搜档网
当前位置:搜档网 › 运筹学习题及答案

运筹学习题及答案

运筹学习题及答案
运筹学习题及答案

运筹学习题答案

第一章(39页)

1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。 (1)max 12z x x =+ 51x +102x ≤50

1x +2x ≥1 2x ≤4 1x ,2x ≥0

(2)min z=1x +1.52x

1x +32x ≥3 1x +2x ≥2 1x ,2x ≥0

(3)max z=21x +22x

1x -2x ≥-1

-0.51x +2x ≤2

1x ,2x ≥0

(4)max z=1x +2x

1x -2x ≥0

31x -2x ≤-3

1x ,2x ≥0

解: (1)(图略)有唯一可行解,max z=14 (2)(图略)有唯一可行解,min z=9/4 (3)(图略)无界解 (4)(图略)无可行解

1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。

(1)min z=-31x +42x -23x +54x 41x -2x +23x -4x =-2

1x +2x +33x -4x ≤14

-21x +32x -3x +24x ≥2

1x ,2x ,3x ≥0,4x 无约束

(2)max k

k

z s p =

11

n

m

k ik ik i k z a x ===∑∑

1

1(1,...,)m

ik

k x

i n =-=-=∑

ik x ≥0 (i=1…n; k=1,…,m)

(1)解:设z=-z ',4x =5x -6x , 5x ,6x ≥0 标准型:

Max z '=31x -42x +23x -5(5x -6x )+07x +08x -M 9x -M 10x s. t .

-41x +2x -23x +5x -6x +10x =2

1x +2x +33x -5x +6x +7x =14

-21x +32x -3x +25x -26x -8x +9x =2

1x ,2x ,3x ,5x ,6x ,7x ,8x ,9x ,10x ≥0

(2)解:加入人工变量1x ,2x ,3x ,…n x ,得: Max s=(1/k p )1n

i =∑

1

m

k =∑

ik αik x -M 1x -M 2x -…..-M n x

s.t.

11m

i ik k x x =+=∑ (i=1,2,3…,n)

ik x ≥0, i x ≥0, (i=1,2,3…n; k=1,2….,m)

M 是任意正整数

1.3在下面的线性规划问题中找出满足约束条件的所有基解。指出哪些是基可行解,并代入目标函数,确定最优解。 (1)max z=21x +32x +43x +74x 21x +32x -3x -44x =8 1x -22x +63x -74x =-3

1x ,2x ,3x ,4x ≥0

(2)max z=51x -22x +33x -64x

1x +22x +33x +44x =7

21x +2x +3x +24x =3

1x 2x 3x 4x ≥0

(1)解:

系数矩阵A 是:

23141267--????--?? 令A=(1P ,2P ,3P ,4P )

1P 与2P 线形无关,以(1P ,2P )为基,1x ,2x 为基变量。

有 21x +32x =8+3x +44x 1x -22x =-3-63x +74x 令非基变量3x ,4x =0 解得:1x =1;2x =2

基解(1)X =(1,2,0,0)T 为可行解

1z =8

同理,以(1P ,3P )为基,基解(2)X =(45/13,0,-14/13,0)T 是非可行解; 以(1P ,4P )为基,基解(3)X =(34/5,0,0,7/5)T 是可行解,3z =117/5; 以(2P ,3P )为基,基解(4)X =(0,45/16,7/16,0)T 是可行解,4z =163/16; 以(2P ,4P )为基,基解(5)X =(0,68/29,0,-7/29)T 是非可行解; 以(4P ,3P )为基,基解(6)X =(0,0,-68/31,-45/31)T 是非可行解; 最大值为3z =117/5;最优解(3)X =(34/5,0,0,7/5)T 。 (2)解:

系数矩阵A 是:

12342112??????

令A=(1P ,2P ,3P ,4P )

1P ,2P 线性无关,以(1P ,2P )为基,有: 1x +22x =7-33x -44x

21x +2x =3-3x -24x 令 3x ,4x =0得

1x =-1/3,2x =11/3

基解(1)X =(-1/3,11/3,0,0)T 为非可行解;

同理,以(1P ,3P )为基,基解(2)X =(2/5,0,11/5,0)T 是可行解2z =43/5; 以(1P ,4P )为基,基解(3)X =(-1/3,0,0,11/6)T 是非可行解; 以(2P ,3P )为基,基解(4)X =(0,2,1,0)T 是可行解,4z =-1; 以(4P ,3P )为基,基解(6)X =(0,0,1,1)T 是6z =-3; 最大值为2z =43/5;最优解为(2)X =(2/5,0,11/5,0)T 。

1.4分别用图解法和单纯形法求解下列线性规划问题,并指出单纯形迭代每一步相当于图形的哪一点。

(1)max z=21x +2x 31x +52x ≤15 61x +22x ≤24

1x ,2x ≥0

(2)max z=21x +52x

1x ≤4

22x ≤12 31x +22x ≤18

1x ,2x ≥0

解:(图略)

(1)max z=33/4 最优解是(15/4,3/4) 单纯形法:

标准型是max z=21x +2x +03x +04x s.t. 31x +52x +3x =15 61x +22x +4x =24 1x ,2x ,3x ,4x ≥0

解为:(15/4,3/4,0,0 )T Max z=33/4

迭代第一步表示原点;第二步代表C 点(4,0,3,0)T ; 第三步代表B 点(15/4,3/4,0,0 )T 。 (2)解:(图略)

Max z=34 此时坐标点为(2,6) 单纯形法,标准型是: Max z=21x +52x +03x +04x +05x

s.t. 1x +3x =4 22x +4x =12 31x +22x +5x =18

1x ,2x ,3x ,4x ,5x ≥0

(表略)

最优解 X=(2,6,2,0,0 )T Max z=34

迭代第一步得(1)X =(0,0,4,12,18)T 表示原点,迭代第二步得(2)X =(0,6,4,0,6)T ,第三步迭代得到最优解的点。

1.5以1.4题(1)为例,具体说明当目标函数中变量的系数怎样变动时,满足约束条件的可行域的每一个顶点,都可能使得目标函数值达到最优。 解:目标函数:max z=1c 1x +2c 2x (1)当2c ≠0时

2x =-(1c /2c )1x +z/2c 其中,k=-1c /2c

AB k =-3/5,BC k =-3

● k

BC k 时,

1

c ,

2

c 同号。

2c 0时,目标函数在C 点有最大值 当

2c 0时,目标函数在原点最大值。

● BC

k k

AB

k 时,1c ,2c

同号。

2c 0, 目标函数在B 点有最大值; 当

2c 0,目标函数在原点最大值。

● AB

k k

0时,1c , 2c

同号。

2c 0时,目标函数在A 点有最大值 当

2

c 0时,目标函数在原点最大值。

● k 0时,1c ,2c

异号。

2c 0,1c 0时,目标函数在A 点有最大值; 当

2

c 0,1c 0时,目标函数在C 点最大值。

● k= AB

k 时,1c , 2c

同号

2c 0时,目标函数在AB 线断上任一点有最大值 当

2

c 0,目标函数在原点最大值。

● k= BC

k 时,

1

c ,

2

c 同号。

2c 0时,目标函数在BC 线断上任一点有最大值 当

2

c 0时,目标函数在原点最大值。

● k=0时,1c

=0 当

2c 0时,目标函数在A 点有最大值

2

c 0,目标函数在OC 线断上任一点有最大值

(2)当2c =0时,max z= 1

c 1x

1c 0时,目标函数在C 点有最大值 ● 1c

0时,目标函数在OA 线断上任一点有最大值

1

c =0时,在可行域任何一点取最大值。

1.6分别用单纯形法中的大M 法和两阶段法求解下列线性问题,并指出属于哪类解。

(1)max z=21x +32x -53x

1x +2x +3x ≤15

21x -52x +3x ≤24

1x ,2x ≥0

(2)min z=21x +32x +3x

1x +42x +23x ≥8

31x +22x ≥6

1x ,2x ,3x ≥0

(3)max z=101x +152x +123x 51x +32x +3x ≤9 -51x +62x +153x ≤15 21x +2x +3x ≥5

1x ,2x ,3x ≥0

(4)max z=21x -2x +23x

1x +2x +3x ≥6

-21x +3x ≥2 22x -3x ≥0

1x ,2x ,3x ≥0

解:(1)解法一:大M 法 化为标准型:

Max z=21x +32x -53x -M 4x +05x -M 6x s.t. 1x +2x +3x +4x =7 21x -52x +3x -5x +6x =10

1x ,2x ,3x ,5x ,4x ,6x ≥0 M 是任意大整数。

最优解是:

X=(45/7,4/7,0,0,0 )T 目标函数最优值 max z=102/7 有唯一最优解。 解法二:

第一阶段数学模型为 min w= 4x + 6x S.t. 1x +2x + 3x + 4x =7

2 1x -5 2x + 3x - 5x + 6x =10

1x ,2x ,3x ,4x ,5x ,6x ≥0

(单纯形表略) 最优解

X=(45/7,4/7,0,0,0 )T

目标函数最优值 min w=0

X=(45/7,4/7,0,0,0 )T

Max z=102/7

(2)解法一:大M 法

z '=-z 有max z '=-min (-z ')=-min z 化成标准形:

Max z '=-21x -32x -3x +04x +05x -M 6x -M 7x S.T.

1x +42x +23x -4x +6x =4 31x +22x -5x +7x =6 1x ,2x ,3x ,4x ,5x ,6x ,7x ≥0 (单纯性表计算略)

线性规划最优解X=(4/5,9/5,0,0,0 ,0)T 目标函数最优值 min z=7

非基变量3x 的检验数3σ=0,所以有无穷多最优解。 两阶段法:

第一阶段最优解X=(4/5,9/5,0,0,0,0 )T 是基本可行解,min w=0 第二阶段最优解(4/5,9/5,0,0,0,0 )T min z=7 非基变量3x 的检验数3σ=0,所以有无穷多最优解。

(3)解:大M 法

加入人工变量,化成标准型:

Max z=10 1x +15 2x +12 3x +0 4x +0 5x +0 6x -M 7x s.t. 5 1x +3 2x + 3x + 4x =9 -5 1x +6 2x +15 3x + 5x =15 2 1x + 2x + 3x - 6x + 7x =5 1x ,2x ,3x ,4x ,5x ,6x ,7x ≥0 单纯形表计算略

当所有非基变量为负数,人工变量7x =0.5,所以原问题无可行解。 两阶段法(略)

(4)解法一:大M 法

单纯形法,(表略)非基变量4x 的检验数大于零,此线性规划问题有无界解。 两阶段法略

1.7求下述线性规划问题目标函数z 的上界和下界;

Max z=11c x +22c x

1111221a x a x b +≤ 2112222a x a x b +≤

其中:

113c ≤≤,246c ≤≤,1812b ≤≤,21014b ≤≤,1113a -≤≤,1225a ≤≤,2124a ≤≤,2246a ≤≤

解:

● 求Z 的上界

Max z=31x +62x s.t. -1x +22x ≤12 21x +42x ≤14

2x ,1x ≥0

加入松弛变量,化成标准型,用单纯形法解的,最优解 X=(0,7/2,5,0 )T

目标函数上界为z=21

存在非基变量检验数等于零,所以有无穷多最优解。 ● 求z 的下界 线性规划模型: Max Z= 1x +42x s.t. 31x +52x ≤8 41x +62x ≤10 2x ,1x ≥0

加入松弛变量,化成标准型,解得:

最优解为

X=(0,8/5,0,1/5 )T

目标函数下界是z=32/5

1.8表1-6是某求极大化线性规划问题计算得到的单纯形表。表中无人工变

量,1a ,2a ,3a ,d ,1c ,2c

为待定常数,试说明这些常数分别取何值时,以下

结论成立。

(1)表中解为唯一最优解;(2)表中解为最优解,但存在无穷多最优解;(3)该线性规划问题具有无界解;(4)表中解非最优,对解改进,换入变量为1x ,换出变量为6x 。

解:

(1)有唯一最优解时,d ≥0,

1

c 0,2

c 0

(2)存在无穷多最优解时,d ≥0,1c ≤0,2c =0或d ≥0,1c =0,2c ≤0. (3)有无界解时,d ≥0,

1c ≤0,2c 0且10a ≤

(4)此时,有d ≥0,

1

c 0并且1c ≥2c ,3

0a ,3/3

a d/4

交线路至少配备多少司机和乘务人员。列出线型规划模型。

解 :

设k x (k=1,2,3,4,5,6)为k x 个司机和乘务人员第k 班次开始上班。 建立模型:

Min z=1x +2x +3x +4x +5x +6x s.t. 1x +6x ≥60 1x +2x ≥70 2x +3x ≥60 3x +4x ≥50 4x +5x ≥20 5x +6x ≥30

1x ,2x ,3x ,4x ,5x ,6x ≥0

1.10某糖果公司厂用原料A 、B 、C 加工成三种不同牌号的糖果甲乙丙,已知各种糖果中ABC 含量,原料成本,各种原料的每月限制用量,三种牌号糖果的单

型。

解:

解:设1x ,2x ,3x 是甲糖果中的A ,B ,C 成分,4x ,5x ,6x 是乙糖果的A ,B ,C 成分,7x ,8x ,9x 是丙糖果的A ,B ,C 成分。

线性规划模型:

Max z=0.91x +1.42x +1.93x +0.454x +0.955x +1.456x -0.057

x +0.45

8

x +0.95

9

x

s.t. -0.41x +0.62x +0.63x ≤0

-0.21x -0.22x +0.83x ≤0 -0.854x +0.155x +0.156x ≤0 -0.64x -0.65x +0.46x ≤0 -0.7

7

x -0.5

8

x +0.5

9

x ≤0

1x +4x +7

x ≤2000

2x +5x +

8

x ≤2500 3x +6x +

9

x ≤1200

1x ,2x ,3x ,4x ,5x ,6x ,

7x ,8x ,9

x ≥0

1.11某厂生产三种产品I 、∏、III 。每种产品经过AB 两道加工程序,该厂有两种设备能完成A 工序,他们以1A ,2A 表示;有三种设备完成B 工序,分别为

1B ,2B ,3B ;产品I 可以在AB 任何一种设备上加工,产品∏可以在任何规格

的A 设备上加工,但完成B 工序时,只能在1B 设备上加工;产品III 只能在2A ,

2B 上加工。已知条件如下表,要求安排最优生产计划,使该厂利润最大化。

解:

产品1,设1A ,2A 完成A 工序的产品1x ,2x 件;B 工序时,1B ,2B ,3B 完成

B 工序的3x ,4x ,5x 件,产品∏,设1A ,2A 完成A 工序的产品6x ,7x 件;B 工序时,1B 完成B 的产品为8

x 件;产品111,

2

A 完成A 工序的

9

x 件,

2

B 完成B

工序的

9

x 件;

1x + 2x = 3x + 4x + 5x 6x +

7

x =

8

x

建立数学模型:

Max z=(1.25-0.25)*( 1x + 2x )+(2-0.35)*( 6x +

7

x )+(2.8-0.5)

9

x -(5 1x +10

6x )300/6000-(7 2x +9

7

x +12

9

x )321/10000-(6 3x +8

8

x )250/4000-(4 4x +11

9

x )783/7000-7 5x *200/4000 s.t

5 1x +10 6x ≤6000 7 2x +9 7x +12

9

x ≤10000

6 3x +8

8

x ≤4000 4 4x +11

9

x ≤7000

7 5x ≤4000

1x + 2x = 3x + 4x + 5x 6x +

7

x =

8

x

1x ,2x ,3x ,4x ,5x ,6x ,

7x ,8x ,9

x ≥0

最优解为X=(1200,230,0,859,571,0,500,500,324 )T 最优值1147. 试题:

1. (2005年华南理工大学)设某种动物每天至少需要700克蛋白质、30克矿物质、100毫

克维生素。现有5种饲料可供选择,每种饲料每公斤营养成分的含量及单价如下表所示:

试建立既满足动物生长需要,又使费用最省的选用饲料方案的线性规划模型。

解题过程:12345min 0.20.70.40.30.8z x x x x x =++++

123451

2345

1234512345326187000.50.220.530..0.50.220.8100,,,,0x x x x x x x x x x s t x x x x x x x x x x ++++≥??++++≥??++++≥??≥?

第二章(67页)

2.1用改进单纯形法求解以下线性规划问题。

(1)Max z=61x -22x +33x 21x -2x +33x ≤2

1x +43x ≤4 1x ,2x ,3x ≥0

(2)min z=21x +2x 31x +2x =3 41x +32x ≥6

1x +22x ≤3 1x ,2x ≥0

解: (1)

先化成标准型:

Max z=61x -22x +33x +04x +05x s.t. 21x -2x +23x +4x =2

1x +43x +5x =4 1x ,2x ,3x ,4x ,5x ≥0

令0B =(4P ,5P )=1001?? ??? 0B X =(4x ,5x )T

,0B C =(0,0)

0N =(1P ,2P ,3P )=212104-?? ??? , 0

N X =(1x ,2x ,3x )T

0N C =(6,-2,3),10B -=1001?? ???,0b =24??

???

非基变量的检验数

N σ=0N C -0B C 10B -0N =0

N C =(6,-2,3)

因为1x 的检验数等于6,是最大值,所以,1x 为换入变量,

1

B

-0b =24?? ???;1

0B -1P =21?? ???

由θ规则得:

θ=1

4x 为换出变量。

1B =(4P ,5P )=2011?? ???

,1B X =(1x ,5x )T

,1

B C =(6,0).

1N =(4P ,2P ,3P ), 1N X =(4x ,2x ,3x )T

1N C =(0,-2,3),11B -=0.500.51?? ?-??,1b =13??

???

非基变量的检验数 1N σ=(-3,1,-3)

因为2x 的检验数为1,是正的最大数。所以2x 为换入变量;

10B -2P =0.50.5-??

???

由θ规则得:

θ=6

所以5x 是换出变量。

2B =(1P ,2P )=2110-?? ???

,2

B X =(1x ,2x )T

,2B C =(6,-2). 2N =(4P ,5P ,3P ), 2N X =(4x ,5x ,3x )T 2N C =(0,0,3),1

2

B -=0112?? ?-??,2b =46?? ???

非基变量的检验数 2N σ=(-2,-2,-9)

非基变量的检验数均为负数,愿问题已达最优解。

最优解X= 46??

???

即:X=(4,6,0)T

目标函数最优值 max z=12 (2) 解 :

Min z=21x +2x +03x +M 4x +M 5x +06x S.T. 31x +2x +4x =3 41x +32x -3x +5x =6

1x +22x +6x =3 1x ,2x ,3x ,4x ,5x , 6x ≥0

M 是任意大的正数。

(非基变量检验数计算省略)

原问题最优解是X=(0.6,1.2,0) 目标函数最优值: z=12/5

2.2已知某线性规划问题,用单纯形法计算得到的中间某两步的加算表见

(1)min z= 2 1x +2 2x +4 3x

运筹学重点习题及答案

综合习题二 1、自己选用适当的方法,对下图求最小(生成)树。(12分) 解:(1)最小树为图中双线所示 (2)最小树长14 2、用破圈法求下面网络的最短树 解:最小树如下图所示 由于q=5,p=6,则q=p-1,故已得最短树。 最小树长为12 2、用标号法求下列网络V1→V7的最短路径及路长。(12分) V 1 2 3 3 5 2 4 5 5 6 V 3 V 2 V 4 V 5 V 6 5 6 V 1 V 2 V 4 4 3 5 3 V 3 V 5 V 6 5 2 2 V 1 V 7 V 5 V 6 V 4 V 3 V 2 5 4 3 5 3 1 7 6 1 7 3 1

解: 最短路径:v 1→v 3→v 5→v 6→v 7 L=10 4、解: 第一轮: (1) 在G 中找到一个回路{v 1,v 2,v 3,v 1}; (2) 此回路上的边[v 1,v 3]的权数6为最大,去掉[v 1,v 3]。 第二轮: (1)在划掉[v 1,v 3]的图中找到一个回路{v 2,v 3,v 5,v 2}; (2)去掉其中权数最大的边[v 2,v 5]。 第三轮: (1)在划掉[v 1,v 3],[v 2,v 5]的图中找到一个回路{v 2,v 3,v 5,v 4,v 2} (2)去掉其中权数最大的边[v 3,v 5]。 第四轮: (1)在划掉[v 1,v 3],[v 2,v 5],[v 3,v 5]的图中找到一个回路{ v 4,v 5,v 6,v 4} (2)去掉其中权数最大的边[v 5,v 6](或可以去掉边[v 4,v 6],这两条边的权数都为最大)。 (2分) 在余下的图中已找不到任何一个回路了,此时所得图就是最小树,这个最小树的所有边 v 1 v 5 4 3 4 v 6 v 3 v 5 V 2 7 V 4 V 1 (v 1(v 1, 4) (v , 6) 1, 13) 5(v 1, 5)

运筹学复习题及参考答案

运筹学复习题及参考答案 运筹学》 一、判断题:在下列各题中,你认为题中描述的内 容为正确者,在题尾括号内写“ T” ,错误者写“F”。1.T 2. F 3. T 4.T 5.T 6.T 7. F 8. T 9. F 10.T 11. F 12. F 13.T 14. T 15. F 1.线性规划问题的每一个基本可行解对应可行域的一个顶点。( T ) 2.用单纯形法求解一般线性规划时,当目标函 数求最小值时,若所有的检验数C j-Z j< 0,则问题达到最优。 ( F ) 3.若线性规划的可行域非空有界,则其顶点中 必存在最优解。( T ) 4.满足线性规划问题所有约束条件的解称为可 行解。( T ) 5.在线性规划问题的求解过程中,基变量和非

机变量的个数是固定的。( T ) 6.对偶问题的对偶是原问题。( T ) 7.在可行解的状态下,原问题与对偶问题的目 标函数值是相等的。( F ) 8.运输问题的可行解中基变量的个数不一定遵 循m+n-1 的规则。( T ) 9.指派问题的解中基变量的个数为m+n。 ( F ) 10.网络最短路径是指从网络起点至终点的一条权和最小的路线。( T ) 11.网络最大流量是网络起点至终点的一条增流链上的最大流量。( F) 12.工程计划网络中的关键路线上事项的最早时间和最迟时间往往是不相等。( F ) 13.在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。 (T ) 14.单目标决策时,用不同方法确定的最佳方案往往是不一致的。( T ) 15.动态规则中运用图解法的顺推方法和网络最短路径的标号法上是一致的。( F ) 二、单项选择题 1.A 2.B 3.D 4.B 5.A 6.C 7.B 8.C 9. D 10.B 11.A 12.D 13.C 14.C 15.B 1、对于线性规划问题标准型:maxZ=CX, AX=b, X

运筹学习题精选

运筹学习题精选

运筹学习题精选 第一章线性规划及单纯形法 选择 1.在线性规划模型中,没有非负约束的变量称为……………………………………………………( C ) A.多余变量 B.松弛变量 C.自由变量 D.人工变量 2.约束条件为0 AX的线性规划问题的可行解集 b ,≥ =X 是………………………………………( B ) A.补集 B.凸集 C.交集 D.凹集 3.线性规划问题若有最优解,则一定可以在可行域的( C)上达到。 A.内点 B.外点 C.顶点 D.几何点 4.线性规划标准型中bi(i=1,2,……m)必须是…………………………………………………( B) A.正数 B.非负数 C.无约束 D.非零的 5.线性规划问题的基本可行解X对应于可行域D 的………………………………………………( D) A.外点 B.所有点 C.内点 D.极点 6.基本可行解中的非零变量的个数小于约束条件数时,该问题可求得……………………………( B ) A.基本解 B.退化解 C.多重解 D.无解 7.满足线性规划问题全部约束条件的解称为…………………………………………………( C ) A.最优解 B.基本解 C.可行解 D.多重解 8.线性规划一般模型中,自由变量可以用两个非负变量的(B )代换。 A.和 B.差 C.积 D.商 9.当满足最优检验,且检验数为零的变量的个数大于基变量的个数时,可求得………………………( A ) 第 2 页共 30 页

第 3 页 共 30 页 A .多重解 B .无解 C .正则解 D .退化解 10.若线性规划问题有最优解,则必定存在一个( D )是最优解。 A .无穷多解 B. 基解 C. 可行解 D. 基可行解 填空 计算 1. 某厂生产甲、乙、丙三种产品,已知有关数据如下表所示,求使该厂获利最大的生产计划。 2. 目标函数为max Z =28x4+x5+2x6,约束形式为“≤”,且x1,x2,x3为松弛变量, 表中的解代入目标函数中得Z=14,求出a~g 的值,并判断→j c 0 0 0 28 1 2 B C 基 b 1x 2x 3x 4x 5x 6x 2 6x A 3 0 -14/3 0 1 1 0 2x 5 6 D 2 0 5/2 0 28 4x 0 0 E F 1 0 0 j j z c - B C 0 0 -1 G

运筹学II习题解答

第七章决策论 1.某厂有一新产品,其面临的市场状况有三种情况,可供其选择的营销策略也是 三种,每一钟策略在每一种状态下的损益值如下表所示,要求分别用非确定型 (1)悲观法:根据“小中取大”原则,应选取的经营策略为s3; (2)乐观法:根据“大中取大”原则,应选取的经营策略为s1; (3)折中法(α=0.6):计算折中收益值如下: S1折中收益值=0.6?50+0.4?(-5)=28 S2折中收益值=0.6?30+0.4?0=18 S3折中收益值=0.6?10+0.4?10=10 显然,应选取经营策略s1为决策方案。 (4)平均法:计算平均收益如下: S1:x_1=(50+10-5)/3=55/3 S2:x_2=(30+25)/3=55/3 S3:x_3=(10+10)/3=10 故选择策略s1,s2为决策方案。 (5)最小遗憾法:分三步 第一,定各种自然状态下的最大收益值,如方括号中所示; 第二,确定每一方案在不同状态下的最小遗憾值,并找出每一方案的最大遗憾值如圆括号中所示; 第三,大中取小,进行决策。故选取S1作为决策方案。

2.如上题中三种状态的概率分别为: 0.3, 0.4, 0.3, 试用期望值方法和决策树方法决策。 (1)用期望值方法决策:计算各经营策略下的期望收益值如下: 故选取决策S2时目标收益最大。 (2)用决策树方法,画决策树如下: 3. 某石油公司拟在某地钻井,可能的结果有三:无油(θ1),贫油(θ2)和富油(θ3), 估计可能的概率为:P (θ1) =0.5, P (θ2)=0.3,P (θ3)=0.2。已知钻井费为7万元,若贫油可收入12万元,若富油可收入27万元。为了科学决策拟先进行勘探,勘探的可能结果是:地质构造差(I1)、构造一般(I2)和构造好(I3)。根据过去的经验,地质构造与出油量间的关系如下表所示: P (I j|θi) 构造差(I1) 构造一般(I2) 构造好(I3) 无油(θ1) 0.6 0.3 0.1 贫油(θ2) 0.3 0.4 0.3 富油(θ3) 0.1 0.4 0.5 假定勘探费用为1万元, 试确定:

运筹学试题及答案汇总

3)若问题中 x2 列的系数变为(3,2)T,问最优解是否有变化; 4)c2 由 1 变为 2,是否影响最优解,如有影响,将新的解求出。 Cj CB 0 0 Cj-Zj 0 4 Cj-Zj 3 4 Cj-Zj 最优解为 X1=1/3,X3=7/5,Z=33/5 2对偶问题为Minw=9y1+8y2 6y1+3y2≥3 3y1+4y2≥1 5y1+5y2≥4 y1,y2≥0 对偶问题最优解为 y1=1/5,y2=3/5 3 若问题中 x2 列的系数变为(3,2)T 则P2’=(1/3,1/5σ2=-4/5<0 所以对最优解没有影响 4)c2 由 1 变为2 σ2=-1<0 所以对最优解没有影响 7. 求如图所示的网络的最大流和最小截集(割集,每弧旁的数字是(cij , fij )。(10 分) V1 (9,5 (4,4 V3 (6,3 T 3 XB X4 X5 b 9 8 X1 6 3 3 X4 X3 1 8/5 3 3/5 3/5 X1 X3 1/3 7/5 1 0 0 1 X2 3 4 1 -1 4/5 -11/5 -1/3 1 - 2 4 X 3 5 5 4 0 1 0 0 1 0 0 X4 1 0 0 1 0 0 1/3 -1/ 5 -1/5 0 X5 0 1 0 -1 1/5 -4/5 -1/3 2/5 -3/5 VS (3,1 (3,0 (4,1 Vt (5,3 V2 解: (5,4 (7,5 V4 V1 (9,7 (4,4 V3 (6,4 (3,2 Vs (5,4 (4,0 Vt (7,7 6/9 V2 最大流=11 (5,5 V4 8. 某厂Ⅰ、Ⅱ、Ⅲ三种产品分别经过 A、B、C 三种设备加工。已知生产单位各种产品所需的设备台时,设备的现有加工能力及每件产品的预期利润见表:ⅠⅡⅢ设备能力(台.h A 1 1 1 100 B 10 4 5 600 C 2 2 6 300 单

最全的运筹学复习题及答案72731

四、把下列线性规划问题化成标准形式: 2、minZ=2x1-x2+2x3 五、按各题要求。建立线性规划数学模型 1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:

根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。月销售分别为250,280和120件。问如何安排生产计划,使总利润最大。 2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋90根,长度为4米的钢筋60根,问怎样下料,才能使所使用的原材料最省 ? 1.某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示: 起运时间服务员数 2—6 6—10 10一14 14—18 18—22 22—2 4 8 10 7 12 4 每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少?

五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相当 于图解法可行域中的哪一个顶点。

六、用单纯形法求解下列线性规划问题: 七、用大M法求解下列线性规划问题。并指出问题的解属于哪一类。

八、下表为用单纯形法计算时某一步的表格。已知该线性规划的目标函数为maxZ=5x1+3x2,约束形式为“≤”,X3,X4为松驰变量.表中解代入目标函数后得Z=10 X l X2X3X4 —10 b -1 f g X3 2 C O 1 1/5 X l a d e 0 1 (1)求表中a~g的值 (2)表中给出的解是否为最优解? (1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2)表中给出的解为最优解 第四章线性规划的对偶理论 五、写出下列线性规划问题的对偶问题 1.minZ=2x1+2x2+4x3

运筹学试题

运筹学试题 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

运筹学试题 一、填空题(本大题共8小题,每空2分,共20分) 1.线性规划闯题中,如果在约束条件中出现等式约束,我们通常用增加___的方法来产生初始可行基。 2.线性规划模型有三种参数,其名称分别为价值系数、___和___。 3.原问题的第1个约束方程是“=”型,则对偶问题相应的变量是___变量。 4.求最小生成树问题,常用的方法有:避圈法和 ___。 5.排队模型M/M/2中的M,M,2分别表示到达时间为___分布,服务时间服从负指数分布和服务台数为2。 6.如果有两个以上的决策自然条件,但决策人无法估计各自然状态出现的概率,那么这种决策类型称为____型决策。 7.在风险型决策问题中,我们一般采用___来反映每个人对待风险的态度。 8.目标规划总是求目标函数的___信,且目标函数中没有线性规划中的价值系数,而是在各偏差变量前加上级别不同的____。 二、单项选择题(本大题共l0小题,每小题3分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。多选无分。 9.使用人工变量法求解极大化线性规划问题时,当所有的检验数在基变量中仍含有非零的人工变量,表明该线性规划问题【】 A.有唯一的最优解 B.有无穷多最优解 C.为无界解 D.无可行解 10.对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中【】 A.b列元素不小于零 B.检验数都大于零 C.检验数都不小于零 D.检验数都不大于零

11.已知某个含10个结点的树图,其中9个结点的次为1,1,3,1,1,1,3,1,3,则另一个结点的次为【】 A.3 B.2 C.1 D.以上三种情况均有可能 12.如果要使目标规划实际实现值不超过目标值。则相应的偏离变量应满足【】 13.在运输方案中出现退化现象,是指数字格的数目【】 A.等于 m+n B.等于m+n-1 C.小于m+n-1 D.大于m+n-1 14.关于矩阵对策,下列说法错误的是【】 A.矩阵对策的解可以不是唯一的 C.矩阵对策中,当局势达到均衡时,任何一方单方面改变自己的策略,都将意味着自己更少的赢得和更大的损失 D.矩阵对策的对策值,相当于进行若干次对策后,局中人I的平均赢得或局中人Ⅱ的平均损失值 【】 A.2 8.—l C.—3 D.1 16.关于线性规划的原问题和对偶问题,下列说法正确的是【】 A.若原问题为元界解,则对偶问题也为无界解

《运筹学》课后习题答案

第一章线性规划1、 由图可得:最优解为 2、用图解法求解线性规划: Min z=2x1+x2 ? ? ? ? ? ? ? ≥ ≤ ≤ ≥ + ≤ + - 10 5 8 24 4 2 1 2 1 2 1 x x x x x x 解: 由图可得:最优解x=1.6,y=6.4

Max z=5x 1+6x 2 ? ?? ??≥≤+-≥-0 ,23222212 121x x x x x x 解: 由图可得:最优解Max z=5x 1+6x 2, Max z= + ∞

Maxz = 2x 1 +x 2 ????? ? ?≥≤+≤+≤0,5242261552121211x x x x x x x 由图可得:最大值?????==+35121x x x , 所以?????==2 3 21x x max Z = 8.

12 12125.max 2328416412 0,1,2maxZ .j Z x x x x x x x j =+?+≤? ≤?? ≤??≥=?如图所示,在(4,2)这一点达到最大值为2 6将线性规划模型化成标准形式: Min z=x 1-2x 2+3x 3 ????? ??≥≥-=++-≥+-≤++无约束 321 321321321,0,05232 7x x x x x x x x x x x x 解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥ 0,x 3’’≥0 Max z ’=-x 1+2x 2-3x 3’+3x 3’’ ????? ? ?≥≥≥≥≥≥-=++-=--+-=+-++0 ,0,0'',0',0,05 232 '''7'''543321 3215332143321x x x x x x x x x x x x x x x x x x x

运筹学试题及答案4套

《运筹学》试卷一 一、(15分)用图解法求解下列线性规划问题 二、(20分)下表为某求极大值线性规划问题的初始单纯形表及迭代后的表,、 为松弛变量,试求表中到的值及各变量下标到的值。 -13 1 1 6 1 1-200 2-1 1 1/2 1/2 1 4 07 三、(15分)用图解法求解矩阵对策, 其中 四、(20分) (1)某项工程由8个工序组成,各工序之间的关系为 工序a b c d e f g h 紧前工序——a a b,c b,c,d b,c,d e 试画出该工程的网络图。 (2)试计算下面工程网络图中各事项发生的最早、最迟时间及关键

线路(箭线下的数字是完成该工序的所需时间,单位:天) 五、(15分)已知线性规划问题 其对偶问题最优解为,试根据对偶理论求原问题的最优解。 六、(15分)用动态规划法求解下面问题:

七、(30分)已知线性规划问题 用单纯形法求得最优单纯形表如下,试分析在下列各种条件单独变化的情况下,最优解将如何变化。 2 -1 1 0 0 2 3 1 1 3 1 1 1 1 1 6 10 0 -3 -1 -2 0 (1)目标函数变为; (2)约束条件右端项由变为; (3)增加一个新的约束: 八、(20分)某地区有A、B、C三个化肥厂向甲、乙、丙、丁四个销地供应同一种化肥,已知产地产量、销地需求量和各产地运往不同销地单位运价如下表,试用最小元素法确定初始调运方案,并调整求最优运输方案 销地 产地 甲乙丙丁产量 A41241116 B2103910

C8511622需求量814121448 《运筹学》试卷二 一、(20分)已知线性规划问题: (a)写出其对偶问题; (b)用图解法求对偶问题的解; (c)利用(b)的结果及对偶性质求原问题的解。 二、(20分)已知运输表如下: 销地 产地B1B2B3B4供应量 50 A 1 3 2 7 6 A 2 60 7 5 2 3 25 A 3 2 5 4 5 需求量60 40 20 15 (1)用最小元素法确定初始调运方案; (2)确定最优运输方案及最低运费。 三、(35分)设线性规划问题 maxZ=2x1+x2+5x3+6x4

运筹学例题

某昼夜服务的公交线路 解:设x i 表示第i班次时开始上班的司机和乘务人员数,这样我们建立如下的数学模型。目标函数:Min x1 + x2 + x3 + x4 + x5 + x6 s.t. x1 + x6≥60 x1 + x2≥70 x2 + x3≥60 x3 + x4≥50 x4 + x5≥20 x5 + x6≥30 x1,x2,x3,x4,x5,x6 ≥0 解得50,20,50,0,20,10(x1到x6)一共需要150人 一家中型的百货商场 解:设x i ( i = 1,2,…,7)表示星期一至日开始休息的人数,这样我们建立如下的数学模型。目标函数:Min x1 + x2 + x3 + x4 + x5 + x6 + x7 s.t. x1 + x2 + x3 + x4 + x5 ≥28 x2 + x3 + x4 + x5 + x6≥15 x3 + x4 + x5 + x6 + x7≥24 x4 + x5 + x6 + x7 + x1≥25 x5 + x6 + x7 + x1 + x2≥19 x6 + x7 + x1 + x2 + x3≥31 x7 + x1 + x2 + x3 + x4≥28 x1,x2,x3,x4,x5,x6,x7 ≥0 解得12.0.11.5.0.8.0(x1到x7) 最小值36 某工厂要做100套钢架 设x1,x2,x3,x4,x5 分别为5 种方案下料的原材料根数。这样我们建立如下的数学模型。 目标函数:Min x1 + x2 + x3 + x4 + x5 s.t. x1 + 2x2 +x4≥100 2x3+2x4 +x5≥100 3x1+x2+2x3+3x5≥100 x1,x2,x3,x4,x5≥0 解得30,10,0,50,0 只需要90根原料造100钢架某工厂要用三种原料1、2、3 设设x ij 表示第i 种(甲、乙、丙)产品中原料j 的含量。 目标函数:Max z = -15x11+25x12+15x13-30x21+10x22-40x31-10x33 s.t. 0.5 x11-0.5 x12 -0.5 x13≥0 -0.25x11+0.75x12 -0.25x13≤0 0.75x21-0.25x22 -0.25x23≥0 -0.5 x21+0.5 x22 -0.5 x23≤0 x11+x21 +x31≤100 x12+x22 +x32≤100 x13+x23+x33≤60 x ij≥0 , i = 1,2,3; j = 1,2,3 解得x11=100,x12=50,x13=50原料分别为第1种100 第2种50 第3种50 资源分配 解:将问题按工厂分为三个阶段,甲、乙、丙三个厂分别编号为1、2、3厂。设sk= 分配给第k个厂至第3个厂的设备台数(k=1、2、3)。xk=分配给第k个工厂的设备台数。 已知s1=5, 并有S2=T1(s1,x1)=s1-x1,S3=T2(s2,x2)=s2-x2从Sk与Xk的定义,可知s3=x3 以下我们从第三阶段开始计算。Maxr3(s3,x3)=r3(s3,x3)即F3(s3)= Maxr3(s3,x3)=r3(s3,x3). 第二阶段F2(s2)=max[r2(s2,x2)+f3(s3)]第一阶段当s1=5时最大盈利为f1(5)=max[r1(5,x1)+f2(5-x1)] 得出2个方案⑴分配给甲0台乙0台丙3台⑵分配甲2台乙2台丙1台,他们的总盈利值都是21. 背包 设Sk=分配给第k种咨询项目到第四种咨询项目的所有客户的总工作日Xk=在第k种咨询项目中处理客户的数量已知s1=10,有S2=T1(s1,x1)=s1-x1. S3=T2(s2,x2)=s2-3x2. S4=T3(s3,x3)=s3-4x3,第四阶段F4(s4)=maxr4(s4,x4)=r4(s4,[s4/7])第三阶段F3(s3)=max[r3(s3,x3)+f4(s3-4x3)]第二阶段F2(s2)=max[r2(s2,x2)+f3(s2-3x2)]第一阶段已知s1=10,又因s2=s1-x1有F1(10)=max[r1(10,x1)+f2(10-x1)] 综上当x1*=0,x2*=1,x3*=0,x4*=1,最大盈利为28 京城畜产品 解:设:0--1变量xi = 1 (Ai 点被选用)或0 (Ai 点没被选用)。这样我们可建立如下的数学模型:Max z =36x1+40x2+50x3+22x4+20x5+30x6+25x7+48x8+58x9+61x10 s.t. 100x1+120x2+150x3+80x4+70x5+90x6+80x7+140x8+160x9+180x10 ≤720 x1 + x2 + x3 ≤2 x4 + x5 ≥1 x6 + x7 ≥1 x8 + x9 + x10 ≥2 xi≥0 且xi为0--1变量,i = 1,2,3,……,10 函数值245 最优解1,1,0,0,1,1,0,0,1,1(x1到x10的解) 高压容器公司

最全的运筹学复习题及答案78213

最全的运筹学复习题及 答案78213

四、把下列线性规划问题化成标准形式: 2、minZ=2x1-x2+2x3 五、按各题要求。建立线性规划数学模型 1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:

根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。月销售分别为250 ,280和120件。问如何安排生产计划,使总利润最大。 2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋 90根,长度为4米的 钢筋60根,问怎样下料,才能使所使用的原材料最省? 1.某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示:起运时间服务员数 2—6 6—10 10一14 14—18 18—22 22—2 4 8 10 7 12 4 每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少?

五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相 当于图解法可行域中的哪一个顶点。

六、用单纯形法求解下列线性规划问题: 七、用大M法求解下列线性规划问题。并指出问题的解属于哪一类。

八、下表为用单纯形法计算时某一步的表格。已知该线性规划的目标函数为maxZ=5x1+3x2,约束形式为“≤”,X3,X4为松驰变量.表中解代入目标函数后得Z=10 X l X2X3X4 —10 b -1 f g X3 2 C O 1 1/5 X l a d e 0 1 (1)求表中a~g的值 (2)表中给出的解是否为最优解? (1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2)表中给出的解为最优解 第四章线性规划的对偶理论 五、写出下列线性规划问题的对偶问题 1.minZ=2x1+2x2+4x3

运筹学习题答案

第一章习题 1.思考题 (1)微分学求极值的方法为什么不适用于线性规划的求解? (2)线性规划的标准形有哪些限制?如何把一般的线性规划化为标准形式? (3)图解法主要步骤是什么?从中可以看出线性规划最优解有那些特点? (4)什么是线性规划的可行解,基本解,基可行解?引入基本解和基可行解有什么作用? (5)对于任意基可行解,为什么必须把目标函数用非基变量表示出来?什么是检验数?它有什么作用?如何计算检验数? (6)确定换出变量的法则是什么?违背这一法则,会发生什么问题? (7)如何进行换基迭代运算? (8)大M法与两阶段法的要点是什么?两者有什么共同点?有什么区别? (9)松弛变量与人工变量有什么区别?试从定义和处理方式两方面分析。 (10)如何判定线性规划有唯一最优解,无穷多最优解和无最优解?为什么? 2.建立下列问题的线性规划模型: (1)某厂生产A,B,C三种产品,每件产品消耗的原料和设备台时如表1-18所示: 润最大的模型。 (2)某公司打算利用具有下列成分(见表1-19)的合金配制一种新型合金100公斤,新合金含铅,锌,锡的比例为3:2:5。 如何安排配方,使成本最低? (3)某医院每天各时间段至少需要配备护理人员数量见表1-20。

表1-20 假定每人上班后连续工作8小时,试建立使总人数最少的计划安排模型。能否利用初等数学的视察法,求出它的最优解? (4)某工地需要30套三角架,其结构尺寸如图1-6所示。仓库现有长6.5米的钢材。如何下料,使消耗的钢材最少? 图1-6 3. 用图解法求下列线性规划的最优解: ?????? ?≥≤+-≥+≥++=0 ,425.134 1 2 64 min )1(21212 12121x x x x x x x x x x z ?????? ?≥≤+≥+-≤++=0 ,82 5 1032 44 max )2(21212 12121x x x x x x x x x x z ????? ????≥≤≤-≤+-≤++=0 ,6 054 4 22232 96 max )3(2122 1212121x x x x x x x x x x x z ??? ??≥≤+-≥+ +=0,1 12 34 3 max )4(2 12 12121x x x x x x x x z

运筹学复习题及参考答案

《运筹学》 一、判断题:在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“T”,错误者写 “F”。 1. T 2. F 3. T 4.T 5.T 6.T 7. F 8. T 9. F 10.T 11. F 12. F 13.T 14. T 15. F 1. 线性规划问题的每一个基本可行解对应可行域的一个顶点。( T ) 2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。( F ) 3. 若线性规划的可行域非空有界,则其顶点中必存在最优解。( T ) 4. 满足线性规划问题所有约束条件的解称为可行解。( T ) 5. 在线性规划问题的求解过程中,基变量和非机变量的个数是固定的。( T ) 6. 对偶问题的对偶是原问题。( T ) 7. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。( F ) 8. 运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。( T ) 9. 指派问题的解中基变量的个数为m+n。( F ) 10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。( T ) 11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。( F) 12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往是不相等。( F ) 13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。(T ) 14. 单目标决策时,用不同方法确定的最佳方案往往是不一致的。( T ) 15. 动态规则中运用图解法的顺推方法和网络最短路径的标号法上是一致的。( F ) 二、单项选择题 1.A 2.B 3.D 4.B 5.A 6.C 7.B 8.C 9. D 10.B 11.A 12.D 13.C 14.C 15.B 1、对于线性规划问题标准型:maxZ=CX, AX=b, X≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为( A )。 A. 增大 B. 不减少 C. 减少 D. 不增大 2、若线性规划问题的最优解不唯一,则在最优单纯形表上( B )。 A. 非基变量的检验数都为零 B. 非基变量检验数必有为零 C. 非基变量检验数不必有为零者 D. 非基变量的检验数都小于零 3、线性规划问题的数学模型由目标函数、约束条件和( D )三个部分组成。 A. 非负条件 B. 顶点集合 C. 最优解 D. 决策变量

《运筹学》题库

运筹学习题库 数学建模题(5) 1、某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示: 试建立使得该厂能获得最大利润的生产计划的线性规划模型,不求解。 解:设甲、乙产品的生产数量应为x1、x2,则x1、x2≥0,设z 是产品售后的总利润,则 max z =70x 1+120x 2 s.t. ????? ??≥≤+≤ +≤+0 300103200643604921212121x x x x x x x x , 2建立使利润最大的生产计划的数学模型,不求解。 解:设甲、乙两种产品的生产数量为x 1、x 2, 设z 为产品售后总利润,则max z= 4x 1+3x 2 s.t. ???????≥≤≤+≤+ ,50040005.253000222112121x x x x x x x 3、一家工厂制造甲、乙、丙三种产品,需要三种资源——技术服务、劳动力和行政管理。每种产品的资源消耗量、单位产品销售后所能获得的利润值以及这三种资源的储备量如下表所示:

建立使得该厂能获得最大利润的生产计划的线性规划模型,不求解。 解:建立线性规划数学模型: 设甲、乙、丙三种产品的生产数量应为x 1、x 2、x 3,则x 1、x 2、x 3≥0,设z 是产品售后的总利润,则 max z =10x 1+6x 2+4x 3 s.t. ???????≥≤++≤++≤++0 3006226005410100321321321321x x x x x x x x x x x x ,, 4、一个登山队员,他需要携带的物品有:食品、氧气、冰镐、绳索、帐篷、照相器材、通 信器材等。每种物品的重量合重要性系数如表所示。设登山队员可携带的最大重量为25kg,试建立队员所能携带物品最大量的线性规划模型,不求解。 解:引入0—1变量x i , x i =1表示应携带物品i ,,x i =0表示不应携带物品I ?? ?==≤++++++++++++=7 ,...,2,1,10254212625510481418152076543217654321i x x x x x x x x x x x x x x x naxz i 或 5、工厂每月生产A 、B 、C 三种产品,单件产品的原材料消耗量、设备台时的消耗量、资源根据市场需求,预测三种产品最低月需求量分别是150、260、120,最高需求量是250、310、130,试建立该问题数学模型,使每月利润最大,为求解。 解:设每月生产A 、B 、C 数量为321,,x x x 。 321121410x x x MaxZ ++= 250042.15.321≤++x x x

2019管理运筹学课后答案

第一章 第一章 1. 建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。决策变量(Decision Variable)是决策问题待定的量值,取值一般为非负;约束条件(Constraint Conditions)是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数(Objective Function)是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。 2.(1)设立决策变量; (2)确定极值化的单一线性目标函数; (3)线性的约束条件:考虑到能力制约,保证能力需求量不能突破有效供给量; (4)非负约束。 3.(1)唯一最优解:只有一个最优点 (2)多重最优解:无穷多个最优解 (3)无界解:可行域无界,目标值无限增大 (4)没有可行解:线性规划问题的可行域是空集 无界解和没有可行解时,可能是建模时有错。 4. 线性规划的标准形式为:目标函数极大化,约束条件为等式,右端常数项bi≥0 , 决策变量满足非负性。 如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。 5. 可行解:满足约束条件AX =b,X≥0的解,称为可行解。 基可行解:满足非负性约束的基解,称为基可行解。 可行基:对应于基可行解的基,称为可行基。 最优解:使目标函数最优的可行解,称为最优解。 最优基:最优解对应的基矩阵,称为最优基。 6. 计算步骤: 第一步,确定初始基可行解。 第二步,最优性检验与解的判别。 第三步,进行基变换。 第四步,进行函数迭代。 判断方式: 唯一最优解:所有非基变量的检验数为负数,即σj< 0 无穷多最优解:若所有非基变量的检验数σj≤ 0 ,且存在某个非基变量xNk 的检验数σk= 0 ,让其进基,目标函数的值仍然保持原值。如果同时存在最小θ值,说明有离基变量,则该问题在两个顶点上同时达到最优,为无穷多最优解。无界解:若某个非基变量xNk 的检验数σk> 0 ,但其对应的系数列向量P k' 中,每一个元素a ik' (i=1,2,3,…,m)均非正数,即有进基变量但找不到离基变量。

(整理)《运筹学》期末考试试题与参考答案

《运筹学》试题参考答案 一、填空题(每空2分,共10分) 1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为 可行解 。 2、在线性规划问题中,图解法适合用于处理 变量 为两个的线性规划问题。 3、求解不平衡的运输问题的基本思想是 设立虚供地或虚需求点,化为供求平衡的标准形式 。 4、在图论中,称 无圈的 连通图为树。 5、运输问题中求初始基本可行解的方法通常有 最小费用法 、 西北角法 两种方法。 二、(每小题5分,共10分)用图解法求解下列线性规划问题: 1)max z = 6x 1+4x 2 ?????? ?≥≤≤+≤+0 7810 22122121x x x x x x x , 解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。 2)min z =-3x 1+2x 2 ????? ????≥≤-≤-≤+-≤+0 ,1 37210 42242212 1212121x x x x x x x x x x 解: ⑴ ⑵ ⑶ ⑷ ⑸ ⑹、⑺ ⑴ ⑵ ⑶ ⑷ ⑸、⑹

可行解域为abcda ,最优解为b 点。 由方程组? ??==+022 42221x x x 解出x 1=11,x 2=0 ∴X *=???? ??21x x =(11,0)T ∴min z =-3×11+2×0=-33 三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示: A B C 甲 9 4 3 70 乙 4 6 10 120 360 200 300 1)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)

运筹学考试复习题及参考答案【新】

中南大学现代远程教育课程考试复习题及参考答案 《运筹学》 一、判断题:在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“T”,错误者写 “F”。 1. 线性规划问题的每一个基本可行解对应可行域的一个顶点。( ) 2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。( ) 3. 若线性规划的可行域非空有界,则其顶点中必存在最优解。( ) 4. 满足线性规划问题所有约束条件的解称为可行解。( ) 5. 在线性规划问题的求解过程中,基变量和非机变量的个数是固定的。( ) 6. 对偶问题的对偶是原问题。( ) 7. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。( ) 8. 运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。( ) 9. 指派问题的解中基变量的个数为m+n。( ) 10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。( ) 11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。( ) 12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往是不相等。( ) 13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。( ) 14. 单目标决策时,用不同方法确定的最佳方案往往是不一致的。( ) 15. 动态规则中运用图解法的顺推方法和网络最短路径的标号法上是一致的。 ( ) 二、单项选择题 1、对于线性规划问题标准型:maxZ=CX, AX=b, X≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为()。 A. 增大 B. 不减少 C. 减少 D. 不增大 2、若线性规划问题的最优解不唯一,则在最优单纯形表上()。 A. 非基变量的检验数都为零 B. 非基变量检验数必有为零 C. 非基变量检验数不必有为零者 D. 非基变量的检验数都小于零 3、线性规划问题的数学模型由目标函数、约束条件和()三个部分组成。 A. 非负条件 B. 顶点集合 C. 最优解 D. 决策变量 4、已知x1= ( 2, 4), x2=(4, 8)是某线性规划问题的两个最优解,则()也是该线性规划问题的最优解。 A. (4,4) B. (1,2) C. (2,3) D. 无法判断

运筹学试题库

运筹学试题库 一、多项选择题 1、下面命题正确的是()。 A、线性规划的标准型右端项非零; B、线性规划的标准型目标求最大; C、线性规划的标准型有等式或不等式约束; D、线性规划的标准型变量均非负。 2、下面命题不正确的是()。 A、线性规划的最优解是基本解; B、基本可行解一定是基本解; C、线性规划有可行解则有最优解; D、线性规划的最优值至多有一个。 3、设线性规划问题(P),它的对偶问题(D),那么()。 A、若(P)求最大则(D)求最小; B、(P)、(D)均有可行解则都有最优解; C、若(P)的约束均为等式,则(D)的所有变量均无非负限制; D、(P)和(D)互为对偶。 4、课程中讨论的运输问题有基本特点()。 A、产销平衡; B、一定是物品运输的问题; C、是整数规划问题; D、总是求目标极小。 5、线性规划的标准型有特点()。 A、右端项非零; B、目标求最大; C、有等式或不等式约束; D、变量均非负。 6、下面命题不正确的是()。 A、线性规划的最优解是基本可行解; B、基本可行解一定是基本解; C、线性规划一定有可行解; D、线性规划的最优值至多有一个。 7、线性规划模型有特点()。 A、所有函数都是线性函数; B、目标求最大; C、有等式或不等式约束; D、变量非负。 8、下面命题正确的是()。 A、线性规划的最优解是基本可行解; B、基本可行解一定是最优; C、线性规划一定有可行解; D、线性规划的最优值至多有一个。 9、一个线性规划问题(P)与它的对偶问题(D)有关系()。 A、(P)有可行解则(D)有最优解; B、(P)、(D)均有可行解则都有最优解; C、(P)可行(D)无解,则(P)无有限最优解; D、(P)(D)互为对偶。 10、运输问题的基本可行解有特点()。 A、有m+n-1个基变量; B、有m+n个位势; C、产销平衡; D、不含闭回路。

(完整版)运筹学》习题答案运筹学答案

《运筹学》习题答案 一、单选题 1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()B A.任意网络 B.无回路有向网络 C.混合网络 D.容量网络 2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()B A.非线性问题的线性化技巧 B.静态问题的动态处理 C.引入虚拟产地或者销地 D.引入人工变量 3.静态问题的动态处理最常用的方法是?B A.非线性问题的线性化技巧 B.人为的引入时段 C.引入虚拟产地或者销地 D.网络建模 4.串联系统可靠性问题动态规划模型的特点是()D A.状态变量的选取 B.决策变量的选取 C.有虚拟产地或者销地 D.目标函数取乘积形式 5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。C A.降低的 B.不增不减的 C.增加的 D.难以估计的 6.最小枝权树算法是从已接接点出发,把( )的接点连接上C A.最远 B.较远 C.最近 D.较近 7.在箭线式网络固中,( )的说法是错误的。D A.结点不占用时间也不消耗资源 B.结点表示前接活动的完成和后续活动的开始 C.箭线代表活动 D.结点的最早出现时间和最迟出现时间是同一个时间 8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。C A.1200 B.1400 C.1300 D.1700 9.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。D A.最短路线—定通过A点 B.最短路线一定通过B点 C.最短路线一定通过C点 D.不能判断最短路线通过哪一点 10.在一棵树中,如果在某两点间加上条边,则图一定( )A A.存在一个圈 B.存在两个圈 C.存在三个圈 D.不含圈 11.网络图关键线路的长度( )工程完工期。C A.大于 B.小于 C.等于 D.不一定等于

相关主题