搜档网
当前位置:搜档网 › 第六章 5 宇宙航行

第六章 5 宇宙航行

第六章  5 宇宙航行
第六章  5 宇宙航行

[课时作业]

一、单项选择题

1.地球上相距很远的两位观察者,都发现自己的正上方有一颗人造卫星,相对自己静止不动,则这两位观察者的位置以及两颗人造卫星到地球中心的距离可能是( )

A .一人在南极,一人在北极,两卫星到地球中心的距离一定相等

B .一人在南极,一人在北极,两卫星到地球中心的距离可以不等,但应成整数倍

C .两人都在赤道上,两卫星到地球中心的距离一定相等

D .两人都在赤道上,两卫星到地球中心的距离可以不等,但应成整数倍

解析:观察者看到的都是同步卫星,卫星在赤道上空,到地心的距离相等.

答案:C

2.宇航员在月球上做自由落体实验,将某物体由距月球表面高h 处释放,经时间t 后落到月球表面(设月球半径为R ).据上述信息推断,飞船在月球表面附近绕月球做匀速圆周运动所必须具有的速率为( ) A.2Rh t

B.2Rh t

C.Rh t

D.Rh 2t

解析:设月球表面的重力加速度为g ′,由物体“自由落体”可得h =12

g ′t 2,飞船在月球表面附近做匀速圆周运动可得G Mm R 2=m v 2R ,在月球表面附近mg ′=GMm R 2,联立得v =2Rh t

,故B 正确.

答案:B

3.假设某行星的质量与地球质量相等,半径为地球半径的4倍,要从该行星上发射一颗绕它自身运动的卫星,那么它的“第一宇宙速度”(环绕速度)大小应为地球上的第一宇宙速度的( )

A. 2 倍

B.22

C.12

D .2倍 解析:由G Mm R 2=m v 2R

可得v = GM R ,所以v ′v = M ′R MR ′= 1×11×4=12

. 答案:C

4.星球上的物体脱离星球引力所需的最小速度称为第二宇宙速度.星球的第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2=2v 1.已知某星球的半径为r ,它表面的重力加速度为地球

表面重力加速度g 的16

.不计其他星球的影响,则该星球的第二宇宙速度为( ) A.gr B. 16gr C. 13gr D.13

gr 解析:在星球表面附近,有m ·16g =m v 12r

,所以该星球的第一宇宙速度v 1=16gr .又v 2=2v 1,得v 2=

13

gr ,故选项C 正确. 答案:C 5.(2016·高考天津卷)我国即将发射“天宫二号”空间实验室,之后发射“神舟十一号”飞船与“天宫二号”对接.假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是( )

A .使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接

B .使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接

C .飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接

D .飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接

解析:飞船在同一轨道上加速追赶空间实验室时,速度增大,所需向心力大于万有引力,飞船将做离心运动,不能实现与空间实验室的对接,选项A 错误;同理,空间实验室在同一轨道上减速等待飞船时,速度减小,所需向心力小于万有引力,空间实验室做近心运动,也不能实现对接,选项B 错误;当飞船在比空间实验室半径小的轨道上加速时,飞船做离心运动,逐渐靠近空间实验室,可实现对接,选项C 正确;当飞船在比空间实验室半径小的轨道上减速时,飞船将做近心运动,远离空间实验室,不能实现对接,选项D 错误. 答案:C

6.已知地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍,则航天器在火星表面附近绕火星做匀速圆周运动的速率约为( )

A .3.5 km/s

B .5.0 km/s

C .17.7 km/s

D .35.2 km/s

解析:航天器在行星表面附近做圆周运动所需的向心力是由万有引力提供的,由G Mm R 2=m v 2R

知v =GM R .当航天器在地球表面附近绕地球做圆周运动时有v 地=7.9 km/s ,v 火v 地=GM 火R 火GM 地

R 地

=M火

M地

·

R地

R火

5

5,故v火=

5

5

v地=

5

5×7.9 km/s≈3.5 km/s,则A正确.

答案:A

二、多项选择题

7.“空间站”是科学家进行天文探测和科学试验的特殊而又重要的场所.假设目前由美国等国家研制的“空间站”正在地球赤道平面内的圆周轨道上运行,其离地高度为同步卫星离地高度的十分之一,且运行方向与地球自转方向一致.下面的说法正确的有()

A.运行的加速度一定等于其所在高度处的重力加速度

B.运行的速度等于同步卫星运行速度的10倍

C.站在地球赤道上的人观察到它向东运动

D.在“空间站”工作的宇航员因受到平衡力而在其中悬浮或静止

解析:因为万有引力充当向心力,设空间站所在处的重力加速度为g′、运行的加速度为a,根据向心力公式mg′=ma,A正确;空间站离地高度为同步卫星离地高度的十分之一,但

不知离地高度与地球半径R的关系,由v=

GM

R+H

可知,B错误;地球表面上的人转动的

线速度没有空间站转动的线速度大,站在地球赤道上的人观察到它向东运动,C正确;在“空间站”工作的宇航员受力不平衡,D错误.

答案:AC

8.同步卫星在赤道上空同步轨道上定位以后,由于受到太阳、月球

及其他天体的引力作用影响,会产生漂移运动而偏离原来的位置,

若偏离达到一定程度,就要发动卫星上的小发动机进行修正.如图

所示,A为离地面36 000 km的同步轨道,B和C为两个已经偏离轨道但仍在赤道平面内运行的同步卫星,要使它们回到同步轨道上应()

A.开动B的小发动机向前喷气,使B适当减速

B.开动B的小发动机向后喷气,使B适当加速

C.开动C的小发动机向前喷气,使C适当减速

D.开动C的小发动机向后喷气,使C适当加速

解析:当卫星速度突然变大时,由于万有引力不足以提供向心力,卫星将做离心运动而使运动半径变大,半径变大过程中速度又变小,当在半径较大的轨道上万有引力又恰好等于向心力时,卫星就能以较小的速度在较大的轨道上做匀速圆周运动,反之当卫星速度突然变小时,将由于万有引力大于向心力使卫星做近心运动而半径变小,最后在半径较小轨道上以较大速度做匀速圆周运动,因此题中两卫星轨道修正办法是使B减速而使C加速,故A、D正确.答案:AD

9.随着世界航空事业的发展,深太空探测已逐渐成为各国关注的热点.假设深太空中有一

颗外星球,质量是地球质量的2倍,半径是地球半径的12

,则下述判断正确的有( ) A .在地面上所受重力为G 的物体,在该外星球表面上所受重力变为8G

B .该外星球上第一宇宙速度是地球上第一宇宙速度的2倍

C .该外星球的同步卫星周期一定小于地球同步卫星周期

D .该外星球上从某高处自由落地时间是地面上同一高处自由落地时间的一半

解析:根据G Mm R 2=mg ,得g ∝M R 2,可知外星球和地球表面的重力加速度之比为g 1g 2=M 1R 22

M 2R 12

=8,选项A 正确;根据h =12gt 2得h 不变时,t ∝ 1g ,选项D 错误;根据mg =m v 2R

得第一宇宙速度v =gR ,知选项B 正确;同步卫星的周期等于星球的自转周期,而两星球的自转周期关系未知,故无法比较同步卫星的周期,选项C 错误.

答案:AB

10.继我国“嫦娥”一号卫星精准撞击月球后,日本“月亮

女神号”探月卫星也再次成功撞击月球.这是人类探索宇

宙奥秘,实现登月梦想过程中的又一重大事件.如图所示

是“月亮女神号”卫星撞月的模拟图,卫星在控制点开始

进入撞月轨道.假定卫星进入撞月轨道之前绕月球做匀速圆周运动,已知运动的半径为R ,运动的周期为T ,引力常量为G .以下说法正确的是( )

A .由题给的信息可求出月球的质量

B .由题给的信息可求出月球对“月亮女神号”卫星的引力

C .“月亮女神号”卫星在控制点应减速

D .“月亮女神号”卫星在地面的发射速度应大于11.2 km/s

解析:由G Mm R 2=m 4π2T 2R 可求得月球的质量M =4π2R 3GT 2

,选项A 正确;因卫星的质量未知,所以不能求得月球对卫星的引力,选项B 错误;卫星在控制点减速,卫星做向心运动,便可进入撞月轨道,选项C 正确;当卫星在地面的发射速度应大于11.2 km/s 时,就会脱离地球的束缚,选项D 错误.

答案:AC

三、非选择题

11.某人在某星球上做实验,在星球表面水平放一个长木板,在长木板上放一个木块,木板与木块之间的动摩擦因数为μ,现用一个弹簧测力计拉木块.当弹簧测力计示数为F 时,经计算发现木块的加速度为a ,木块质量为m .若该星球的半径为R ,则在该星球上发射卫星的第一宇宙速度是多少?

解析:设该星球表面重力加速度为g ′.在木板上拉木块时,由牛顿第二定律有

F -μmg ′=ma ,解得g ′=F -ma μm

. 人造卫星的向心力由重力提供,即mg ′=m v 2R

, 所以卫星的第一宇宙速度为v =

g ′R = F -ma μm

·R . 答案: F -ma μm ·R

12.如图所示,A 是地球的同步卫星,另一卫星B 的圆形轨道位于赤道平

面内,离地面的高度为h .已知地球半径为R ,地球自转角速度为ω0,地球

表面的重力加速度为g ,O 为地球中心.

(1)求卫星B 的运行周期;

(2)如果卫星B 绕行方向与地球自转方向相同,某时刻A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多少时间,它们再一次相距最近?

解析:(1)由万有引力定律和向心力公式得

G Mm (R +h )2

=m 4π2

T B 2(R +h ). 又G Mm R 2=mg ,故T B =2π(R +h )3gR 2

. (2)由题意得(ωB -ω0)t =2π.又ωB =

gR 2

(R +h )3,故t =2πgR 2

(R +h )3-ω0. 答案:(1)2π (R +h )3

gR 2 (2)2πgR 2

(R +h )3-ω0

高中物理_宇宙航行教学设计学情分析教材分析课后反思

6.5 《宇宙航行》教学设计 --------- 【设计思想】 宇宙航行不但介绍了人造卫星中一些基本理论,更是在其中渗透了很多研究实际物理问题的物理方法。因此,本节课是“万有引力定律与航天”中的重点内容,是学生进一步学习研究天体物理问题的理论基础。另外,学生通过对人造卫星、宇宙速度的了解,也将潜移默化地产生对航天科学的热爱,增强民族自信心和自豪感。 学生已学过平抛运动、匀速圆周运动、万有引力定律等基本理论,具备了解决问题的基本工具。 本节重点讲述了人造卫星的发射原理,推导了第一宇宙速度,并介绍了第二、第三宇宙速度。人造卫星是万有引力定律在天文学上应用的一个实例,是人类征服自然的见证,体现了知识的力量,是学生学习了解现代科技知识的一个极好素材。 本节课的难点在于对人造卫星原理的理解,因此教学设计上采用理论探究法,在设计中突出发挥学生的主体作用,课堂中通过设疑→思考→启发→引导这样一条主线,激发鼓励学生的大胆思考、积极参与,让学生通过自己的分析研究来掌握获取相关的知识和方法。 【学情分析】 万有引力定律、圆周运动、天体运动都已经讲过,从知识上讲学生运用牛顿第二定律直接推导出卫星的速度并不是一件困难的事情.或许学生对天体运动的知识储备不足,猜想可能缺乏科学性,语言表达也许欠妥,但只要学习始终参与到学习情境中,激活思维,大胆猜想,敢于表达,学生就能得到发展和提高. 【教学目标】 (一)知识与技能 1.了解牛顿关于人造地球卫星的最初构想。 2.会解决涉及人造地球卫星运动的较简单的问题 3.知道三个宇宙速度的含义和数值,会推导第一宇宙速度。 4.通过实例,了解人类对太空的探索历程,感受人类对客观世界不断探究的精神和情感。 (二)过程与方法 1.在学习牛顿对卫星发射的思考过程的同时,培养学生科学探索能力;培养学生在处理实际问题时,如何构建物理模型的能力。 2.通过对卫星运行的线速度与轨道半径的关系的讨论,通过对第一宇宙速度的计算和理解,培养学生探究问题的能力,应用所学物理知识解决问题的能力,归纳结论的能力。 (三)情感、态度与价值观 1.通过展示人类在宇宙航行领域中的伟大成就,激发起学生对科学探究的兴趣,激发学生学习物理的热情。 2.通过介绍我国在航天方面的成就,激发学生的爱国热情,增强民族自信心和自豪感。 3.感知人类探索宇宙的梦想,促使学生树立献身科学的人生观和价值观。

2019-2020学年高中物理第六章万有引力与航天第5节宇宙航行教案新人教版必修2.doc

2019-2020学年高中物理第六章万有引力与航天第5节宇宙航行教案 新人教版必修2 三维目标 知识与技能 1.了解人造卫星的有关知识; 2.知道三个宇宙速度的含义,会推导第一宇宙速度。 过程与方法 通过用万有引力定律推导第一宇宙速度,培养学生运用知识解决问题的能力。 情感、态度与价值观 1.通过介绍我国在卫星发射方面的情况,激发学生的爱国热情; 2.感知人类探索宇宙的梦想.促使学生树立献身科学的人生价值观。 教学重点 第一宇宙速度的推导。 教学难点 运行速率与轨道半径之间对应的关系。 教学方法 探究、讲授、讨论、练习。 教具准备 多媒体课件 教学过程 [新课导入] 1957年前苏联发射了第一颗人造地球卫星,开创了人类航天时代的新纪元。我国在70年代发射第一颗卫星以来,相继发射了多颗不同种类的卫星,掌握了卫星回收技术和“一箭多星”技术,1999年发射了“神舟”号试验飞船。 随着现代科学技术的发展,我们对人造卫星已有所了解,那么地面上的物体在什么条件下才能成为人造卫星呢?人造卫星的轨道半径和它的运动速率之间有什么关系呢?这节课,我们要学习有关人造地球卫星的知识。 [新课教学] 一、人造地球卫星 1.牛顿的设想 在高山上用不同的水平初速度抛出一个物体,不计空气阻力,它们的落地点相同吗? 它们的落地点不同,速度越大,落地点离山脚越远。因为在同一座高山上抛出,它们在空中运动的时间相同,速度大的水平位移大,所以落地点也较远。 假设被抛出物体的速度足够大,物体的运动情形又如何呢? 如果地面上空有一个相对于地面静止的物体,它只受重力的作用, 那么它就做自由落体运动,如果物体在空中具有一定的初速度,且初速 度的方向与重力的方向垂直,那么它将做平抛运动,牛顿曾设想过:从 高山上用不同的水平速度抛出物体,速度一次比一次大,落地点也一次 比一次离山脚远,如果没有空气阻力,当速度足够大时,物体就永远不会落到地面上来,它将围绕地球旋转,成为一颗绕地球运动的人造地球卫星,简称人造卫星。 2.人造地球卫星 (1)人造地球卫星

2020学年高中物理 第六章 第5节 宇宙航行课时作业 2

第五节 宇宙航行 1.第一宇宙速度是指卫星在____________绕地球做匀速圆周运动的速度,也是绕地球做 匀速圆周运动的____________速度.第一宇宙速度也是将卫星发射出去使其绕地球做圆 周运动所需要的________发射速度,其大小为________. 2.第二宇宙速度是指将卫星发射出去使其克服____________,永远离开地球,即挣脱地 球的________束缚所需要的最小发射速度,其大小为________. 3.第三宇宙速度是指使发射出去的卫星挣脱太阳________的束缚,飞到____________ 外所需要的最小发射速度,其大小为________. 4.人造地球卫星绕地球做圆周运动,其所受地球对它的______提供它做圆周运动的向心 力,则有:G Mm r 2=__________=________=________,由此可得v =______,ω= ________,T =________. 5.人造地球卫星绕地球做匀速圆周运动,其环绕速度可以是下列的哪些数据( ) A .一定等于7.9 km /s B .等于或小于7.9 km /s C .一定大于7.9 km /s D .介于7.9 km /s ~11.2 km /s 6.关于第一宇宙速度,以下叙述正确的是( ) A .它是人造地球卫星绕地球飞行的最小速度 B .它是近地圆轨道上人造卫星运行的速度 C .它是使卫星进入近地圆形轨道的最小发射速度 D .它是人造卫星发射时的最大速度 7.假如一做圆周运动的人造地球卫星的轨道半径增加到原来的2倍,且仍做圆周运动, 则下列说法正确的是( ) ①根据公式v =ωr 可知卫星运动的线速度将增大到原来的2倍 ②根据公式F =mv 2r 可知 卫星所需的向心力将减小到原来的12 ③根据公式F =GMm r 2,可知地球提供的向心力将 减小到原来的14 ④根据上述②和③给出的公式,可知卫星运行的线速度将减小到原来的 A .①③ B .②③ C .②④ D .③④ 【概念规律练】 知识点一 第一宇宙速度 1.下列表述正确的是( ) A .第一宇宙速度又叫环绕速度 B .第一宇宙速度又叫脱离速度 C .第一宇宙速度跟地球的质量无关 D .第一宇宙速度跟地球的半径无关 2.恒星演化发展到一定阶段,可能成为恒星世界的“侏儒”——中子星.中子星的半径 较小,一般在7~20 km ,但它的密度大得惊人.若某中子星的半径为10 km ,密度为 1.2×1017 kg /m 3,那么该中子星上的第一宇宙速度约为( )

《宇宙航行》名师教案

§6.5 宇宙航行 山西省大同市广灵县第五中学张泽

2. 两大模型: a. 绕心天体绕中心天体 n F F =,得到r T m r m r m ma r Mm G n 22 2224πων==== b. 地面附近物体 G F =,得到mg r Mm G =2 二、情景导入 探索宇宙的奥秘,奔向广阔而遥远的太空,是人类自古以来的梦想。下图展示的是迄今为止,世界各国发射的各种卫星。 思考:为什么卫星能围绕地球运行?卫星在什么条件下能挣脱地球的束缚? 三、进行新课 (一)宇宙速度 组织学生阅读教材“宇宙速度”,然后小组讨论,回答问题。 1. 简述牛顿关于人造地球卫星的思考和设想,体会逻辑推理与合理外推的魅力。 2. 用已有的物理学知识对该设想进行论证。 3. 什么是第一宇宙速度?有哪些意义? 当卫星近地环绕时,可认为轨道半径r 等于地球半径,将 r=6400km ,G=6.67×10-11Nm 2/kg 2,M=6.0×1024kg 代入,计算v 的值。 结合以下两方面,理解第一宇宙速度的意义: A. 牛顿设想,发射速度决定落点远近; (优教提示:请打开素材“动画演示:牛顿的抛体运动”) B. 绕地做圆周运动时,由 GM v r = 得,轨道半径越大,速度越小。 【思考】人造卫星的轨道半径越大,其运行线速度越小,是不是说人造,卫星发射到离地面越高的轨道就越容 认真观看PPT 阅读教材,思考、讨论并回答问题。 1.设想在高山上水平抛出一个物体,初速度越大,落点就越远;可以想象当初速度足够大时,这个物体将不会落到地面,成为和月球一样的地球卫星。 2.该设想涉及两个物理知识点,首先是平抛运动,当物体的高度一定时,它运动 的时间就一定; 这样它的水平初速度越 激发学生学习的兴趣。 训练学生的自主探究能力,同时让学习感受逻辑推理及合理外推的思维方法。

高中物理_6.5宇宙航行教学设计学情分析教材分析课后反思

《第五节宇宙航行》教学设计 一、教学内容 本节课的内容是人教版必修2第六章《万有引力与航天》的第五节《宇宙航行》。主要内容是利用万有引力定律计算宇宙速度,了解人类的航天历程。 二、学生分析 学生已经学习了万有引力的定律,并能初步利用万有引力定律的公式求引力或一些速度,但学生的推理和运算能力较差,加上本章书的公式运用较为灵活,故学生对此有一定的畏难心理。 三、设计思想 针对本节课和学生的特点,本节课采用的模式可以用下图表示: 本课的主要设计思想是采用信息技术网络平台设计各种交互性强,能够激发学生兴趣的主题资源,其中包括主题导入、同步练习(其中设有交互性很强的习题)、实战演练(其中设有能及时对学生的学习情况进行反馈的小测,并能对学生进行有效的评价和建议)、课外拓展等。并采用学生交流互动为主导,教师作为学习的辅助者的课堂教学模式。希望能借此调动学生自主学习探究的主观能动性,从而提高学生的科学素养和探究精神。 四、教学目标 (一)知识和能力目标 1.了解人造地球卫星的有关知识和航天发展史。 2.知道三个宇宙速度的含义和数值,会推导第一宇宙速度。 3.理解卫星的线速度、角速度、周期与轨道半径的关系。

(二)过程与方法目标 1.在学习牛顿对卫星发射的思考过程的同时,培养学生科学探索能力;培养学生在处理实际问题时,如何构建物理模型的能力。 2.通过对卫星运行的线速度、角速度、周期与轨道半径的关系的讨论,培养学生运用知识分析解决实际问题的能力。 (三)情感态度与价值观目标 1.通过展示人类在宇宙航行领域中的伟大成就,激发学生学习物理的热情。 2.通过介绍我国在航天方面的成就,激发学生的爱国热情,增强民族自信心和自豪感。3.感知人类探索宇宙的梦想,促使学生树立献身科学的人生观和价值观。 五、教学重点 1.第一宇宙速度的推导。 2.卫星运行的线速度、角速度、周期与轨道半径的关系。 六、教学难点 卫星的发射速度与运行速度的关系。 七、教学过程:

高中物理第六章万有引力与航天第5节宇宙航行教案

5.宇宙航行 教学目标 知识与技能 1.了解人造卫星的有关知识; 2.知道三个宇宙速度的含义,会推导第一宇宙速度。 过程与方法 通过用万有引力定律推导第一宇宙速度,培养学生运用知识解决问题的能力。 情感、态度与价值观 1.通过介绍我国在卫星发射方面的情况,激发学生的爱国热情; 2.感知人类探索宇宙的梦想.促使学生树立献身科学的人生价值观。 教学重点 第一宇宙速度的推导。 教学难点 运行速率与轨道半径之间对应的关系。 教学方法 探究、讲授、讨论、练习。 教具准备 多媒体课件 教学过程 [新课导入] 1957年前苏联发射了第一颗人造地球卫星,开创了人类航天时代的新纪元。我国在70年代发射第一颗卫星以来,相继发射了多颗不同种类的卫星,掌握了卫星回收技术和“一箭多星”技术,1999年发射了“神舟”号试验飞船。 随着现代科学技术的发展,我们对人造卫星已有所了解,那么地面上的物体在什么条件下才能成为人造卫星呢?人造卫星的轨道半径和它的运动速率之间有什么关系呢?这节课,我们要学习有关人造地球卫星的知识。 [新课教学] 一、人造地球卫星 1.牛顿的设想 在高山上用不同的水平初速度抛出一个物体,不计空气阻力,它们的落地点相同吗? 它们的落地点不同,速度越大,落地点离山脚越远。因为在同一座高山上抛出,它们在空中运动的时间相同,速度大的水平位移大,所以落地点也较远。 假设被抛出物体的速度足够大,物体的运动情形又如何呢? 如果地面上空有一个相对于地面静止的物体,它只受重力的作用, 那么它就做自由落体运动,如果物体在空中具有一定的初速度,且初速 度的方向与重力的方向垂直,那么它将做平抛运动,牛顿曾设想过:从 高山上用不同的水平速度抛出物体,速度一次比一次大,落地点也一次 比一次离山脚远,如果没有空气阻力,当速度足够大时,物体就永远不会落到地面上来,它将围绕地球旋转,成为一颗绕地球运动的人造地球卫星,简称人造卫星。 2.人造地球卫星 (1)人造地球卫星 从地面抛出的物体,在地球引力的作用下绕地球旋转,就成为绕地球运动的人造卫星。 (2)人造地球卫星必须满足的条件

2020年高中物理第五节《宇宙航行》教案人教版必修2

第七章万有引力与航天 第五节宇宙航行 一、教学目标 1、知识与技能: (1)了解人造卫星的有关知识,正确理解人造卫星做圆周运动时,各物理量之间的关系。 (2)知道三个宇宙速度的含义,会推导第一宇宙速度。 2、过程与方法: (1)通过用万有引力定律来推导第一宇宙速度,培养学生运用知识解决问题的能力。 3、情感态度与价值观: (1)通过介绍我国在卫星发射方面的情况,激发学生的爱国热情。 (2)感知人类探索宇宙的梦想,促使学生树立献身科学的人生价值观。 二、教学内容剖析 1、本节课的地位和作用: 本节内容主要介绍了宇宙速度、人造地球卫星、宇宙航天器等内容,人们在应用万有引力定律研究天体运动的基础上,实现人类的航天梦想,为科学研究、人类生活服务方面做出巨大的贡献。通过本节学习了解如下知识: (1)第一宇宙速度:物体在地面附近绕地球做匀速圆周运动的速度,V=GM / R或 V= . gR,数值上M=7.9km/s . (2)第二宇宙速度:克服地球引力,脱离地球的逃逸速度.V2=11.2km/s. (3)第三宇宙速度:在地面附近发射物体挣脱太阳引力束缚的速度,V3=11.2km/s. 2、本节课教学重点: 对第一宇宙速度的推导过程和方法,了解第一宇宙速度的应用领域。

3、本节课教学难点: 1、人造地球卫星的发射速度与运行速度的区别。 2、掌握有关人造卫星计算及计算过程中的一些代换。 三、教学思路与方法 这节内容是万有引力理论的成就在生活中的应用,与我们的生活密切相关,让学生在学习物理的过程中感受到物理就在我们的身边,与我们的生活时刻联系在一起. 从而引导学生进行科学和生活、和社会联系的思考,培养学生学习物理的兴趣,激发学生献身科学的热情,对学生科学价值观的形成起到重要的作用。 四、教学准备 多媒体课件,细线,塑料瓶 课堂教学设计

《宇宙航行》导学案(带答案)

§5.宇宙航行 §6.经典力学的局限性——问题导读 (命制教师:张宇强) §5.宇宙航行 §6.经典力学的局限性——问题导读 使用时间: 月 日—— 月 日 姓名 班级 【学习目标】 1、知道人造地球卫星的运行原理,会运用万有引力定律和圆周运动公式分析解答有关卫星运行的原因; 2、掌握三个宇宙速度,会推导第一宇宙速度; 3、简单了解航天发展史。 4、能用所学知识求解卫星基本问题。 【问题导读】认真阅读《课本》P44—P51内容,并完成以下导读问题: 一、人造地球卫星 如图所示,当物体的 足够大 时,它将会围绕 旋转 而不再落回地面,成为一颗绕地球转动的 。一般情况下可认为 人造地球卫星绕地球做 运动,向心力由地球对它的 提供,即G Mm r 2 = ,则卫星在轨道上运行的线速度v = 二、三个宇宙速度的比较 三、经典力学的成就和局限性 1、经典力学的成就 牛顿运动定律和万有引力定律在宏观、低速、弱引力的广阔领域,包括天体力学的研究中,

§5.宇宙航行§6.经典力学的局限性——问题导读(命制教师:张宇强) 经受了实践的检验,取得了巨大的成就. 2、经典力学的局限性 (1)牛顿力学即经典力学,它只适用于、的物体,不适用于 和的物体。 (2)狭义相对论阐述了物体以接近光速运动时遵从的规律,得出了一些不同于经典力学的结论,如质量要随物体运动速度的增大而。 (3)20世纪20年代,建立了量子力学,它正确描述了粒子的运动规律,并在现代科学技术中发挥了重要作用. (4)爱因斯坦的广义相对论说明在的作用下,牛顿的引力理论将不再适用. 预习检测: 1.两颗卫星A、B的质量相等,距地面的高度分别为H A、H B,且H A

宇宙航行(学案)

第五节:宇宙航行 要点知识回顾: 第一宇宙速度:在地面附近将物体以一定的水平速度发射出去,如果速度,物体不再在落回地球表面,而是刚好在地球表面附近围绕地球做运动,成为地球,物体在地面附近绕地球做的速度,叫做第一宇宙速度。第一宇宙速度是人造地球卫星的最发射速度,也是卫星在地球表面附近围绕地球做匀速圆周运动的运行速度,是人造地球卫星的最运行速度。 人造地球卫星的运行规律: 人造卫星绕地球做匀速圆周运动,则万有引力提供向心力. 公式为:___________=ma=_________=_____ __=____ ___; a=_____ __,可见随着轨道半径增大,卫星的向心加速度减小,向心力减小; v=_____ ___,随着轨道半径的增大,卫星线速度; w=___ _____,随着轨道半径的增大,卫星的角速度; T=______ ___,随着轨道半径的增大,卫星绕地球运行的周期,近地卫星的周期约为84.6min,其他卫星的周期都大于这个数值. 第二宇宙速度:在地面附近发射物体,当物体的速度等于或大于 km/s,它就会克服的引力,永远离开地球,成为太阳的人造行星,这时的发射速度就叫做第二宇宙速度。 第三宇宙速度: 在地面附近发射物体,当物体的速度等于或大于 km/s,它就会挣脱的束缚,飞到太阳系以外,成为人造小恒星,这时的发射速度就叫做第三宇宙速度。梦想成真: 1957年10月4日,世界上第一颗人造地球卫星在发射成功,卫星质量83.6kg,卫星绕地球运行周期。 1962年4月12日,苏联人成为第一个乘载人飞船进入太空的人。1969年7 月20日,人类成功登上月球。 2003年10月15日,我国成功发射神航五号载人飞船,把中国第一位航天员 送入太空。 课堂典例: 例题1:海王星的质量约是地球的16倍,它的半径是地球的4倍,地球的第一宇宙速度 为8.0km/s,则海王星的第一宇宙速度为多大? 例题2:两颗人造卫星A、B绕地球做圆周运动,周期之比为8:1 : B A T T,则轨道半径 之比和运动速率之比分别为多少?

高中物理第六章万有引力与航天第五、六节宇宙航行、经典力学的局限性学案新人教版必修2

第五节 宇宙航行 第六节 经典力学的局限性 [学习目标] 1.会推导第一宇宙速度,知道第二宇宙速度和第三宇宙速度. 2.了解人造卫星的有关知识,知道近地卫星、同步卫星的特点. 3.了解经典力学的发展历程和伟大成就,知道经典力学与相对论、量子力学的关系. [学生用书P 50] 一、宇宙速度(阅读教材P 44~P 45) 1.人造地球卫星的发射原理 (1)牛顿的设想:在高山上水平抛出一个物体,当初速度足够大时,它将会围绕地球旋转而不再落回地球表面,成为一颗绕地球转动的人造地球卫星. (2) 的万有引力提供,即G Mm r 2=m v 2 r 2.宇宙速度 (1)第一宇宙速度v Ⅰ:卫星在地面附近绕地球做匀速圆周运动的速度,v Ⅰ=7.9 km/s. (2)第二宇宙速度v Ⅱ:使卫星挣脱地球引力束缚的最小地面发射速度,v Ⅱ=11.2 km/s. (3)第三宇宙速度v Ⅲ:使卫星挣脱太阳引力束缚的最小地面发射速度,v Ⅲ=16.7 km/s. 拓展延伸?———————————————————(解疑难) 第一宇宙速度的两种推导方法 方法1:根据GMm r 2=mv 2 r ,应用近地条件r =R (R 为地球半径), R =6 400 km ,地球质量M =6×1024 kg ,代入数据得v =GM R =7.9 km/s. 方法2:在地球表面附近,重力等于万有引力,此力提供卫星做匀速圆周运动的向心力.(已知地球半径为R 、地球表面处的重力加速度为g ) 由mg =m v 2 R ,得 v =gR =9.8×6 400×103 m/s =7.9 km/s. 1.(1)在地面上发射人造卫星的最小速度是7.9 km/s.( ) (2)在地面上发射火星探测器的速度应为11.2 km/s

高中物理(山东专用)第六章万有引力与航天第5节宇宙航行讲义含解析新人教版必修2

第5节宇宙航行 一、 人造地球卫星 1.概念 当物体的初速度足够大时,它将会围绕地球旋转而不再落回地面,成为一颗绕地球转动的人造卫星,如图6-5-1所示。 图6-5-1 2.运动规律 一般情况下可认为人造卫星绕地球做匀速圆周运动。 3.向心力来源 人造地球卫星的向心力由地球对它的万有引力提供。 二、 宇宙速度 1.人造卫星环绕地球做匀速圆周运动,所需向心力由 地球对卫星的万有引力提供。 2.第一宇宙速度为7.9 km/s ,其意义为人造卫星的最 小发射速度或最大环绕速度。 3.第二宇宙速度为11.2 km/s ,其意义为物体摆脱地球 引力的束缚所需要的最小发射速度。 4.第三宇宙速度为16.7 km/s ,其意义为物体摆脱太阳 引力的束缚所需要的最小发射速度。 5.地球同步卫星位于赤道正上方固定高度处,其周期 等于地球的自转周期,即T =24 h 。

1957年10月,前苏联成功发射了第一颗人造卫星。 1969年7月,美国“阿波罗11号”登上月球。 2003年10月15日,我国航天员杨利伟踏入太空。 2013年6月11日,我国的“神舟十号”飞船发射成功。 2013年12月2日,我国的“嫦娥三号”登月探测器发射升空。 …… 1.自主思考——判一判 (1)绕地球做圆周运动的人造卫星的速度可以是10 km/s。(×) (2)在地面上发射人造卫星的最小速度是7.9 km/s。(√) (3)如果在地面发射卫星的速度大于11.2 km/s,卫星会永远离开地球。(√) (4)要发射一颗人造月球卫星,在地面的发射速度应大于16.7 km/s。(×) 2.合作探究——议一议 (1)通常情况下,人造卫星总是向东发射的,为什么? 提示:由于地球的自转由西向东,如果我们顺着地球自转的方向,即向东发射卫星,就可以充分利用地球自转的惯性,节省发射所需要的能量。 (2)“天宫一号”目标飞行器在距地面355 km的轨道上做圆周运动,它的线速度比7.9 km/s大还是小? 提示:第一宇宙速度7.9 km/s是卫星(包括飞船)在地面上空做圆周运动飞行时的最大速度,是卫星紧贴地球表面飞行时的速度。“天宫一号”飞行器距离地面355 km,轨道半径大于地球半径,运行速度小于7.9 km/s。 1.第一宇宙速度(环绕速度):是人造卫星在地面附近绕地球做匀速圆周运动所具有的速度,也是人造地球卫星的最小发射速度,v=7.9 km/s。

宇宙航行学案

第六章第五节宇宙航行 一、学习目标 1、了解人造卫星的有关知识;了解人类对太空的探索历程; 2、知道三个宇宙速度的含义,会推导第一宇宙速度。 二、学习重难点 会推导第一宇宙速度,了解第二、第三宇宙速度 三、学习方法建议 认真预习,把教材多看几遍,结合平抛运动、圆周运动知识点,能够理解其中蕴含的科学道理 四、学习问题设计 自学回答下列问题: (A)问1:抛出的石头会落地,为什么发射出的卫星没有落下来? (B)问2:卫星没有落下来必须具备哪些条件? (B)问3:什么是第一宇宙速度以及如何推导第一宇宙速度? (A)问4:区别发射速度和环绕速度? (A)问5:什么是第二宇宙速度及第三宇宙速度? 五、问题解决情况检测 (A)1、在圆轨道上质量为m的人造地球卫星,它到地面的距离等于地球的半径R,地面

上的重力加速度为g ,则( ) A 、卫星运行的速度是gR 2 B 、卫星运行的周期是g R 24 C 、卫星的加速度是g 21 D 、卫星的角速度是R g 241 (A )2、关于第一宇宙速度,下列说法中正确的是( ) A 、第一宇宙速度的数值是11.2km/s B 、第一宇宙速度又称为逃逸速度 C 、第一宇宙速度是卫星在地面附近绕地球做圆周运动的速度 D 、第一宇宙速度是卫星绕地球运行的最小环绕速度 (A )3、同步卫星是与地球自转同步的卫星,它的周期T=24h ,关于同步卫星的下列说法正确的是( ) A 、同步卫星离地面的高度和运行速度是一定的 B 、同步卫星离地面的高度越高,其运行速度就越大;高度越低,速度越小 C 、同步卫星只能定点在赤道上空,相对地面静止不动 D 、同步卫星的向心加速度与赤道上物体随地球自转的加速度大小相等 (A )4、(05江苏)若人造地球卫星绕地球做匀速圆周运动,则下列说法正确的是( ) A 、卫星的轨道半径越大,它的运行速度越大 B 、卫星的轨道半径越大,它的运行速度越小 C 、卫星的质量一定时,轨道半径越大,它需要的向心力越大 D 、卫星的质量一定时,轨道半径越大,它需要的向心力越小 (C )5、设在地球上和在x 天体上以相同的初速度竖直上抛一物体的最大高度比为k (均不计阻力)。且已知地球和x 天体的半径比也为k ,则地球质量与此天体的质量比为( ) 1.A k B . 2.k C k 1.D (A )6、某星球质量是地球质量的1/8,半径是地球半径的1/2,地球的第一宇宙速度为v=7.9km/s ,则:(1)该星球的第一宇宙速度为多少? (2)该星球表面的自由落体加速度是多大?

宇宙航行教案1

第5节宇宙航行 新课教学 教师活动学生活动设计意图一、宇宙速度 师组织学生观看常娥一号发 射并到达月球的全过程flsh 动画和阅读教材“宇宙速度”。 呈现问题一: 1、抛出的石头会落地,为什么卫星、月球没有落下来? 2、卫星、月球没有落下来必须具备什么条件? 师:演示抛物实验,提出问题。 牛顿的思考 与设想: (1)抛出 的速度v越大 时,落地点越远,速度不断增大,将会出现什么结果?让学生带着问题去 阅读课文 激发学生学习的 兴趣

(2)牛顿根据自 4、若此速度再增大,又会出现什么现象? 5、此抛出的物体速度增大何种程度才能绕地球做圆周运动?组织学生讨论猜 测: 1、平抛物体的速度 逐渐增大,物体的 落地点逐渐变大。 2、速度达到一定值 后,物体将不再落 回地面。 3、物体不落回地面 时环绕地面做圆周 运动,所受地面的 引力恰好来提供向 心力,满足 r mv r GMm2 2 = r GM v= ? 4、若此速度再增 大,物体不落回地 培养学生实验与 理论的结合,对 物理现象进行大 胆科学猜测的能 力。

师:(1)由上面的第5问求得的抛出的物体速度v=7.9km/s时才能绕地球做圆周运动,这一速度就是第一宇宙速度,也是发射卫星能绕地球做环绕飞行的最低发射速度。 意义:第一宇宙速度是人造卫星在地面附近环绕地球作匀速圆周运动所必须具有的速度,所以也称为环绕速度。 (2)第二宇宙速度 大小 211.2/ v km s =。 意义:使卫星挣脱地球的束缚,成为绕太阳运行的人造行星的最小发射速度,也称为脱离速度。面,也不再做匀速圆周运动,万有引力不能提供所需要的向心力,从而做离心运动,轨道为椭圆轨道 5、根据万有引力与向心力公式得 r mv r GMm2 2 = r GM v= ? s m/ 10 40 .6 10 98 .5 10 67 .6 6 24 11 ? ? ? ? = - =7.9km/s

高考物理第5节宇宙航行专题1

高考物理第5节宇宙航行专题1 2020.03 1,有两颗人造地球卫星,甲离地面800km,乙离地面1600km,求:(1)两者的向心加速度的比,(2)两者的周期的比,(3)两者的线速度的比。(地球半径约为6400km) 2,我们国家在1986年成功发射了一颗实用地球同步卫星,从1999年至今已几次将“神舟”号宇宙飞船送入太空.在某次实验中,飞船在空中飞行了 36 h,环绕地球24圈.那么,同步卫星与飞船在轨道上正常运转相比较 A.卫星运转周期比飞船大 B.卫星运转速率比飞船大 C.卫星运转加速度比飞船大 D.卫星离地高度比飞船大 3,地球的同步卫星距地面高h约为地球半径R的5倍,同步卫星正下方的地面上有一静止的物体A,则同步卫星与物体A的向心加速度之比是多少?若给物体A以适当的绕行速度,使A成为近地卫星,则同步卫星与近地卫星的向心加速度之比为多少? 4,试计算出地球赤道平面上空的同步卫星距地面的高度. (已知地球质量g=9.8m/s2,地球半径R=6.37×106m) 5,已知地球半径是月球半径的4倍,地球表面重力加速度是月球表面重力加速度的6倍,那么地球质量是月球质量的________倍;地球的第一宇宙速度是月球第一宇宙速度的________倍.

6,第一次从高为h处水平抛出一个球,其水平射程为S,第二次用跟前一次相同的速度从另一处水平抛出另一个球,水平射程比前一次多了△S,不计空气阻力,则第二次抛出点的高度为_________。 7,中子星是由密集的中子组成的星体,具有极大的密度.通过观察已知某中子星的自转角速度ω=60πrad/s,该中子星并没有因为自转而解体,则计算中子星的密度最小值的表达式是怎样的?该中子星的密度至少为多少? 8,地球同步卫星到地心的距离r可由r3=π42 2c b a 求出.已知式中a的单位是m,b的单位是s,c的单位是m/s2,则 A.a是地球半径,b是地球自转的周期,c是地球表面处的重力加速度 B.a是地球半径,b是同步卫星绕地心运动的周期,c是同步卫星的加速度 C.a是赤道周长,b是地球自转周期,c是同步卫星的加速度 D.a是地球半径,b是同步卫星绕地心运动的周期,c是地球表面处的重力加速度 9,已知下列哪组数据,可以计算出地球的质量M() A 地球绕太阳运行的周期T地及地球离太阳中心的距离R地日 B 月球绕地球运行的周期T月及月球离地球中心的距离R月地 C 人造地球卫星在地面附近绕行时的速度v和运行周期T D 若不考虑地球的自转,已知地球的半径及重力加速度 10,关于地球同步卫星,它们具有相同的( ) A.质量 B.高度 C.向心力 D.周期 11,一根劲度系数k = 103N/m的弹簧,长l = 0.2m,一端固定在光滑水平转台的转动轴上,另一端系一个质量m = 2kg的物体,当转台以180r/min 转动时,试求:此时弹簧伸长量为多少?

2020学年高中物理 第6章 第五节 宇宙航行学案 2

第六章 万有引力与航天 第五节 宇 宙 航 行 “嫦娥三号”卫星是嫦娥绕月探月工程计划中嫦娥系列的第三颗人造绕月探月卫星.“嫦娥三号”要携带探测器在月球着陆,实现月面巡视、月夜生存等重大突破,开展月表地形地貌与地质构造、矿物组成和化学成分等探测活动.根据中国探月工程三步走的规划,中国将在2013年前后进行首次月球软着陆探测和自动巡视勘察. 1.了解人造地球卫星的最初构想. 2.知道三个宇宙速度的含义,会推导第一宇宙速度的表达式. 3.掌握人造地球卫星的线速度、角速度、周期和半径的关系. 4.能运用万有引力定律及匀速圆周运动的规律解决卫星运动的有关问题. 一、人造卫星 1.牛顿对人造卫星原理的描绘. 设想在高山上有一门大炮,水平发射炮弹,初速度越大,水平射程就越大.可以想象,当初速度足够大时,这颗炮弹将不会落到地面,将和月球一样成为地球的一颗人造地球卫星. 2.人造卫星绕地球运行的动力学原因. 人造卫星在绕地球运行时,只受到地球对它的万有引力作用,人造卫星做圆周运动的向心力由万有引力提供. 3.人造卫星的运动可近似地看做匀速圆周运动,其向心力就是地球对它的吸引力. G Mm r 2=mv 2r =mω2r =m 4π2 T r . 由此得出卫星的线速度、角速度、周期与轨道半径r 的关系: v 由此可见,卫星的轨道半径确定后,其线速度、角速度和周期也唯一确定,与卫星的质量无关,即同一轨道上的不同卫星具有相同的周期、线速度及角速度,而且对于不同轨道,轨道半径越小,卫星线速度和角速度越大,周期越小. 二、宇宙速度 1.物体在地面附近绕地球做匀速圆周运动的速度,叫做第一宇宙速度,也叫地面附近的环绕速度. 2.近地卫星的轨道半径为:r =R ,万有引力提供向心力,则有GMm R =m v 2 R .从而第一宇宙

2021 宇宙航行—人教版 高中物理必修第二册学案

高一 必修二 物理导学案 宇宙航行 一、学习目标 1.了解人造地球卫星的初步构想。 2.会解决涉及人造地球卫星运动的较简单的问题。 3.知道三个宇宙速度的含义和数值、会推导第一宇宙速度。 二、自主阅读反馈 1、第一宇宙速度: (1)牛顿设想:如图所示,把物体从高山上水平抛出,如果抛出速度,物体就不再落回地面,成为。 (2)近地卫星的速度:由G mm 地r2=m v2r ,得v =_______。用地球半径R 代替卫星到地心的距离r ,可求得v = km/s 。 (3)宇宙速度及其意义

(逃逸速度) 2、人造地球卫星: (1)1957年10月4日,第一颗人造地球卫星发射成功。 (2)1970年4月24日,第一颗人造地球卫星“东方红1号”发射成功。 (3)地球同步卫星位于上方高度约 km处,与地面相对静止,角速度和周期与地球的。 (4)1961年4月12日,苏联航天员加加林进入东方一号载人飞船,完成人类首次进入太空的旅行。 (5)1969年7月,美国的阿波罗11号飞船登上月球。 (6)2003年10月15日,我国神舟五号宇宙飞船把中国第一位航天员送入太空。 (7)2013年6月,神舟十号分别完成与空间站的手动和自动交会对接。 (8)2016年10月19日,神舟十一号完成与空间站的自动交会对接。 (9)2017年4月20日,我国又发射了货运飞船, 入轨后与天宫二号空间站进行自动交会对接及多项 实验。 三、探究思考 情境1、如图,把物体水平抛出,如果速度足够大,物 体就不再落到地面,它将绕地球运动,成为地球的人造卫星,是什么力使物体绕地球运动?

情景2、在100~200 km高度飞行的地球卫星,能说在地面附近飞行吗?为什么? 情景3、人造地球卫星按怎样的轨道运行,谁提 供向心力? 四、知识精讲: 1、第一宇宙速度的定性分析 (1)第一宇宙速度:第一宇宙速度是人造卫星近地环绕地球做匀速圆周运动必须具备的速度,即近地卫星的环绕速度。 (2)决定因素:由第一宇宙速度的计算式v=GM R 可以看出,第 一宇宙速度的值由中心天体决定,第一宇宙速度的大小取决于中心天体的质量M和半径R,与卫星无关。 (3)“最小发射速度”:如果发射速度低于第一宇宙速度,因为受到地球引力作用,发射出去的卫星就会再回到地球上,所以第一宇宙速度是发射人造卫星的最小速度。 (4)“最大环绕速度”:在所有环绕地球做匀速圆周运动的卫星中, 近地卫星的轨道半径最小,由G Mm r2 =m v2 r 可得v= GM r ,轨道半径越 小,线速度越大,所以在这些卫星中,近地卫星的线速度即第一宇宙速度是最大环绕速度。

人教版物理必修二第六章第五节宇宙航行同步训练

人教版物理必修二第六章第五节宇宙航行同步训练 姓名:________ 班级:________ 成绩:________ 一、选择题(共计15题) (共15题;共30分) 1. (2分)北京时间10月31日17时28分,嫦娥一号卫星成功实施第三次近地点变轨后,顺利进入地月转移轨道,开始飞向月球.在第三次近地点变轨时,它的最高速度可达() A . 7.9km/s B . 10km/s C . 16.7km/s D . 3×105km/s 【考点】 2. (2分) (2019高一下·葫芦岛期末) 关于地球的第一宇宙速度,下列说法正确的是() A . 第一宇宙速度与地球的质量无关 B . 第一宇宙速度大小为11.2km/s C . 达到第一宇宙速度的物体的质量应该非常小 D . 第一宇宙速度是物体在地球表面附近环绕地球做匀速圆周运动的速度 【考点】 3. (2分) (2017高一下·应县期中) 假设地球的质量不变,而地球的半径增大到原来半径的2倍,那么从地球发射人造卫星的第一宇宙速度的大小应为原来的() A . 倍

B . 倍 C . 倍 D . 2倍 【考点】 4. (2分) (2020高一下·咸阳月考) 关于三个宇宙速度,以下说法错误的是() A . 第一宇宙速度是人造地球卫星的最大绕行速度 B . 第一宇宙速度是人造地球卫星的地面最小发射速度 C . 在地球发射绕月球运动的月球探测器,需要达到地球的第二宇宙速度 D . 飞船的地面发射速度达到第三宇宙速度,它会飞出太阳系以外 【考点】 5. (2分)已知地球半径为R ,质量为M ,自转角速度为w ,地面重力加速度为g ,万有引力常量为 G ,地球同步卫星的运行速度为v ,则第一宇宙速度的值不可表示为 () A . B . C . D . 【考点】

宇宙航行教学案

第5节宇宙航行教学案 【课前预习】 1.牛顿在思考万有引力定律时就曾想过,从高山上水平抛出物体,速度一次比一次大,落地点。如果速度足够大,物体就,它将绕地球运动,成为。 2.第一宇宙速度大小为,也叫速度。 第二宇宙速度大小为,也叫速度。 第三宇宙速度大小为,也叫速度。 3.世界上第一颗人造卫星是1957年10月4日在发射成功的,卫星质量为kg,绕地球飞行一圈需要的时间为。 世界上第一艘载人飞船是1961年4月12日发送成功,飞船绕地球一圈历时。 世界上第一艘登月飞船是1969年7月16日9时32分在发送成功,进入月球轨道;飞船在月球表面着陆;宇航员登上月球。 中国第一艘载人航天飞船在2003年10月15日9时在发送成功的,飞船绕地球圈后,于安全降落在主着陆场 【自主探究】 要点一人造地球卫星的线速度,角速度和周期与半径的关系 1.运行规律 2 2 2 2 2 ? ? ? ? ? = = = = T mr mr r v m ma r Mm G π ω (1)人造卫星的运行速率:v= 当r=R时,卫星绕地面运行,v== km/s 这是卫星绕地球做圆周运动的最大环绕速度. (2)人造卫星的运行周期:T=. (3)人造卫星的运行角速度:ω=. 【例题1 】如图所示,a、b、c是大气层外圆形轨道上运行的三颗人造地球卫星,a、b质量相同且小于c的质量,下列说法中正确的是() A.b、c的线速度大小相等且大于a的线速度 B.b、c的向心加速度相等且大于a的向心加速度 C.b、c的周期相等且大于a的周期 D.b、c的向心力相等且大于a的向心力

要点二三个宇宙速度 1.第一宇宙速度(环绕速度)的推导: 2.第二宇宙速度(脱离速度):大小为v=km/s. 3.第三宇宙速度(逃逸速度):大小为v=km/s. 说明(1)第一宇宙速度是最大运行速度,也是最小发射速度. (2)三个宇宙速度分别为在三种不同情况下在地面附近的最小发射速度. 【例题2】.关于第一宇宙速度,下面说法中正确的是() A.它是人造地球卫星绕地球飞行的最小速度 B.它是人造地球卫星绕地球飞行的最大速度 C.它是人造地球卫星在靠近地球表面的圆形轨道上的运行速度 D.它是发射人造地球卫星所需要的最小地面发射速度 【例题3】.金星的半径是地球的0.95倍,质量为地球的0.82倍。那么, (1)金星表面的自由落体加速度是多大? (2)金星的第一宇宙速度是多大? 要点三.卫星的轨道和种类 (1)卫星的轨道 卫星绕地球运动的轨道可以是椭圆轨道,也可以是圆轨道. 卫星绕地球沿椭圆轨道运行时,地心是椭圆的一个焦点,其周期和半长轴的关系遵循开普勒第三定律. 卫星绕地球沿圆轨道运行时,由于地球对卫星的万有引力提供了卫星绕地球运动的向心力,而万有引力指向地心,所以,地心必须是卫星圆轨道的圆心.卫星的轨道平面可以在赤道平面内(如同步卫星),也可以和赤道平面垂直,还可以和赤道平面成任一角度. (2)卫星的种类 卫星的种类主要是按卫星有什么样的功能来进行命名的.主要有侦察卫星、通信卫星、导航卫星、气象卫星、地球资源勘测卫星、科学研究卫星、预警卫星和测地卫星等种类.【同步卫星】 (1)卫星运动周期和地球自转周期相同(T=24 h=8.64×104s)。所谓地 球同步卫星,是相对于地面静止的,和地球具有相同周期的卫星,T=24h。

【精选】人教版高中物理必修2第6章第5节《宇宙航行》word学案-物理知识点总结

第六章万有引力与航天 第五节宇宙航行 “嫦娥三号”卫星是嫦娥绕月探月工程计划中嫦娥系列的第三颗人造绕月探月卫星.“嫦娥三号”要携带探测器在月球着陆,实现月面巡视、月夜生存等重大突破,开展月表地形地貌与地质构造、矿物组成和化学成分等探测活动.根据中国探月工程三步走的规划,中国将在2013年前后进行首次月球软着陆探测和自动巡视勘察. 1.了解人造地球卫星的最初构想. 2.知道三个宇宙速度的含义,会推导第一宇宙速度的表达式. 3.掌握人造地球卫星的线速度、角速度、周期和半径的关系. 4.能运用万有引力定律及匀速圆周运动的规律解决卫星运动的有关问题.

一、人造卫星 1.牛顿对人造卫星原理的描绘. 设想在高山上有一门大炮,水平发射炮弹,初速度越大,水平射程就越大.可以想象,当初速度足够大时,这颗炮弹将不会落到地面,将和月球一样成为地球的一颗人造地球卫星.2.人造卫星绕地球运行的动力学原因. 人造卫星在绕地球运行时,只受到地球对它的万有引力作用,人造卫星做圆周运动的向心力由万有引力提供. 3.人造卫星的运动可近似地看做匀速圆周运动,其向心力就是地球对它的吸引力. G Mm r2 = mv2 r =mω2r=m 4π2 T r. 由此得出卫星的线速度、角速度、周期与轨道半径r的关系: vω 由此可见,卫星的轨道半径确定后,其线速度、角速度和周期也唯一确定,与卫星的质量无关,即同一轨道上的不同卫星具有相同的周期、线速度及角速度,而且对于不同轨道,轨道半径越小,卫星线速度和角速度越大,周期越小. 二、宇宙速度 1.物体在地面附近绕地球做匀速圆周运动的速度,叫做第一宇宙速度,也叫地面附近的环绕速度. 2.近地卫星的轨道半径为:r=R,万有引力提供向心力,则有GMm R2 =m v2 R .从而第一宇宙速度 为:v=7.9km/s. 3.第二宇宙速度的大小为11.2_km/s.如果在地面附近发射飞行器,发射速度7.9 km/s

相关主题