搜档网
当前位置:搜档网 › deform 二次开发

deform 二次开发

deform 二次开发
deform 二次开发

DEFORM二次开发的一点小心得!

前一段时间闲着没事,看了DEFORM的help文件.和众位兄弟交流一下.|https://www.sodocs.net/doc/db16597422.html,|仿真|设计|有限元|虚拟仪器1d8S"Q!x0~9m!~.Q5U6{9^ 用户子程序实现过程:

第一步:所需文件准备:把DEF_SIM目录下的def_usr.f ,

DEF_SIM_USR_ABsoft70.gui , DEF_SIM_P4_USR_ABsoft70.gui ,

DEF_SIM_P4_USR_LIB.lib , DEF_SIM_USR_LIB.lib和lib目录下的所有.lib 文件拷到工作目录下。备份DEF_SIM.exe ,DEF_SIM_P4.exe两个文件。第二步:编写源程序。对于新手可以使用模版自带的子程序,对于材料流动应力子程序模版里头本身就自带有一个,所以可以不需要自己编写。(我就利用过自带的作过模拟,把前面的常数设置为10和100分别模拟)仿真分析,有限元,模拟,计算,力学,航空,航

天,ANSYS,MSC,ABAQUS,ALGOR,Adina,COMSOL,FEMLAB,Matlab,Fl uent,CFD,CAE,CAD,CAM(k/b8|0^9b)y

第三步:用absoft7.0或以上版本打开DEF_SIM_USR_ABsoft70.gui 文档,指定好library files,用工作目录下的lib文件来替换原来默认的lib 文件,上述做完后直接点build就ok了,自动生成了DEF_SIM.exe。重复上面的过程打开DEF_SIM_P4_USR_ABsoft70.gui 文档生成

DEF_SIM_P4.exe。

第三步:用生成的DEF_SIM.exe ,DEF_SIM_P4.exe替换原来的这两个文件。

第四步,运行模型。对于流动应力子程序,只要在material那里选择子程序就ok了。仿真分析,有限元,模拟,计算,力学,航空,航

天,ANSYS,MSC,ABAQUS,ALGOR,Adina,COMSOL,FEMLAB,Matlab,Fl uent8]0P&E B,L+{&Z W%?/b

注:3D中必须是DEF_SIM.exe,而DEF_SIM—P4.exe不好!(我也不知道原因,师兄是这么说的!)https://www.sodocs.net/doc/db16597422.html,8]$M*q)v3V;V

仿真分析,有限元,模拟,计算,力学,航空,航

天,ANSYS,MSC,ABAQUS,ALGOR,Adina,COMSOL,FEMLAB,Matlab,Fl uent,CFD,CAE,CAD,CAM#d1I1k6D0F&n"r4j

还有一个问题,关于DEFORM的text运行模式.

在安装目录下面,有如下几个需要了解的文

件:<1>DEF_PRE.EXE;<2>DEF_ARM_https://www.sodocs.net/doc/db16597422.html,

DEF_PRE.EXE这是前处理,DOS界面输入前处理参数设置,记录每次设置时的操作,按一定格式记录在记事本上面,这个很重要,二次开发可能需要这个文件.具体参见help.

DEF_ARM_https://www.sodocs.net/doc/db16597422.html, 这是运行命令.具体格式见help.

SimWe仿真论坛5O+[7_:v$x7~;?,i6e3q

下面是关键:通过fortran子程序调用DEFORM.具体如下.我用的是visual fortran6.6.仿真分析,有限元,模拟,计算,力学,航空,航

天,ANSYS,MSC,ABAQUS,ALGOR,Adina,COMSOL,FEMLAB,Matlab,Fl uent,CFD,CAE,CAD,CAM b/O#G3N!D3G1_:c7x5}9v'E

result=system('E:\DEFORM3D\V5_0\DEF_PRE.EXE')(启动前处理,弹出DEF_PRE.EXE界面)3A;}%^5}/q3I

result=system('E:\DEFORM3D\V5_0\DEF_PRE.EXE

https://www.sodocs.net/doc/db16597422.html,"m%e'o&V2O!b%l

2SimWe仿真论坛4j-v-M-a(l9A

1仿真分析,有限元,模拟,计算,力学,航空,航

天,ANSYS,MSC,ABAQUS,ALGOR,Adina,COMSOL,FEMLAB,Matlab,Fl uent/c*W(t2h!~ @$N G

XXXX.KEY (key文件,需要copy到你的子程序目录下)

E|https://www.sodocs.net/doc/db16597422.html,|仿真|设计|有限元|虚拟仪器+P(E;u'r5H8r%}

7仿真分析,有限元,模拟,计算,力学,航空,航

天,ANSYS,MSC,ABAQUS,ALGOR,Adina,COMSOL,FEMLAB,Matlab,Fl uent,CFD,CAE,CAD,CAM0u'n*V&U.w,S'C

2仿真分析,有限元,模拟,计算,力学,航空,航

天,ANSYS,MSC,ABAQUS,ALGOR,Adina,COMSOL,FEMLAB,Matlab,Fl uent,CFD,CAE,CAD,CAM!K*i4n8l0j

XXXX.DB(生成DB文件)|https://www.sodocs.net/doc/db16597422.html,|仿真|设计|有限元|虚拟仪器$e(W'V%d.G*T-n

E:z;P'_/`9E R

Y

result=system('E:\DEFORM3D\V5_0\DEF_ARM_https://www.sodocs.net/doc/db16597422.html, XXXX B')(运行DB文件,XXXX为文件名,B表示

batch模式运行)仿真分析,有限元,模拟,计算,力学,航空,航

天,ANSYS,MSC,ABAQUS,ALGOR,Adina,COMSOL,FEMLAB,Matlab,Fl uent,CFD,CAE,CAD,CAM B&d5~0X1@1D)J.\*~

注意运行过程中,有可能生成临时文件,如FOR003等,会影响模拟迚行,可通过fortran命令open和write操作清除.以上可以实现一些特殊的操作.如运动子程序等.

上述即是我的一点小体会.很多我也不是很懂,自己的课题也不是DEFORM二次开发,也不专长编程.呵呵,希望对大家有所帮助!仿真分析,有限元,模拟,

Re:请问能不能帖个自己二次开发加本构方程的例子

这是我尝试过的关于流动应力的二次开发,希望能给没有做过二次开发的朋友一点经验~~~现在要好好研究二次开发和有限元软件的核心

机制了~~~https://www.sodocs.net/doc/db16597422.html,4S"]!F$i7W"E$S+u)e

共同迚步~~~!E,]*w"f6y/W'u+Y

(s-e+N9|.B

program USRMTR

real YS,TEPS,EFEPS,TEM仿真分析,有限元,模拟,计算,力学,航空,航天,ANSYS,MSC,ABAQUS,ALGOR,Adina,COMSOL,FEMLAB,Matlab,Fl uent,CFD,CAE,CAD,CAM%[,L9o#s(`(|)D1H

read (*,*,*)TEPS,EFEPS,TEM 仿真分析,有限元,模拟,计算,力学,航空,航

天,ANSYS,MSC,ABAQUS,ALGOR,Adina,COMSOL,FEMLAB,Matlab,Fl uent,CFD,CAE,CAD,CAM$P#]2R3L;T!z"m)F4[

YS=123.5237-1.238956*TEM+3.8584*LOG10(EFEPS)+6.7852*TEPS-1.29*TEM*TEPS+52.895*LOG10(EFEPS)*TEPS+0.00088442*TEM*TE M"^/}-p&S!r7?"t'L/@

Print *,YS

ENDSimWe仿真论坛&u%B;c f(k0f'G.m$A6r

相信看了这个程序后,大家对二次开发肯定有个初步的了解了

~|https://www.sodocs.net/doc/db16597422.html,|仿真|设计|有限元|虚拟仪器(`5Q4n0s;H3u8O7e5T

呵~

用户子程序具体实现心得

结合论坛上各位大虾的经验和自带帮助,前段时间动手试了一下用户子程序的实现过程,现将自己的一些体会与大家共享,相信对做二次开发

的新手有用

用户子程序实现过程:

第一步:所需文件准备:把DEF_SIM目录下的def_usr.f ,

DEF_SIM_USR_ABsoft70.gui , DEF_SIM_P4_USR_ABsoft70.gui ,

DEF_SIM_P4_USR_LIB.lib , DEF_SIM_USR_LIB.lib和lib目录下的所有.lib 文件拷到工作目录下。备份DEF_SIM.exe ,DEF_SIM_P4.exe两个文件。第二步:编写源程序。对于新手可以使用模版自带的子程序,对于材料流动应力子程序模版里头本身就自带有一个,所以可以不需要自己编写。

第三步:用absoft7.0或以上版本打开DEF_SIM_USR_ABsoft70.gui 文档,指定好library files,用工作目录下的lib文件来替换原来默认的lib 文件(这一步很关键,试了好久才发现),要不然编译可以通过,可是不能生成执行文件。上述做完后直接点build就ok了,自动生成了DEF_SIM.exe。重复上面的过程打开DEF_SIM_P4_USR_ABsoft70.gui 文档生成DEF_SIM_P4.exe。仿真分析,有限元,模拟,计算,力学,航空,航天,ANSYS,MSC,ABAQUS,ALGOR,Adina,COMSOL,FEMLAB,Matlab,Fl uent,CFD,CAE,CAD,CAM%y'p)o!T2B/{'a5K

第三步:用生成的DEF_SIM.exe ,DEF_SIM_P4.exe替换原来的这两个文件。仿真分析,有限元,模拟,计算,力学,航空,航

天,ANSYS,MSC,ABAQUS,ALGOR,Adina,COMSOL,FEMLAB,Matlab,Fl uent,CFD,CAE,CAD,CAM _5B2f!p)Q/h+\-e

第四步,运行模型。对于流动应力子程序,只要在material那里选择子程序就ok了。

共享:DEFORM二次开发后,fortran子程序编译问题

这一个星期以来,每天都在编译二次开发后的DEFORM子程序,总是不能通过,看了论坛中也没有详细说这方面的,虽然按照一些操作操作了还是不行,所以详细讲述一下操作步骤。SimWe仿真论坛

+z ?(V%{$S(n0M-u(N1X

|https://www.sodocs.net/doc/db16597422.html,|仿真|设计|有限元|虚拟仪器,L(\:y'v'?.F4|

首先,安装的系统是windows的,到电驴上下载并安装absoft pro fortran v9.0,这应该是在网上能找到的最接近的版本了。|https://www.sodocs.net/doc/db16597422.html,|仿真|设计|有限元|虚拟仪器6A3g$L)p(j&I:|'d0@

安装DEFORM-2D,DEFORM-3D,我是这么装的,具体是不是可以只装一个我也没试过,有意的试试吧。

在def_usr.f(该文件在DEF_SIM文件夹中)编写二次开发的程序,保存。

找个地方建一个文件夹M,将DEFORM中的UserRoutine文件夹中的所有文件和所有的*.lib文件拷贝到文件夹M中。

(这样比较省事点,虽然有些文件用不到。)

将absoft pro fortran v9.0的安装文件中的f77_oldnames.obj 文件

也拷贝到文件夹M中。

(该文件在..\Absoft90\LIB中)

双击打开DEF_SIM_USR.gui文件,将Library Files 中的*.lib文件全部替换成文件夹M中的相应的*.lib。(在Library Files 任选一个文件,右键选择Add/Remove File(s) 然后迚行替换文件操作)。将文件夹M 中的f77_oldnames.obj 也添加迚去。

点击Tools-->buid就OK了。生成了DEF_SIM.exe

建立DEF_SIM_P4.exe文件如上面的操作,只是改成双击

DEF_SIM_P4_USR.gui文件。

关于流动应力的二次开发~!

前几天有个网友求租关于流动应力二次开发的子程序~!现和大家一起讨论讨论~!其实二次开发我也是个beginner~!' u' d" c7 Q' i0 p, D9 m 如果材料库里面没有你所需要的流动应力的模型~!你可以自己定义流动应力~~流动应力可以表示为应力应变温度或者其他变量的函数~!用户可以定义100种流动应力的程序~!

定义变量如下:( L- G1 a2 O) H! a/ b& U

YS=FLOW STRESS' V* H+ u: ^, ]4 t& \! @, I YPS=DERIVATIVE OF FLOW STRESS W.R.T. TEPS9 },

A q$ @0 h

FIP=DERIVATIVE OF FLOW STRESS W.R.T. EFEPS + y2 R2 A" b4

G+ T3 C3 s. Y

TEPS=EFFECTIVE STRAIN 4 H. x6 {: e/ e" K

EFEPS=EFFECTIVE STRAIN RATE

如果流动应力只由应变速率灵明度指数和等效应变速率来决定~那么

流动应力的子程序如下:

PEM = 0.1$ a! Z4 w5 Q) \0 Q

YS= 10. * (EFEPS)**PEM. T' @! L$ ?4 }5 G

FIP = 10. * PEM * (EFEPS)**(PEM-1)7 ]# |8 _: L. g2 M4 S6 q

YPS = 03 |7 D! q$ ]+ m! a, y! ~4 p3 [

如果流动应力由应变(PEN),应变速率(PEM),等效应变(STRAIN),等效应变速率来决定,子程序如下:(用户自己定义等效应变值)STRAIN = USRE1(1)( H4 s$ \* r( M8 w% ` IF (STRAIN.LE.0.) STRAIN = 1.E-59 F7 I/ Q2 ^6 x^7 o

PEN = 0.15

PEM = 0.1' H+ u8 d7 F; m: I& \9 ~* P

YS= 10. * STRAIN**PEN* (EFEPS)**PEM# }( {3 p' x7 ~2 q7 ~5

h8 ]

FIP = 10. * STRAIN**PEN* PEM * (EFEPS)**(PEM-1)) {$ H%

U[9 i% h4 P/ S

YPS = 10. * PEN * STRAIN**(PEN-1.) * (EFEPS)**PEM

5 E5 p

6 h4 ]" }! N

这就是最基本的流动应力的二次开发,大家可以再探讨探讨~!谢谢~!

2008-11-18

DEFORM 2D / DEFORM 3D 二次开发心得

一求解过程中的二次开发

Procedure: If you can find Compile_DEF_SIM_USR.bat in the current directory, you can compile the user routine by simply click on that batch file, and copy the DEF_SIM.exe or DEF_SIM_P4.exe to the folder where DEFORM3D installed.

To build DEF_SIM.exe follows these steps:

(1) Double click DEF_SIM_USR.gui ( DEF_SIM_USR_Absoft70.gui if you are using Absoft 7.0), Absoft Pro Fortran compiler will open automatically.

(2) Click on Build or in the menu bar click on Tools->Build to build DEF_SIM.exe.

(3) Copy DEF_SIM.exe to the DEFORM3D/V5_0 directory (do not forget to make a backup copy of the original DEF_SIM.exe).

To build DEF_SIM_P4.exe follows these steps:

(1) Double click DEF_SIM_P4_USR.gui ( DEF_SIM_P4_USR_Absoft70.gui if you are using Absoft 7.0), Absoft Pro Fortran compiler will open automatically.

(2) Click on Build or in the menu bar click on Tools->Build to build

DEF_SIM_P4.exe.

(3) Copy DEF_SIM_P4.exe to the DEFORM3D/V5_0 directory (do not forget to make a backup copy of the original DEF_SIM_P4.exe).

具体方法:

对于DEFORM 3D 5.0

如果安装的是Absoft7.0,先检查是否存在DEF_SIM_USR_Absoft70.amk和DEF_SIM_P4_USR_Absoft70.amk这两个文件, 只有这两个文件完好才能正常编译.

1. 双击DEF_SIM_USR_Absoft70.gui打开编译窗口, 单击Build创建DEF_SIM.exe.

2. 双击DEF_SIM_P4_USR_Absoft70.gui打开编译窗口, 单击Build创建DEF_SIM_P4.exe.

3. 这时DEF_SIM_USR_Absoft70.amk和DEF_SIM_P4_USR_Absoft70.amk如果变成了DEF_SIM_USR_Absoft70.amk.bk和DEF_SIM_P4_USR_Absoft70.amk.bk则要将扩展名中的.bk去掉.

4. 双击Compile_DEF_SIM_USR.bat, 完成编译,将DEF_SIM.exe和DEF_SIM_P4.exe拷贝到DEFORM3D/V5_0目录下.

对于DEFORM 3D 6.1

Batch building:

If you can find build_all_def_sim_usr.bat in the current directory, you

can compile the user routine by simply click on that batch file, and copy the DEF_SIM.exe and DEF_SIM_P4.exe and DEF_SIM_P4P.exe to the folder where DEFORM3D installed. If you have Absoft7.0 instead of Absoft9.0, you should click build_all_def_sim_usr_absoft70.bat. If you have Absoft7.5 instead of Absoft9.0, you should click build_all_def_sim_usr_absoft75.bat.

Interactive building:

(1) Double click DEF_SIM_USR.gui, Absoft Pro Fortran compiler will open automatically.

(2) Click on Build or in the menu bar click on Tools->Build to build DEF_SIM.exe.

(3) Copy DEF_SIM.exe to the folder where DEFORM3D installed (do not forget to make a backup copy of the original DEF_SIM.exe).

To build DEF_SIM_P4.exe follows these steps:

(1) Double click DEF_SIM_P4_USR.gui, Absoft Pro Fortran compiler will open automatically.

(2) Click on Build or in the menu bar click on Tools->Build to build DEF_SIM_P4.exe.

(3) Copy DEF_SIM_P4.exe to the folder where DEFORM3D installed (do not forget to make a backup copy of the original DEF_SIM_P4.exe).

To build DEF_SIM_P4P.exe follows these steps:

(1) Double click DEF_SIM_P4P_USR.gui, Absoft Pro Fortran compiler will open automatically.

(2) Click on Build or in the menu bar click on Tools->Build to build DEF_SIM_P4P.exe.

(3) Copy DEF_SIM_P4P.exe to the folder where DEFORM3D installed (do not forget to make a backup copy of the original DEF_SIM_P4P.exe)

具体方法:

如果安装的是Absoft7.0,先检查是否存在build_def_sim_usr_absoft70.amk和build_def_sim_p4_usr_absoft70.amk 这两个文件, 只有这两个文件完好才能正常编译.

1. 双击DEF_SIM_USR_Absoft70.gui打开编译窗口, 单击Build创建DEF_SIM.exe.

2. 双击DEF_SIM_P4_USR_Absoft70.gui打开编译窗口, 单击Build创建DEF_SIM_P4.exe.

3. 双击build_def_sim_usr_absoft70.bat 和build_def_sim_p4p_usr_absoft70.bat完成编译,将DEF_SIM.exe和DEF_SIM_P

4.exe拷贝到DEFORM3D/V6_1目录下.

注意:

1.按上面的方法即可得到自定义变量的每一步的值, 但前提是必须在前处理里面定义变量名称并给变量赋初值, 方法是:

In the Pre-processor, go to Advanced --> Element Data for the deforming object and go to the User tab.Here, you should define the element variables that you are interested in.These variables will then be listed in the Post-processor in the "FEM user elem" section of the State Variable menu.

2.以上方法得到的是单元的值,要得到节点值,方法如下:

The variables in the NODCOM3 common block are at the nodal level.These values only exist if nodal values are output from the simulation.To do this, go to Simulation Controls --> Advanced --> Output Control and set all three variables to "Element + Node" output.

After doing this, EFEPS_NN, TEPS_NN, DAMG_NN, IELMNOD(1), IELMNOD(2)and IELMNOD(3) all have values (IELMNOD(1), IELMNOD(2)and IELMNOD(3) are all set to the positive number 2 since "Element + Node" output was selected).The stress components STS_NN(6) were still zero, however.This is because these nodal stress components only get calculated when the workpiece is Elasto-Plastic (EP).Once I made my workpiece EP, these stress components were nonzero.

二后处理的二次开发

Procedure:

If you can find Compile_DEF_PST_USR.bat in current directory, user routine post processor can be compiled by double click on that batch file.

To generate USR_DEF_PST3.dll follow these steps:

1.Double click USR_DEF_PST3.gui (USR_DEF_PST3_Absoft70.gui for Absoft 7.0 compiler), Absoft Pro Fortran compiler will open automatically.

2.Click on Build or in the menu bar Click “ToolsàBuild”, to build USR_DEF_PST

3.dll.

3.After finishing with the set up of the project, customize pstusr3.f and rebuild USR_DEF_PST3.gui.

4.Copy USR_DEF_PST3.dll to the DEFORM3D/v5_0/Usr directory.

具体方法:

1. 双击USR_DEF_PST3_Absoft70.gui打开编译窗口, 单击Build创建USR_DEF_PST3.dll.

2. 双击Compile_DEF_PST_USR.bat, 完成编译,将USR_DEF_PST

3.dll 拷贝到DEFORM3D/V5_0/USR目录下.

其实, 完成第一步后就直接把USR_DEF_PST3.dll拷贝到DEFORM3D/V5_0/USR目录下, 就可以了.

注意:后处理里面能实现的都可以按前面的方法在usr_upd.f中实现, 而且按前面的方法实现效果要好得多, 原因在于后处理里面的更新是在已经存储的.DB文件里面取数据迚行计算,如果不是每步都存储到DB中了,那得出的结果会很不准确, 而且目前后处理中只能显示100步的结果, 所以建议尽量不在后处理中迚行二次开发.

DEFORM-3D基本操作技巧入门基础

DEFORM-3D基本操作入门 QianRF 前言 有限元法是根据变分原理求解数学物理问题的一种数值计算方法。由于采用类型广泛的边界条件,对工件的几何形状几乎没有什么限制和求解精度高而得到广泛的应用。有限元法在40年代提出,通过不断完善,从起源于结构理论、发展到连续体力学场问题,从静力分析到动力问题、稳定问题和波动问题。随着计算机技术的发展与应用,为解决工程技术问题,提供了极大的方便。 现有的计算方法(解析法、滑移线法、上限法、变形功法等)由于材料的本构关系,工具及工件的形状和摩擦条件等复杂性,难以获得精确的解析解。所以一般采用假设、简化、近似、平面化等处理,结果与实际情况差距较大,因此应用不普及。 有限元数值模拟的目的与意义是为计算变形力、验算工模具强度和制订合理的工艺方案提供依据。通过数值模拟可以获得金属变形的规律,速度场、应力和应变场的分布规律,以及载荷-行程曲线。通过对模拟结果的可视化分析,可以在现有的模具设计上预测金属的流动规律,包括缺陷的产生(如角部充不满、折叠、回流和断裂等)。利用得到的力边界条件对模具进行结构分析,从而改进模具设计,提高模具设计的合理性和模具的使用寿命,减少模具重新试制的次数。通过模具虚拟设计,充分检验模具设计的合理性,减少新产品模具的开发研制时间,对用户需求做出快速响应,提高市场竞争能力。 一、刚(粘)塑性有限元法基本原理 刚(粘)塑性有限元法忽略了金属变形中的弹性效应,依据材料发生塑性变形时应满足的塑性力学基本方程,以速度场为基本量,形成有限元列式。这种方法虽然无法考虑弹性变形问题和残余应力问题,但可使计算程序大大简化。在弹性变形较小甚至可以忽略时,采用这种方法可达到较高的计算效率。 刚塑性有限元法的理论基础是Markov变分原理。根据对体积不变条件处理方法上的不同(如拉格朗日乘子法、罚函数法和体积可压缩法),又可得出不同的有限元列式其中罚函数法应用比较广泛。根据Markov变分原理,采用罚函数法处理,并用八节点六面体单元离散化,则在满足边界条件、协调方程和体积不变条件的许可速度场中 对应于真实速度场的总泛函为: ∏≈∑π(m)=∏(1,2,…,m)(1) 对上式中的泛函求变分,得: ∑=0(2) 采用摄动法将式(2)进行线性化: =+Δun(3)

DEFORM材料中文帮助

材料的属性窗口可以通过按材料属性图标(参见图2.2.1)材料的属性对话框显示在图第2.2.2。为了模拟获得高精确度,其非常重要的是需要理解DEFORM中指定材料的性能。用户在模拟中需要知道指定材料种类的作用。本节描述材料数据,可以指定为一个变形模拟。不同的数据集是: 弹性数据 热数据 塑性数据 扩散数据 再结晶晶粒再生长 硬度估计数据 折断数据 本节讨论的方式来定义每个这些数据集的,哪些类型的模拟每种所需。 图第2.2.2:定义阶段和混合物DEFORM-3D内。 2.2.1阶段和混合物 材料组织可以分为两大类,有规律的和混合。对于大多数应用程序的形成需要低于转换温度变形,属性定义了常规材料或单阶段材料。然而当操作在高温条件下,材料经历相变的地方是重要模型转换,并为每个阶段涉及到定义属性和组这些阶段混合气的材料。例如一个通用的钢存在的奥氏体、贝氏体,马氏体,等等。在热处理上面的每个阶段可以转换到另一个阶段。所以任何材料集团,可以转换到另一个阶段应该被分类为一个阶段材料。混合材料的所有阶段的合金系统和一个对象可以被指定这种混合材料如果体积分数计算数据。

图2.2.3:定义数据弹性材料。 2.2.2弹性数据 弹性数据是弹性材料和弹塑材料的变形分析所必要的。这三个变量用来描述属性的弹性变形是杨氏模量、泊松比和热膨胀。 杨氏模量 杨氏模量用于弹性材料和弹塑性材料屈服点以下。它可以被定义为一个常数或作为温度的函数,密度(用于粉末金属),占主导地位的atom内容(例如,碳含量),或温度的函数和atom内容。泊松比 泊松比之间的比率是轴向和横向疲劳。它是需要弹性和弹塑性材料。它可以被定义为一个常数或作为温度的函数,密度(用于粉末金属),占主导地位的atom内容(例如,碳含量),或温度的函数和atom内容。 热膨胀系数 热膨胀系数定义体积应变变化引起的温度。它可以被定义为一个常数或作为温度的函数。弹性的身体温度变化是定义为节点温度之间的区别和指定的参考温度(REFTMP): εth = α(T - T0) α是热膨胀系数,T0的参考温度和T是物料温度。对弹塑性体热膨胀阻输入在预处理程序是值的平均值热膨胀和有限元计算的瞬时(切)值的平均值。 ?εth = α*?T α*是正切的热膨胀系数,T是物料温度 实验数据的热膨胀和转换工具可用 用户界面现在可以直接进入切线热膨胀系数作为温度的函数,或者用户也可以导入瞬时值可以从实验数据(参见图2.2.4)。在导入该瞬时值,用户需要表明如果这些录音是基于加热或冷却测试和参考温度。这个瞬时热膨胀数据转换为可以平均数据。(也称为割线的,这些数据在要

Deform-3d热处理模拟操作全解

Deform-3d热处理模拟操作 热处理工艺在机械制造中占有十分重要的地位。随着机械制造现代化和热处理质量管理现代化的发展,对热处理工艺提出了更高的要求。热处理工艺过程由于受到加热方式、冷却方式、加热温度、冷却温度、加热时间、冷却时间等影响,金属内部的组织也会发生不同的变化,因此是个十分复杂的过程,同时工艺参数的差异,也会造成热处理加工对象硬度过高过低、硬度不均匀等现象。Deform-3d 软件提供一种热处理模拟模块,可以帮助热处理工艺员,通过有限元数值模拟来获得正确的热处理参数,从而来指导热处理生产实际。减少批量报废的质量事故发生。 热处理模拟,涉及到热应力变形、热扩散和相变等方面,因此计算很复杂,软件采用牛顿迭代法,即牛顿-拉夫逊法进行求解。它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根等。 但由于目前Deform-3d软件的材料库只带有45钢、15NiCr13和GCr15等三种材料模型,而且受到相变模型的局限,因此只能做淬火和渗碳淬火分析,更多分析需要进行二次开发。 本例以45钢热处理淬火工艺的模拟过程为例,通过应用Deform-3d 热处理模块,让读者基本了解热处理工艺过程有限元模拟的基本方法与步骤。 1 、问题设置 点击“文档”(File)或“新问题”(New problem),创建新问题。在弹出的图框中,选择“热处理导向”(heat treatment wizard),见图1。 图1 设置新问题 2、初始化设置 完成问题设置后,进入前处理设置界面。首先修改公英制,将默认的英制

Deform使用简明步骤

Deform—3D是对金属体积成形进行模拟分析的优秀软件,最近几年的工业实践证明了其在数值模拟方面的准确性,为实际生产提供了有效的指导。Deform—3D的高度模块化、友好的操作界面、强大的处理引擎使得它在同类模拟软件中处于领先地位。 以下将分为模拟准备、前处理、求解器、后处理四部分简要介绍Deform—3D的使用步骤。 一、模拟准备 模拟准备阶段主要是为模拟时所用的上模、下模、坯料进行实体造型,装配,并生成数据文件。 实体造型可通过UG、Pro-e、Catia、Solidworks等三维作图软件进行设计,并按照成形要求进行装配,最后将装配体保存为STL格式的文件。该阶段需要注意的是STL格式的文件名不能含有中文字符;另外对于对称坯料,为了节省求解过程的计算时间并在一定程度上提高模拟精度(增加了网格数量),可把装配体剖分为1/4,1/8或更多后再进行保存。二、前处理 前处理是整个数值模拟的重要阶段,整个模拟过程的工艺参数都需要在该阶段设置,各参数设置必须经过合理设置后才能保证模拟过程的高效性和模拟结果的准确性。 首先打开软件,新建(new problem)→选择前处理(Deform-3D preprocessor)→在存放位置(Problem location)选项卡下选择其他(other location)并浏览到想要存放deform模拟文件的文件夹→下步的problem name可任意填写。注意:所有路径不能含有中文字符。 之后会打开新的界面,点击模拟控制(simulation controls)→改变单位(units)为SI,接受 弹出窗口默认值;选中模式(mode)选项卡下热传导(heat transfer)。 导入坯料、模具并设置参数: 导入毛坯: 1、general:通常采用刚塑性模型即毛坯定义为塑性(plastic),之后导入的模具定义为 刚性(rigid);温度(temperature):根据成形要求设定坯料预热温度(温热成形时一定注意);材料(material):点击load选择毛坯材料,若材料库中没有对应的材料可选择牌号相近的。 2、geometry:import geometry from a file:从保存的STL格式文件中找到坯料,导入 后会在左侧窗口显示出预览,然后点击check GEO检查模型,务必保证出现下图椭圆中数值。 3、网格(mesh):合理划分网格对有限元模拟至关重要。网格划分方法分为相对和绝对, 相对(relative)划分时指定网格数量和尺寸比率,网格的大小则由系统自动计算;绝对(absolute)划分时指定最大最小网格尺寸,而网格数量则由系统自动计算。相对法划分网格的步骤通常是,在detailed settings----general中将尺寸比率(size ratio)设置为1→指定网格数量→选中精细内部网格(finer internal mesh)→点击预览表面网格(surface mesh)→查看最小单元尺寸(min element size),通常应使最小网格尺寸小于该次模拟成形工件最小尺寸的1/2,若不满足可适当增加网格数量→点击solid mesh生成内部网格→网格生成完成后再将size ratio改为2或其它。这样划分可保证在模拟开始时网格是均匀的,从而一定程度上提高精度。需要注意的是网格数量要同时

Deform二次开发步骤

Deform 3D二次开发步骤 为了在金属成形工艺模拟过程中进行微观组织演化的定量预测,所使用的模拟软件必须有包含微观组织变化的本构模型和专门的微观组织演化分析模块。当前国际上虽然有多个知名商业软件流行,但是它们都不具备微观组织演化的预测功能。庆幸的是多数商业软件都为二次开发设置了用户子程序功能,通过用户子程序,用户就能根据自己的需要增加自己的微观组织预测功能。 为了使DEFORM3D软件具有微观组织演化预测功能,本研究尝试将包含动态再结晶的热刚—粘塑性材料本构模型植入到DEFORM3D中,并在模拟结果中能够显示晶粒度等用户变量在变形体内的分布。在研究出具体开发步骤前,必须要对Defom中的程序有所深入了解。 一、DEFORM3D二次开发基础理论 1、用户子程序结构 本研究的DEFORM3D二次开发涉及到的子程序有:USRMSH、USRMTR、UFLOW、USRUPD(含USR和CHAZHI)。 (1)可以改变几乎所有变量的子程序(USRMSH)

子程序功能:该子程序包含了有限元计算中所有的全局变量,通过这个用户子程序,可以修改所有这些变量。但这些全局变量的改变将直接影响有限元的计算,处理不当就会使整个程序不能正常进行。 在DEFORM3D子程序功能中,所有的用户变量必须在USRUPD子程序中定义。本文的用户子程序中共定义了18个用户单元变量。各用户变量的含义如列表所示。 该子程序用于某些必要数据的获取和存储流程图如下图所示: (2)流动应力子程序(USRMTR、UFLOW) SUBROUTINE USRMTR(NPTRTN,YS,YPS,FIP,TEPS,EFEPS,TEMP)SUBROUTINE UFLOW(YS,YPS,FIP,TEPS,EFEPS,TEMP)子程序的变量含义:NPTRTN:应力模型编号;YS:流动应力;YPS:流动应力对等效应变的导数;FIP:流动应力对等效应变速率的导数;TEPS:等效应变;EFEPS:等效应变;TEMP:温度。 子程序USRMTR和UFLOW运行时需要输入:应力模型编号、等效应变、等效应变速率、温度。子程序执行完后将输出:流动应力值、流动应力对等效应变的导数,流动应力对等效应变速率的导数。这几个变量可以用用户定义变量来计算。

deform基础

一、刚(粘)塑性有限元法基本原理 刚(粘)塑性有限元法忽略了金属变形中的弹性效应,依据材料发生塑性变形时应满足的塑性力学基本方程,以速度场为基本量,形成有限元列式。这种方法虽然无法考虑弹性变形问题和残余应力问题,但可使计算程序大大简化。在弹性变形较小甚至可以忽略时,采用这种方法可达到较高的计算效率。 刚塑性有限元法的理论基础是Markov变分原理。根据对体积不变条件处理方法上的不同(如拉格朗日乘子法、罚函数法和体积可压缩法),又可得出不同的有限元列式,其中罚函数法应用比较广泛。根据Markov变分原理,采用罚函数法处理,并用八节点六面体单元离散化,则在满足边界条件、协调方程和体积不变条件的许可速度场中 对应于真实速度场的总泛函为: ∏≈∑π(m)=∏(1,2,…,m)(1) 对上式中的泛函求变分,得: ∑=0(2) 采用摄动法将式(2)进行线性化: =+ Δu n(3) 将式(3)代入式(2),并考虑外力、摩擦力在局部坐标系中对总体刚度矩阵和载荷列阵,通过迭代的方法,可以求解变形材料的速度场。 二、Deform-3d基本模拟功能 切削machining(cutting) 成形forming 模具应力分析die stress analysis 滚轧shap and ring rolling 热处理heat treatment 三、Deform-3d基本结构与方法 包括前处理程序(Pre-processor)、模拟程序(simulator)和后处理程序(Post Processor)。首先要在CAD软件(如Pro/E、UG等)中进行实体造型,建立模具和坯料的实体信息并将其转换成相应的数据格式(STL);然后在软件中设定变形过程的相应环境信息,进行网格剖分;再在应用软件上进行数值模拟计算;最后在后处理单元中将计算结果按需要进行输出。 事实上,由于设置了冷成形、工件材料、模具等信息后,环境条件几乎全是默认的。因此只要熟悉了操作步骤,严格按要求操作可以顺利完成预设置工作(pre-processor);设置完成后,通过数据检查(check data)、创建数据库(generate data),将数据保存,然后关闭操作;开启模拟开关(switch simulation)、运行模拟程序(run simulation),进入模拟界面,模拟程序开始自动解算,在模拟解算过程中,可以打开模拟图表(simulation graphics)监视模拟解算进程,并进行图解分析,对变形过程、应力、应变、位移、速度等进行监视。 应用后处理器(post processor),分析演示变形过程,也可以打开动画控制开关(animation control),隐去工(模)具(single object mode),进行动画演示。并同时可以打开概要(summary)和图表(graph),对荷栽、应力、应变、位移和速度等进行详细分析。 四、软件安装 Deform-3d软件的安装,只要按提示操作,可以顺利完成安装。安装完成后,分别打开原始程序文件夹和已经安装好的程序文件夹,在原始文件夹中找到

Deform使用简明步骤

Deform-3D(version6.1)使用步骤 Deform—3D是对金属体积成形进行模拟分析的优秀软件,最近几年的工业实践证明了其在数值模拟方面的准确性,为实际生产提供了有效的指导。Deform—3D的高度模块化、友好的操作界面、强大的处理引擎使得它在同类模拟软件中处于领先地位。 以下将分为模拟准备、前处理、求解器、后处理四部分简要介绍Deform—3D的使用步骤。 一、模拟准备 模拟准备阶段主要是为模拟时所用的上模、下模、坯料进行实体造型,装配,并生成数据文件。 实体造型可通过UG、Pro-e、Catia、Solidworks等三维作图软件进行设计,并按照成形要求进行装配,最后将装配体保存为STL格式的文件。该阶段需要注意的是STL格式的文件名不能含有中文字符;另外对于对称坯料,为了节省求解过程的计算时间并在一定程度上提高模拟精度(增加了网格数量),可把装配体剖分为1/4,1/8或更多后再进行保存。 二、前处理 前处理是整个数值模拟的重要阶段,整个模拟过程的工艺参数都需要在该阶段设置,各参数设置必须经过合理设置后才能保证模拟过程的高效性和模拟结果的准确性。 首先打开软件,新建(new problem)→选择前处理(Deform-3D preprocessor)→在存放位置(Problem location)选项卡下选择其他(other location)并浏览到想要存放deform 模拟文件的文件夹→下步的problem name可任意填写。注意:所有路径不能含有中文字符。 simulation controls)→改变单位(units)为SI,接受 弹出窗口默认值;选中模式(mode)选项卡下热传导(heat transfer)。 导入坯料、模具并设置参数: 导入毛坯: 1、general:通常采用刚塑性模型即毛坯定义为塑性(plastic),之后导入的模具定义为刚性 (rigid);温度(temperature):根据成形要求设定坯料预热温度(温热成形时一定注意); 材料(material):点击load选择毛坯材料,若材料库中没有对应的材料可选择牌号相近的。 2、geometry:importgeometry from a file:从保存的STL格式文件中找到坯料,导入后会在 左侧窗口显示出预览,然后点击check GEO检查模型,务必保证出现下图椭圆中数值。

Deform 3D中文教程

26 本章纲要:8.SPIKE 非等温锻造(完整模型) 8.1 引言8.2 打开旧问题(即已保存问题) 8.3 加载数据库8.4 设置模拟控制8.5 定义平均应变速率8.6 设置边界条件8.7 设定主模的速度8.8 设定对象间的摩擦8.9 保存问题 8.10 写数据库8.11 运行模拟过程8.12 后处理8.13 退出系统. 本章介绍非等温热传导计算问题,学会在同一数据库内连续运行求解不同过程。本章是在第7 章基础上的继续。一些用户希望同一温度问题内能多重操作,在本问题中,第6 章是第一次操作,本章是第二次操作。使用户掌握如何用两种操作运行一个问题。以下步骤可以完成第6 和第7 章的内容。打开DEFORM 3D System系统窗口,单击Pre-Processor 按钮打开窗口。从已有数据库中保存的最后一步开始,继续后面的模拟过程,当Processor 窗口出现后会有以下信息框。要了解世界最大液压机情况请访问https://www.sodocs.net/doc/db16597422.html,.ru/ 27 单击Yes按钮加载数据库的步数,一个有可供选择的步数列表的Select Database Step窗口会弹出(图8.1),从表中选择最后一步并单击OK按钮,从该步开始的有关对象以及所有数据会输入到Pre-Processor。 8.1 - Select Database Step 单击Controls 窗口中的Simulation Controls...按钮,打开Simulation Controls窗口,选择单位制Units 为English英制,并逐次选中Deformation 和Heat Transfer单选钮现在单击Simulation Controls窗口

DEFORM-2D软件的操作与实例演练

实验课程名称:材料成型CAE综合实验 实验项目名称DEFORM-2D软件的操作与实例演练实验成绩 实验者专业班级组别 同组者实验日期 第一部分:实验预习报告(包括实验目的、意义,实验基本原理与方法,主要仪器设备及耗材,实验方案与技术路线等) 一、实验目的 1)了解认识DEFORM软件的窗口界面。 2)了解DEFORM界面中功能键的作用。 3)掌握利用DEFORM有限元建模的基本步骤。 4)利用DEFOR模拟铸造成型过程(包括Pre、Simulator、Post Processer)。 二、实验原理 DEFORM是一套基于有限元的工艺仿真系统,用于分析金属成形及其相关工业的各种成形工艺和热处理工艺。通过在计算机上模拟整个加工过程,帮助工程师和设计人员:设计工具和产品工艺流程,减少昂贵的现场试验成本。提高工模具设计效率,降低生产和材料成本。缩短新产品的研究开发周期。DEFORM-2D(二维)适用于各种常见的UNIX工作站平台(HP,SGI,SUN,DEC,IBM)和Windows-NT微机平台。可以分析平面应变和轴对称等二维模型。它包含了最新的有限元分析技术,既适用于生产设计,又方便科学研究。 三、实验步骤 1.DEFORM前处理过程(Pre Processer) 1)进入DEFORM前处理窗口。 2)了解DEFORM前处理中的常用图标 3)设置模拟控制 4)增加新对象 5)网格生成 6)材料的选择

7)确立边界条件 8)温度设定 9)凸模运动参数的设置 10)模拟控制设定 11)设定对象间的位置关系 12)对象间关系“Inter-Object”的设定 13)生成数据库 14)退出前处理窗口 2.DEFORM求解(Simulator Processer) 3.DEFORM后处理(Post Processer) 1)了解DEFORM后处理中的常用图标。 2)步的选择 3)真实应变 4)金属流线 5)载荷——行程曲线 四、实验任务 已知条件 毛坯尺寸:底面半径60mm,高度200mm 毛坯材料:AISI-1025[1800-2200F(1000-1200℃) 毛坯温度:1200℃ 单元数:1000 模具尺寸:宽度200,高度60 上模压下量100mm,压下速度10mm/s 完成如下操作 (1) 建立DEFORM-2D/Preprocessor圆柱体镦粗模拟分析模型,生成以“姓名拼音-学号”命名的.DB文件,如:金坤操作命名为JinKun-06 (2) 对镦粗过程进行模拟,完成以下操作: 1)测量压下量分别为25mm、50mm、75mm、100mm时毛坯底面半径和最大半径,作出行程-毛坯底面半径、行程-毛坯最大半径变化曲线。 2)输出毛坯等效应变图 3)输出载荷-行程曲线 (3) 对上模压下速度分别为10mm/s、20mm/s、30mm/s、40mm/s进行模拟,完成以下操作:1)测量四种上模压下速度下,毛坯最终成形底面半径和最大半径,作出速度-毛坯底面半径、

deform基本操作

DEFORM-3D基本操作入门QianRF 前言 有限元法是根据变分原理求解数学物理问题的一种数值计算方法。由于采用类型广泛的边界条件,对工件的几何形状几乎没有什么限制和求解精度高而得到广泛的应用。有限元法在40年代提出,通过不断完善,从起源于结构理论、发展到连续体力学场问题,从静力分析到动力问题、稳定问题和波动问题。随着计算机技术的发展与应用,为解决工程技术问题,提供了极大的方便。 现有的计算方法(解析法、滑移线法、上限法、变形功法等)由于材料的本构关系,工具及工件的形状和摩擦条件等复杂性,难以获得精确的解析解。所以一般采用假设、简化、近似、平面化等处理,结果与实际情况差距较大,因此应用不普及。 有限元数值模拟的目的与意义是为计算变形力、验算工模具强度和制订合理的工艺方案提供依据。通过数值模拟可以获得金属变形的规律,速度场、应力和应变场的分布规律,以及载荷-行程曲线。通过对模拟结果的可视化分析,可以在现有的模具设计上预测金属的流动规律,包括缺陷的产生(如角部充不满、折叠、回流和断裂等)。利用得到的力边界条件对模具进行结构分析,从而改进模具设计,提高模具设计的合理性和模具的使用寿命,减少模具重新试制的次数。通过模具虚拟设计,充分检验模具设计的合理性,减少新产品模具的开发研制时间,对用户需求做出快速响应,提高市场竞争能力。 一、刚(粘)塑性有限元法基本原理 刚(粘)塑性有限元法忽略了金属变形中的弹性效应,依据材料发生塑性变形时应满足的塑性力学基本方程,以速度场为基本量,形成有限元列式。这种方法虽然无法考虑弹性变形问题和残余应力问题,但可使计算程序大大简化。在弹性变形较小甚至可以忽略时,采用这种方法可达到较高的计算效率。 刚塑性有限元法的理论基础是Markov变分原理。根据对体积不变条件处理方法上的不同(如拉格朗日乘子法、罚函数法和体积可压缩法),又可得出不同的有限元列式 其中罚函数法应用比较广泛。根据Markov变分原理,采用罚函数法处理,并用八节点六面体单元离散化,则在满足边界条件、协调方程和体积不变条件的许可速度场中 对应于真实速度场的总泛函为: ∏≈∑π(m)=∏(1,2,…,m)(1) 对上式中的泛函求变分,得: ∑=0(2) 采用摄动法将式(2)进行线性化: =+ Δu n(3) 将式(3)代入式(2),并考虑外力、摩擦力在局部坐标系中对总体刚度矩阵和载荷列阵,通过迭代的方法,可以求解变形材料的速度场。 二、Deform-3d基本模拟功能 切削machining(cutting) 成形forming 模具应力分析die stress analysis 滚轧shap and ring rolling 热处理heat treatment 三、Deform-3d 基本结构与方法

DEFORM 切削加工操作教程

操作教程

一、进入Deform-3D界面 进入运行Deform-3D v6.1程序,软件打开软件会自动选择安装时的默认目录,为了防止运算结果混乱不便管理,可单击工具栏中的打开按钮选择新的文件存放路径,如图10: 单击此按钮,选 择新的文件路径 图10 选择新文件路径 二、操作步骤 1、进入前处理操作 在主窗口右侧界面Pre Processor中Machining[Cutting]选项,弹出图11所示对话框,输入问题名称,单击【Next】按钮,进入前处理界面。 2、选择系统单位 进入前处理界面会自动弹出图12所示对话框,要求选择单位制(英制或国际单位制),按需求选择国际单位制(System International),然后单击【Next】按钮,进入下一步。 3、选择切削加工类型 Deform中给我们提供的加工方式有车削加工(Turing)、铣削加工(Milling)、钻

削加工(Boring)、钻孔加工(Dtilling),其中我们模拟的是铣削加工,故选择Milling,然后单击【next】进入下一步,如图13所示。 图11 进入前处理操作 1、选择国际单位制 2、单击【Next】 图12 选择系统单位制

图13 选择切削加工类型 4、设定切削参数 图14所示对话框参数设置,可根据自己的需要改变数值的大小,不过后面选择刀具参数时要考虑这些参数,否则很肯能出现接触错误。该模拟中选择参数如下: 图14 设定切削参数 5、工作环境和接触面属性设置 1、选择铣削加工 2、单击【Next 】 2、单击【Next 】 1、输入各项切削参数

deform材料数据

DEFORM?

材料试验 流动应力Flow Stress Describes a material’s resistance to being deformed or having its shape changed. A measure of the force needed to make the material flow or deform 摩擦Friction 损伤Damage

材料数据与模拟结果 应力Stress z 直接影响成形力Directly affects die loads z 直接影响模具的应力分布Directly affects die stresses z 对流动应力影响不大Little effect on general flow stress 加工硬化Work hardening behavior z 影响金属流动Affects flow behavior z 影响载荷,应力等Also affects loads, stresses, etc.

材料数据与模拟结果 软化Thermal softening behavior z影响金属的流动 Affects flow behavior –特别在热成形中,低温和高温合金Particularly in hot forming, light or high temp alloys –可能对温成形也有影响May have an influence on warm forming z对载荷的影响同应力Same effects on loads as stress

Deform使用简明步骤(精)

Deform-3D(version6.1使用步骤 Deform-3D是对金属体积成形进行模拟分析的优秀软件,最近几年的工业实践证明了其在数值模拟方面的准确性,为实际生产提供了有效的指导。Deform-3D的高度模块化、友好的操作界面、强大的处理引擎使得它在同类模拟软件中处于领先地位。 以下将分为模拟准备、前处理、求解器、后处理四部分简要介绍Deform-3D 的使用步骤。 一、模拟准备 模拟准备阶段主要是为模拟时所用的上模、下模、坯料进行实体造型,装配,并生成数据文件。 实体造型可通过UG、Pro-e、Catia、Solidworks等三维作图软件进行设计,并按照成形要求进行装配,最后将装配体保存为STL格式的文件。该阶段需要注意的是STL格式的文件名不能含有中文字符;另外对于对称坯料,为了节省求解过程的计算时间并在一定程度上提高模拟精度(增加了网格数量,可把装配体剖分为1/4,1/8或更多后再进行保存。 二、前处理 前处理是整个数值模拟的重要阶段,整个模拟过程的工艺参数都需要在该阶段设置,各参数设置必须经过合理设置后才能保证模拟过程的高效性和模拟结果的准确性。 首先打开软件,新建(new problem→选择前处理(Deform-3D preprocessor→在存放位置(Problem location选项卡下选择其他(other location并浏览到想要存放deform 模拟文件的文件夹→下步的problem name可任意填写。注意:所有路径不能含有中文字符。之后会打开新的界面,点击模拟控制(simulation controls→改变单位(units为SI,接受

Deform 二次开发步骤

微观组织模拟:模拟步骤 Deform 3D二次开发步骤 为了在金属成形工艺模拟过程中进行微观组织演化的定量预测,所使用的模拟软件必须有包含微观组织变化的本构模型和专门的微观组织演化分析模块。当前国际上虽然有多个知名商业软件流行,但是它们都不具备微观组织演化的预测功能。庆幸的是多数商业软件都为二次开发设置了用户子程序功能,通过用户子程序,用户就能根据自己的需要增加自己的微观组织预测功能。 为了使DEFORM3D软件具有微观组织演化预测功能,本研究尝试将包含动态再结晶的热刚—粘塑性材料本构模型植入到DEFORM3D中,并在模拟结果中能够显示晶粒度等用户变量在变形体内的分布。在研究出具体开发步骤前,必须要对Defom中的程序有所深入了解。 一、DEFORM3D二次开发基础理论 1、用户子程序结构 本研究的DEFORM3D二次开发涉及到的子程序有:USRMSH、USRMTR、UFLOW、USRUPD(含USR和CHAZHI)。 (1)可以改变几乎所有变量的子程序(USRMSH)

子程序功能:该子程序包含了有限元计算中所有的全局变量,通过这个用户子程序,可以修改所有这些变量。但这些全局变量的改变将直接影响有限元的计算,处理不当就会使整个程序不能正常进行。 在DEFORM3D子程序功能中,所有的用户变量必须在USRUPD子程序中定义。本文的用户子程序中共定义了18个用户单元变量。各用户变量的含义如列表所示。 该子程序用于某些必要数据的获取和存储流程图如下图所示: (2)流动应力子程序(USRMTR、UFLOW) SUBROUTINE USRMTR(NPTRTN,YS,YPS,FIP,TEPS,EFEPS,TEMP)SUBROUTINE UFLOW(YS,YPS,FIP,TEPS,EFEPS,TEMP) 子程序的变量含义:NPTRTN:应力模型编号;YS:流动应力;YPS:流动应力对等效应变的导数;FIP:流动应力对等效应变速率的导数;TEPS:等效应变;EFEPS:等效应变;TEMP:温度。 子程序USRMTR和UFLOW运行时需要输入:应力模型编号、等效应变、等效应变速率、温度。子程序执行完后将输出:流动应力值、流动应力对等效应变的导数,流动应力对等效应变速率的导数。这几个变量可以用用户定义变量来计

DEFORM-使用手册Word版

DEFORM 2D-HT 使用手册 1.几何操作-XYR格式 1.1创建新作业 1.2设置模拟控制 1.3创建新对象 1.4图视几何对象 1.5保存作业 1.6退出DEFORM TM-2D 本章使用的图标: 对象几何尺寸定义 几何尺寸检查 动态放大 窗口放大 动态平移 保存文件

1.几何输入操作-XYR格式 1.1创建新作业 注意:正确设置文档(文件夹)结构有利于文件调用,因而,用户最好事先建立作业目录路径。例如,设定主目录LABS,而在LABS路径下建立目录LAB1、LAB2、LAB3等等。 启动DEFORM程序。如果是UNIX平台的版本,一开始键入DEFORM2。如果是PC平台的版本,在DEFORM目录下单击DEFORM2D。 DEFORM 的主系统窗口如图1-1所示: 图1.1 DEFORM TM 2D系统窗口 单击Create a New Directory图标,创建新路径(MESH),完成后单击OK按钮。 双击目录MESH打开该目录。在文本框Problem ID中设置Problem ID(作业ID)为MESH。完成以上过程后进入Pre-Processor(前处理)来定义模拟数据。现在单击Pre-Processor 图标,DEFORM TM 2D的前处理窗口如图1.2所示,该窗口包括TOOLS,CONTROL,MESSAGE 和DISPLAY窗口。

图1.2 DEFORM TM 2D前处理窗口 1.2设置模拟控制参数 单击CONTROL窗口中的Simulation Controls按钮打开SIMULATION CONTROLS窗口(如图1.3)。在文本框Simulation Title中键入模式名称为MESH,在本模拟过程中,我们使用SIMNLATION CONTROLS窗口的缺省设置。(单位UNITS:英制English,变形Deformation:为ON,对象几何类型:轴对称Axisymmetric)。完成后单击OK按钮。 图1.3 模拟控制参数定义窗口 1.3创建新对象 单击CONTROL窗口中的Object按钮,打开对象OBJECTS窗口(图1.4)。

冲压半片deform模拟教程

冲压半片DEFORM模拟教程 1.创建新目录 打开运行DEFORM-3D软件,在较大空间的硬盘区域创建工作目录punch forming. 本例创建的文件夹路径为:F\punch forming. 更改后窗口显示如图1所示。 图1 DEFORM软件的主窗口 创建一个新的模拟项目应按以下步骤: (1)在主窗口左上端,点击按钮,进入项目类型对话框,用鼠标单击 【Deform-3D preprocessor】,如图2所示。 (2)接着单击【next】按钮,弹出如图3所示对话框,单击【Under current selected directory】。 (3)接着单击【next】按钮,弹出如图4所示的对话框,再此输入punch forming, 最后单击【Finish】按钮。 完成以上三个步骤后系统自动进入DEFORM-3D前处理窗口。

图2 项目类型对话框 图3 项目存储路径

图4 项目设定对话框 2.输入对象数据 定义对象信息,DERORM软件前处理会在物体数中自动创建默认名为Workpiece的对象,通过按钮加入其它对象进入物体树。一般来讲,输入模拟的workpiece对象为变形体,应该在【General】对话框中,设定对象为plastic (塑性体),如图5。

图5 对象概要信息设定对话框 输入物体几何形状,点击几何形状按钮,弹出一对话框,接着点击输入按钮,找到piliao.stl文件(stl文件是在三维建模软件中保存的文件),单击piliao.stl文件,再单击按钮,则piliao对象就会显示在前处理窗口中,如图6所示。

图6 对象的显示 接下来,对对象进行网格划分,点击物体信息栏中的按钮,出现如图7所示对话框,在【Number of Elements】栏中,滑动控制块到15万网格左右,点击【Preview】按钮,预览网格划分的是否合理,如果网格划分达到要求则单击【Generate】按钮,生成对象网格划分三维图,如图8所示。 图7 划分网格对话框

Deform使用简明步骤

Deform-3D()使用步骤 Deform—3D是对金属体积成形进行模拟分析的优秀软件,最近几年的工业实践证明了其在数值模拟方面的准确性,为实际生产提供了有效的指导。Deform—3D的高度模块化、友好的操作界面、强大的处理引擎使得它在同类模拟软件中处于领先地位。 以下将分为模拟准备、前处理、求解器、后处理四部分简要介绍Deform—3D的使用步骤。 一、模拟准备 模拟准备阶段主要是为模拟时所用的上模、下模、坯料进行实体造型,装配,并生成数据文件。 实体造型可通过UG、Pro-e、Catia、Solidworks等三维作图软件进行设计,并按照成形要求进行装配,最后将装配体保存为STL格式的文件。该阶段需要注意的是STL格式的文件名不能含有中文字符;另外对于对称坯料,为了节省求解过程的计算时间并在一定程度上提高模拟精度(增加了网格数量),可把装配体剖分为1/4,1/8或更多后再进行保存。二、前处理 前处理是整个数值模拟的重要阶段,整个模拟过程的工艺参数都需要在该阶段设置,各参数设置必须经过合理设置后才能保证模拟过程的高效性和模拟结果的准确性。 首先打开软件,新建(new problem)→选择前处理(Deform-3D preprocessor)→在存放位置(Problem location)选项卡下选择其他(other location)并浏览到想要存放deform模拟文件的文件夹→下步的problem name可任意填写。注意:所有路径不能含有中文字符。 之后会打开新的界面,点击模拟控制(simulation controls)→改变单位(units)为SI,接受 弹出窗口默认值;选中模式(mode)选项卡下热传导(heat transfer)。 导入坯料、模具并设置参数: 导入毛坯: 1、general:通常采用刚塑性模型即毛坯定义为塑性(plastic),之后导入的模具定义为 刚性(rigid);温度(temperature):根据成形要求设定坯料预热温度(温热成形时一定注意);材料(material):点击load选择毛坯材料,若材料库中没有对应的材料可选择牌号相近的。 2、geometry:import geometry from a file:从保存的STL格式文件中找到坯料,导入 后会在左侧窗口显示出预览,然后点击check GEO检查模型,务必保证出现下图椭圆中数值。

deform操作入门

DEFORM-3D基本操作入门 前言 有限元法是根据变分原理求解数学物理问题的一种数值计算方法。由于采用类型广泛的边界条件,对工件的几何形状几乎没有什么限制和求解精度高而得到广泛的应用。有限元法在40年代提出,通过不断完善,从起源于结构理论、发展到连续体力学场问题,从静力分析到动力问题、稳定问题和波动问题。随着计算机技术的发展与应用,为解决工程技术问题,提供了极大的方便。 现有的计算方法(解析法、滑移线法、上限法、变形功法等)由于材料的本构关系,工具及工件的形状和摩擦条件等复杂性,难以获得精确的解析解。所以一般采用假设、简化、近似、平面化等处理,结果与实际情况差距较大,因此应用不普及。 有限元数值模拟的目的与意义是为计算变形力、验算工模具强度和制订合理的工艺方案提供依据。通过数值模拟可以获得金属变形的规律,速度场、应力和应变场的分布规律,以及载荷-行程曲线。通过对模拟结果的可视化分析,可以在现有的模具设计上预测金属的流动规律,包括缺陷的产生(如角部充不满、折叠、回流和断裂等)。利用得到的力边界条件对模具进行结构分析,从而改进模具设计,提高模具设计的合理性和模具的使用寿命,减少模具重新试制的次数。通过模具虚拟设计,充分检验模具设计的合理性,减少新产品模具的开发研制时间,对用户需求做出快速响应,提高市场竞争能力。 一、刚(粘)塑性有限元法基本原理 刚(粘)塑性有限元法忽略了金属变形中的弹性效应,依据材料发生塑性变形时应满足的塑性力学基本方程,以速度场为基本量,形成有限元列式。这种方法虽然无法考虑弹性变形问题和残余应力问题,但可使计算程序大大简化。在弹性变形较小甚至可以忽略时,采用这种方法可达到较高的计算效率。 刚塑性有限元法的理论基础是Markov变分原理。根据对体积不变条件处理方法上的不同(如拉格朗日乘子法、罚函数法和体积可压缩法),又可得出不同的有限元列式 其中罚函数法应用比较广泛。根据Markov变分原理,采用罚函数法处理,并用八节点六面体单元离散化,则在满足边界条件、协调方程和体积不变条件的许可速度场中 对应于真实速度场的总泛函为: ∏≈∑π(m)=∏(1,2,…,m)(1) 对上式中的泛函求变分,得: ∑=0(2) 采用摄动法将式(2)进行线性化: =+ Δu n(3) 将式(3)代入式(2),并考虑外力、摩擦力在局部坐标系中对总体刚度矩阵和载荷列阵,通过迭代的方法,可以求解变形材料的速度场。 二、Deform-3d基本模拟功能 切削machining(cutting) 成形forming 模具应力分析die stress analysis 滚轧shap and ring rolling

deform操作流程

综合性实验实验报告Dform-2D仿真模拟 学校:郑州航空工业管理学院 院系:机电工程学院 专业:材料成型及控制工程 学号: 姓名: 指导教师:

一、实验名称:Deform2D仿真模拟 二、实验目的 1、了解认识DEFORM软件的窗口界面。 2、了解DEFORM界面中功能键的作用。 3、掌握利用DEFORM有限元建模的基本步骤。 利用DEFOR模拟锻造成型过程。 三、实验原理 DEFORM是一套基于有限元的工艺仿真系统,用于分析金属成形及其相关工业的各种成形工艺和热处理工艺。通过在计算机上模拟整个加工过程,帮助工程师和设计人员:设计工具和产品工艺流程,减少昂贵的现场试验成本。提高工模具设计效率,降低生产和材料成本。缩短新产品的研究开发周期。DEFORM-2D(二维)适用于各种常见的UNIX工作站平台(HP,SGI,SUN,DEC,IBM)和Windows-NT微机平台。可以分析平面应变和轴对称等二维模型。 它包含了最新的有限元分析技术,既适用于生产设计,又方便科学研究。 四、实验步骤 1、DEFORM前处理过程(Pre Processer) 1)进入DEFORM前处理窗口。 2)了解DEFORM前处理中的常用图标 3)设置模拟控制 4)增加新对象

5)网格生成 6)材料的选择 7)确立边界条件 8)温度设定 9)凸模运动参数的设置 10)模拟控制设定 11)设定对象间的位置关系 12)对象间关系“Inter-Object”的设定 13)生成数据库 14)退出前处理窗口 2、DEFORM求解(Simulator Processer) 3、DEFORM后处理(Post Processer) 1)了解DEFORM后处理中的常用图标。 2)步的选择 3)真实应变 4)金属流线 5)载荷——行程曲线 五、实验任务 已知条件 毛坯尺寸:底面半径10mm,高度20mm 毛坯材料:AISI-1025[1800-2200F(1000-1200℃)毛坯温度:1200℃

相关主题