6932 其中复化梯形公式计算的结果图如下:

问题重述 问题一:已知列表函数 表格 1 分别用拉格朗日,牛顿,埃特金插值方法计算。 问题二:用复化的梯形公式,复化的辛卜生公式,复化的柯特斯公式计算积分,使精度小于5。 问题解决 问题一:插值方法 对于问题一,用三种差值方法:拉格朗日,牛顿,埃特金差值方法来解决。 一、拉格朗日插值法: 拉格朗日插值多项式如下: 首先构造1+n 个插值节点n x x x ,,,10 上的n 插值基函数,对任一点i x 所对应的插值基函数 )(x l i ,由于在所有),,1,1,,1,0(n i i j x j +-=取零值,因此)(x l i 有因子 )())(()(110n i i x x x x x x x x ----+- 。又因)(x l i 是一个次数不超过n 的多项式,所以只 可能相差一个常数因子,固)(x l i 可表示成: )())(()()(110n i i i x x x x x x x x A x l ----=+- 利用1)(=i i x l 得:

各种BP学习算法MATLAB仿真

3.3.2 各种BP学习算法MATLAB仿真 根据上面一节对BP神经网络的MATLAB设计,可以得出下面的通用的MATLAB程序段,由于各种BP学习算法采用了不同的学习函数,所以只需要更改学习函数即可。 MATLAB程序段如下: x=-4:0.01:4; y1=sin((1/2)*pi*x)+sin(pi*x); %trainlm函数可以选择替换 net=newff(minmax(x),[1,15,1],{'tansig','tansig','purelin'},'trainlm'); net.trainparam.epochs=2000; net.trainparam.goal=0.00001; net=train(net,x,y1); y2=sim(net,x); err=y2-y1; res=norm(err); %暂停,按任意键继续 Pause %绘图,原图(蓝色光滑线)和仿真效果图(红色+号点线) plot(x,y1); hold on plot(x,y2,'r+'); 注意:由于各种不确定因素,可能对网络训练有不同程度的影响,产生不同的效果。如图3-8。 标准BP算法(traingd)

图3-8 标准BP算法的训练过程以及结果(原图蓝色线,仿真图+号线)增加动量法(traingdm) 如图3-9。 图3-9 增加动量法的训练过程以及结果(原图蓝色线,仿真图+号线)弹性BP算法(trainrp)如图3-10 图3-10 弹性BP算法的训练过程以及结果(原图蓝色线,仿真图+号线)

动量及自适应学习速率法(traingdx)如图3-11。 图3-11 动量及自适应学习速率法的训练过程以及结果(原图蓝色线,仿真图+号线)共轭梯度法(traincgf)如图3-12。

拉格朗日插值matlab程序

拉格朗日插值的调用函数 function y=lagrange(x0,y0,x) n=length(x0);m=length(x); for i=1:m z=x(i); L=0.0; for j=1:n T=1.0; for k=1:n if k~=j T=T*(z-x0(k))/(x0(j)-x0(k)); end end L=T*y0(j)+L; end y(i)=L; end 四个图在一起: x=[-1:0.05:1]; y=1./(1+25*x.^2); x0=[-1:0.4:1]; y0=1./(1+25*x0.^2); y1=lagrange(x0,y0,x); x0=[-1:0.2:1]; y0=1./(1+25*x0.^2); y2=lagrange(x0,y0,x); x0=[-1:0.1:1]; y0=1./(1+25*x0.^2); y3= lagrange(x0,y0,x); plot(x,y,'-r') hold on plot(x,y1,'-b',x,y2,'-r',x,y3,'-r')

l5和fx在一起: x=[-1:0.05:1]; y=1./(1+25*x.^2); x0=[-1:0.4:1]; y0=1./(1+25*x0.^2); y1=lagrange(x0,y0,x); plot(x,y,'-r') hold on plot(x,y1,'-b') l10和fx在一起: x=[-1:0.05:1]; y=1./(1+25*x.^2); x0=[-1:0.2:1]; y0=1./(1+25*x0.^2); y2= lagrange(x0,y0,x); plot(x,y,'-r') hold on plot(x,y2,'-b') l20和fx在一起: x=[-1:0.05:1]; y=1./(1+25*x.^2); x0=[-1:0.1:1]; y0=1./(1+25*x0.^2); y3= lagrange(x0,y0,x); plot(x,y,'-r') hold on plot(x,y3,'-b')

matlab插值法,迭代法程序

数值分析作业 姓名王建忠 学号132080202006 学院能源与动力工程 专业机械电子工程 2013年12月16日

https://www.sodocs.net/doc/dc13252903.html,grange插值多项式程序 function f=nalagr(x,y,xx) %x为节点向量 %y为节点函数值 %xx是插值点 syms s if(length(x)==length(y)) n=length(x); else disp('x和y的维数不相等!'); return; end f=0.0; for(i=1:n) l=y(i); for(j=1:i-1) l=l*(s-x(j))/(x(i)-x(j)); end; for(j=i+1:n) l=l*(s-x(j))/(x(i)-x(j));%计算拉格朗日基函数end; f=f+l;%计算拉格朗日插值函数 simplify(f); if(i==n) if(nargin==3) f=subs(f,'s');%计算插值点的函数值else f=collect(f);%将插值多项式展开 f=vpa(f,6);%将插值多项式的系数化成6位精度的小数 end end end >>x=[-2,-1,0,1];%已知节点向量y=[3,1,1,6];%节点函数值向量 f=nalagr(x,y) f= 0.5*s^3+ 2.5*s^2+ 2.0*s+ 1.0 >>f=nalagr(x,y,0) f=1 >>

2.牛顿插值多项式程序 function[p2,z]=newTon(x,y,t) %输入参数中x,y为元素个数相等的向量,t为待估计的点,可以为数字或向量。%输出参数中p2为所求得的牛顿插值多项式,z为利用多项式所得的t的函数值。 n=length(x); chaS(1)=y(1); for i=2:n x1=x;y1=y; x1(i+1:n)=[]; y1(i+1:n)=[]; n1=length(x1); s1=0; for j=1:n1 t1=1; for k=1:n1 if k==j continue; else t1=t1*(x1(j)-x1(k)); end end s1=s1+y1(j)/t1; end chaS(i)=s1; end b(1,:)=[zeros(1,n-1)chaS(1)]; cl=cell(1,n-1); for i=2:n u1=1; for j=1:i-1 u1=conv(u1,[1-x(j)]); cl{i-1}=u1; end cl{i-1}=chaS(i)*cl{i-1}; b(i,:)=[zeros(1,n-i),cl{i-1}]; end p2=b(1,:); for j=2:n p2=p2+b(j,:); end if length(t)==1 rm=0;

内点法matlab仿真doc资料

编程方式实现: 1.惩罚函数 function f=fun(x,r) f=x(1,1)^2+x(2,1)^2-r*log(x(1,1)-1); 2.步长的函数 function f=fh(x0,h,s,r) %h为步长 %s为方向 %r为惩罚因子 x1=x0+h*s; f=fun(x1,r); 3. 步长寻优函数 function h=fsearchh(x0,r,s) %利用进退法确定高低高区间,利用黄金分割法进行求解h1=0;%步长的初始点 st=0.001; %步长的步长 h2=h1+st; f1=fh(x0,h1,s,r); f2=fh(x0,h2,s,r); if f1>f2 h3=h2+st; f3=fh(x0,h3,s,r); while f2>f3 h1=h2; h2=h3; h3=h3+st; f2=f3; f3=fh(x0,h3,s,r); end else st=-st; v=h1; h1=h2; h2=v; v=f1; f1=f2; f2=v; h3=h2+st; f3=fh(x0,h3,s,r); while f2>f3 h1=h2; h2=h3; h3=h3+st; f2=f3;

f3=fh(x0,h3,s,r); end end %得到高低高的区间 a=min(h1,h3); b=max(h1,h3); %利用黄金分割点法进行求解 h1=1+0.382*(b-a); h2=1+0.618*(b-a); f1=fh(x0,h1,s,r); f2=fh(x0,h2,s,r); while abs(a-b)>0.0001 if f1>f2 a=h1; h1=h2; f1=f2; h2=a+0.618*(b-a); f2=fh(x0,h2,s,r); else b=h2; h2=h1; f2=f1; h1=a+0.382*(b-a); f1=fh(x0,h1,s,r); end end h=0.5*(a+b); 4. 迭代点的寻优函数 function f=fsearchx(x0,r,epson) x00=x0; m=length(x0); s=zeros(m,1); for i=1:m s(i)=1; h=fsearchh(x0,r,s); x1=x0+h*s; s(i)=0; x0=x1; end while norm(x1-x00)>epson x00=x1; for i=1:m s(i)=1; h=fsearchh(x0,r,s);

matlab插值(详细 全面)

Matlab中插值函数汇总和使用说明 MATLAB中的插值函数为interp1,其调用格式 为: yi= interp1(x,y,xi,'method') 其中x,y为插值点,yi为在被插值点xi处的插值结果;x,y为向量, 'method'表示采用的插值方法,MATLAB提供的插值方法有几种: 'method'是最邻近插值, 'linear'线性插值; 'spline'三次样条插值; 'cubic'立方插值.缺省时表示线性插值 注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。 例如:在一天24小时内,从零点开始每间隔2小时测得的环境温度数据分别为 12,9,9,10,18 ,24,28,27,25,20,18,15,13, 推测中午12点(即13点)时的温度. x=0:2:24; y=[12 9 9 10 18 24 28 27 25 20 18 15 13]; a=13; y1=interp1(x,y,a,'spline') 结果为: 27.8725 若要得到一天24小时的温度曲线,则: xi=0:1/3600:24; yi=interp1(x,y,xi, 'spline'); plot(x,y,'o' ,xi,yi)

命令1 interp1 功能一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。 x:原始数据点 Y:原始数据点 xi:插值点 Yi:插值点 格式 (1)yi = interp1(x,Y,xi) 返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。参量x 指定数据Y 的点。 若Y 为一矩阵,则按Y 的每列计算。yi是阶数为length(xi)*size(Y,2)的输出矩阵。(2)yi = interp1(Y,xi) 假定x=1:N,其中N 为向量Y 的长度,或者为矩阵Y 的行数。 (3)yi = interp1(x,Y,xi,method) 用指定的算法计算插值: ’nearest’:最近邻点插值,直接完成计算; ’linear’:线性插值(缺省方式),直接完成计算; ’spline’:三次样条函数插值。对于该方法,命令interp1 调用函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函数。命令spline 用它们执行三次样条函数插值; ’pchip’:分段三次Hermite 插值。对于该方法,命令interp1 调用函数pchip,用于对

PID控制算法的matlab仿真

PID 控制算法的matlab 仿真 PID 控制算法就是实际工业控制中应用最为广泛的控制算法,它具有控制器设计简单,控制效果好等优点。PID 控制器参数的设置就是否合适对其控制效果具有很大的影响,在本课程设计中一具有较大惯性时间常数与纯滞后的一阶惯性环节作为被控对象的模型对PID 控制算法进行研究。被控对象的传递函数如下: ()1d s f Ke G s T s τ-= + 其中各参数分别为30,630,60f d K T τ===。MATLAB 仿真框图如图1所示。 图1 2 具体内容及实现功能 2、1 PID 参数整定 PID 控制器的控制参数对其控制效果起着决定性的作用,合理设置控制参数就是取得较好的控制效果的先决条件。常用的PID 参数整定方法有理论整定法与实验整定法两类,其中常用的实验整定法由扩充临界比例度法、试凑法等。在此处选用扩充临界比例度法对PID 进行整定,其过程如下: 1) 选择采样周期 由于被控对象中含有纯滞后,且其滞后时间常数为 60d τ=,故可选择采样周期1s T =。 2) 令积分时间常数i T =∞,微分时间常数0d T =,从小到大调节比例系数K , 使得系统发生等幅震荡,记下此时的比例系数k K 与振荡周期k T 。 3) 选择控制度为 1.05Q =,按下面公式计算各参数:

0.630.490.140.014p k i k d k s k K K T T T T T T ==== 通过仿真可得在1s T =时,0.567,233k k K T ==,故可得: 0.357,114.17,32.62, 3.262p i d s K T T T ==== 0.0053.57 p s i i p d d s K T K T K T K T === = 按此组控制参数得到的系统阶跃响应曲线如图2所示。 01002003004005006007008009001000 0.20.40.60.811.21.41.6 1.8 图2 由响应曲线可知,此时系统虽然稳定,但就是暂态性能较差,超调量过大,且响应曲线不平滑。根据以下原则对控制器参数进行调整以改善系统的暂态过程: 1) 通过减小采样周期,使响应曲线平滑。 2) 减小采样周期后,通过增大积分时间常数来保证系统稳定。 3) 减小比例系数与微分时间常数,以减小系统的超调。 改变控制器参数后得到系统的阶跃响应曲线如图3所示,系统的暂态性能得到明显改善、

matlab牛顿插值法例题与程序

题目一:多项式插值 某气象观测站在8:00(AM )开始每隔10分钟对天气作如下观测,用三次多项式插值函数(Newton )逼近如下曲线,插值节点数据如上表,并求出9点30分该地区的温度(x=10)。 二、数学原理 假设有n+1个不同的节点及函数在节点上的值(x 0,y 0),……(x n ,y n ),插值多项式有如下形式: )() )(()()()(n 10n 102010n x -x )(x -x x -x x P x x x x x x -??-+??+-++=αααα (1) 其中系数i α(i=0,1,2……n )为特定系数,可由插值样条i i n y x P =) ((i=0,1,2……n )确定。 根据均差的定义,把x 看成[a,b]上的一点,可得 f(x)= f (0x )+f[10x x ,](0x -x ) f[x, 0x ]= f[10x x ,]+f[x,10x x ,] (1x -x ) …… f[x, 0x ,…x 1-n ]= f[x, 0x ,…x n ]+ f[x, 0x ,…x n ](x-x n ) 综合以上式子,把后一式代入前一式,可得到: f(x)= f[0x ]+f[10x x ,](0x -x )+ f[210x x x ,,](0x -x )(1x -x )+ …+ f[x, 0x ,…x n ](0x -x )…(x-x 1-n )+ f[x, 0x ,…x n ,x ]) (x 1n +ω= N n (x )+) (x n R 其中

N n (x )= f[0x ]+f[10x x ,](0x -x )+ f[210x x x ,,](0x -x )(1x -x )+ …+ f[x, 0x ,…x n ](0x -x )…(x-x 1-n ) (2) )(x n R = f(x)- N n (x )= f[x, 0x , (x) n ,x ]) (x 1n +ω (3) ) (x 1n +ω=(0x -x )…(x-x n ) Newton 插值的系数i α(i=0,1,2……n )可以用差商表示。一般有 f k =α[k 10x x x ??,] (k=0,1,2,……,n ) (4) 把(4)代入(1)得到满足插值条件N )() (i i n x f x =(i=0,1,2,……n )的n 次Newton 插值多项式 N n (x )=f (0x )+f[10x x ,](1x -x )+f[210x x x ,,](1x -x )(2x -x )+……+f[n 10x x x ??,](1x -x )(2x -x )…(1-n x -x ). 其中插值余项为: ) ()! () ()()()(x 1n f x N -x f x R 1n 1 n n +++==ωξ ξ介于k 10x x x ??,之间。 三、程序设计 function [y,A,C,L]=newdscg(X,Y,x,M) % y 为对应x 的值,A 为差商表,C 为多项式系数,L 为多项式 % X 为给定节点,Y 为节点值,x 为待求节点 n=length(X); m=length(x); % n 为X 的长度 for t=1:m

实验一 典型环节的MATLAB仿真汇总

实验一 典型环节的MATLAB 仿真 一、实验目的 1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、SIMULINK 的使用 MATLAB 中SIMULINK 是一个用来对动态系统进行建模、仿真和分析的软件包。利用SIMULINK 功能模块可以快速的建立控制系统的模型,进行仿真和调试。 1.运行MATLAB 软件,在命令窗口栏“>>”提示符下键入simulink 命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK 仿真 环境下。 2.选择File 菜单下New 下的Model 命令,新建一个simulink 仿真环境常规模板。 3.在simulink 仿真环境下,创建所需要的系统 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G 实验处理:1)(1=s G SIMULINK 仿真模型

波形图为: 实验处理:2)(1=s G SIMULINK 仿真模型 波形图为: 实验结果分析:增加比例函数环节以后,系统的输出型号将输入信号成倍数放大. ② 惯性环节11)(1+= s s G 和15.01)(2+=s s G 实验处理:1 1 )(1+=s s G SIMULINK 仿真模型

波形图为: 实验处理:1 5.01 )(2+= s s G SIMULINK 仿真模型 波形图为: 实验结果分析:当1 1 )(1+= s s G 时,系统达到稳定需要时间接近5s,当

牛顿插值MATLAB算法

MATLAB程序设计期中作业 ——编程实现牛顿插值 成员:刘川(P091712797)签名_____ 汤意(P091712817)签名_____ 王功贺(P091712799)签名_____ 班级:2009信息与计算科学 学院:数学与计算机科学学院 日期:2012年05月02日

牛顿插值的算法描述及程序实现 一:问题说明 在我们的实际应用中,通常需要解决这样的问题,通过一些已知的点及其对应的值,去估算另外一些点的值,这些数据之间近似服从一定的规律,于是,这就引入了插值法的思想。 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化,这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。 二:算法分析 newton 插值多项式的表达式如下: 010011()()()()()n n n N x c c x x c x x x x x x -=+-+???+--???- 其中每一项的系数c i 的表达式如下: 12011010 [,,,][,,,] [,,,]i i i i i f x x x f x x x c f x x x x x -???-???=???= - 即为f (x)在点01,,,i x x x ???处的i 阶差商,([]()i i f x f x =,1,2,,i n = ),由差商01[,,,]i f x x x ???的性质可知: () 010 1 [,,,]()i i i j j k j k k j f x x x f x x x ==≠???=-∑∏ 牛顿插值的程序实现方法: 第一步:计算[][][][]001012012,,,,,,,n f x f x x f x x x f x x x x 、、、 、。 第二步:计算牛顿插值多项式中01[,,,]i f x x x ???011()()()i x x x x x x ---???-,1,2,,i n = ,得到n 个多项式。

函数的插值方法及matlab程序

6.1 插值问题及其误差 6.1.2 与插值有关的MATLAB 函数 (一) POLY2SYM函数 调用格式一:poly2sym (C) 调用格式二:f1=poly2sym(C,'V') 或f2=poly2sym(C, sym ('V') ), (二) POLYVAL函数 调用格式:Y = polyval(P,X) (三) POLY函数 调用格式:Y = poly (V) (四) CONV函数 调用格式:C =conv (A, B) 例 6.1.2求三个一次多项式、和的积.它们的零点分别依次为0.4,0.8,1.2. 解我们可以用两种MATLAB程序求之. 方法1如输入MATLAB程序 >> X1=[0.4,0.8,1.2]; l1=poly(X1), L1=poly2sym (l1) 运行后输出结果为 l1 = 1.0000 - 2.4000 1.7600 -0.3840 L1 = x^3-12/5*x^2+44/25*x-48/125 方法2如输入MATLAB程序 >> P1=poly(0.4);P2=poly(0.8);P3=poly(1.2); C =conv (conv (P1, P2), P3) , L1=poly2sym (C) 运行后输出的结果与方法1相同. (五) DECONV 函数 调用格式:[Q,R] =deconv (B,A) (六) roots(poly(1:n))命令 调用格式:roots(poly(1:n)) (七) det(a*eye(size (A)) - A)命令 调用格式:b=det(a*ey e(size (A)) - A) 6.2 拉格朗日(Lagrange)插值及其MATLAB程序 6.2.1 线性插值及其MATLAB程序 例 6.2.1 已知函数在上具有二阶连续导数,,且满足条件 .求线性插值多项式和函数值,并估计其误差. 解输入程序 >> X=[1,3];Y=[1,2]; l01= poly(X(2))/( X(1)- X(2)), l11= poly(X(1))/( X(2)- X(1)), l0=poly2sym (l01),l1=poly2sym (l11), P = l01* Y(1)+ l11* Y(2), L=poly2sym (P),x=1.5; Y = polyval(P,x) 运行后输出基函数l0和l1及其插值多项式的系数向量P(略)、插值多项式L和插值Y为l0 = l1 = L = Y = -1/2*x+3/2 1/2*x-1/2 1/2*x+1/2 1.2500 输入程序 >> M=5;R1=M*abs((x-X(1))* (x-X(2)))/2

LMMSE算法信道均衡MATLAB仿真

一.信道均衡的概念 实际的基带传输系统不可能完全满足无码间串扰传输条件,因而码间串扰是不可避免的。当串扰严重时,必须对系统的传输函数 进行校正,使其达到或接近无码间串扰要求的特性。理论和实践表明,在基带系统中插入一种可调滤波器就可以补偿整个系统的幅频,和相频特性从而减小码间串扰的影响这个对系统校正的过程称为均衡,实现均衡的滤波器称为均衡器。 均衡分为频域均衡和时域均衡。频域均衡是从频率响应考虑,使包括均衡器在内的整个系统的总传输函数满足无失真传输条件。而时域均衡,则是直接从时间响应考虑,使包括均衡器在内的整个系统的冲激响应满足无码间串扰条件。 频域均衡在信道特性不变,且传输低速率数据时是适用的,而时域均衡可以根据信道特性的变化进行调整,能够有效地减小码间串扰,故在高速数据传输中得以广泛应用。 时域均衡的实现方法有多种,但从实现的原理上看,大致可分为预置式自动均衡和自适应式自动均衡。预置式均衡是在实际传数之前先传输预先规定的测试脉冲(如重复频率很低的周期性的单脉冲波形),然后按“迫零调整原理”自动或手动调整抽头增益;自适应式均衡是在传数过程中连续测出距最佳调整值的误差电压,并据此电压去调整各抽头增益。一般地,自适应均衡不仅可以使调整精度提高,而且当信道特性随时间变化时又能有一定的自适应性,因此很受重视。这种均衡器过去实现起来比较复杂,但随着大规模、超大规模集成电路和微处理机的应用,其发展十分迅速。 二.信道均衡的应用 1.考虑如图所示的基带等效数据传输系统,发送信号k x 经过ISI 失真信道传输,叠加高斯加性噪声。 图1基带等效数据传输模型 设发送信号采用QPSK 调制,即(1)k x j =±±ISI 信道的冲击响应以向量的形式表示为h 2211[,,,]T L L L h h h --+=???。典型的ISI 信道响应向量有三种: h [0.04,0.05,0.07,0.21,0.5,0.72,0.36,0,0.21,0.03,0.07]T A =--- h [0.407,0.815,0.407]T B = h [0.227,0.46,0.6888,0.46,0.227]T C = k ω为实部与虚部独立的复高斯白噪声,其均值为零,方差为2 ωσ。 2.实现目的

神经网络学习算法matlab仿真

东南大学自动化学院 智能控制概论 神经网络学习算法研究 学院: 姓名: 学号: 日期:

目录 1 任务要求叙述 ..................................................... 错误!未定义书签。 2 系统分析及设计原理 ......................................... 错误!未定义书签。 3 设计实现.............................................................. 错误!未定义书签。4仿真验证.. (6) 5 讨论与分析.......................................................... 错误!未定义书签。

一.任务要求叙述 (1)任务 (a) 运行算法,观察和分析现有学习算法的性能; clear all;close all; nu=20;pi=3.1415926; for i=1:nu p(i)=2*pi*i/nu; t(i)=0.5*(1+cos(p(i))); end minmax=[min(p(:)) max(p(:))] net = newff([ 0 7],[6 1],{'logsig' 'purelin'},'traingd');% traingd traingdm trainlm net.trainParam.epochs = 10000; net.trainParam.goal = 0.0001; net.trainParam.show=200; net.trainParam.lr=0.1; net.trainParam.mc=0.6; %0.9 default value; available for momentum net = train(net,p,t); y1 = sim(net,p); figure(2); plot(p,t,'*-',p,y1,'r--') %************** test data ****************** nu2=nu*3/2; for i=1:(nu2) p2(i)=2*pi*i/(nu2); t2(i)=0.5*(1+cos(p2(i))); end y2 = sim(net,p2); figure(3); plot(t2,'*-');hold on; plot(y2,'r'); xlabel('times');ylabel('outputs'); figure(4); plot(t2-y2); xlabel('times');ylabel('error'); (b) 为了进一步提高学习逼近效果,可以采取那些措施,调节规律如何?根据所提的每种措施,修改算法程序,给出仿真效果验证、过程以及相应的曲线图,给出适当的评述;(c) 联系、结合前向神经网络的算法样本学习、测试等过程,谈谈本人对神经网络系统的一些认识和看法。 (2)要求 提交完整的报告,包括:封面(题目、个人学号姓名等信息)、目录、任务要求叙述、系

牛顿插值法的MATLAB综合程序

6.3.5 牛顿插值法的MATLAB 综合程序 求牛顿插值多项式、差商、插值及其误差估计的MATLAB 主程序 function [y,R,A,C,L]=newdscg(X,Y,x,M) n=length(X); m=length(x); for t=1:m z=x(t); A=zeros(n,n);A(:,1)=Y'; s=0.0; p=1.0; q1=1.0; c1=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1)); end q1=abs(q1*(z-X(j-1)));c1=c1*j; end C=A(n,n);q1=abs(q1*(z-X(n))); for k=(n-1):-1:1 C=conv(C,poly(X(k))); d=length(C);C(d)=C(d)+A(k,k); end y(k)= polyval(C, z); end R=M*q1/c1;L(k,:)=poly2sym(C); 例6.3.6 给出节点数据00.27)00.4(=-f ,00.1)00.0(=f ,00.2)00.1(=f ,00.17)00.2(=f ,作三阶牛顿插值多项式,计算)345.2(-f ,并估计其误差. 解 首先将名为newdscg.m 的程序保存为M 文件,然后在MATLAB 工作窗口输入程序 >> syms M,X=[-4,0,1,2]; Y =[27,1,2,17]; x=-2.345; [y,R,A,C,P]=newdscg(X,Y,x,M) 运行后输出插值y )345.2(-≈f 及其误差限公式R ,三阶牛顿插值多项式P 及其系数向量C ,差商的矩阵A 如下 y = 22.3211 R = 65133/562949953421312*M (即R =2.3503*M ) A= 27.0000 0 0 0 1.0000 -6.5000 0 0 2.0000 1.0000 1.5000 0 17.0000 15.0000 7.0000 0.9167 C = 0.9167 4.2500 -4.1667 1.0000 P = 11/12*x^3+17/4*x^2-25/6*x+1

均差牛顿插值MATLAB,M文件

%均差牛顿插值 function [ f y f0 ] = newton1( X,Y,x0 ) if nargin<3 error('Requires at least three input arguments.'); end if length(X)==length(Y) n=length(X); else error('length must equal') end syms x s=Y(1); l=1.0; y=zeros(n); y(1:n,1)=Y'; for i=2:n for j=2:i y(i,j)=(y(i,j-1)-y(j-1,j-1))/(X(i)-X(j-1)); if i==j l=l*(x-X(i-1)); s=s+y(i,i)*l; end end end f=simple(s); f0=subs(f,x0); function [ f f0 y] = newton2( X,Y,x0 ) if nargin<3 error('Requires at least three input arguments.'); end if length(X)==length(Y) n=length(X); else error('length must equal') end syms x s=Y(1); l=1.0; y=zeros(n) y(1:n,1)=Y'; for i=2:n for j=2:i y(i,j)=(y(i,j-1)-y(i-1,j-1))/(X(i)-X(i-j+1)); if i==j l=l*(x-X(i-1)); s=s+y(i,i)*l; end end end f=simple(s); f0=subs(f,x0);

相关主题