搜档网
当前位置:搜档网 › 矢量场的数学讲解

矢量场的数学讲解

矢量场的数学讲解
矢量场的数学讲解

矢量场的数学

§1 矢量场的微分运算

一、 矢量代数和函数微分运算

矢量 有大小和方向,且满足矢量运算的法则。 矢量代数运算的几个结果

①=?B A

标量

???

?

???---==?k B A B A j

B A B A i

B A B A B B B A A A k

j

i

x y y x x z x z y z z y z y

x z y

x ?)(?)(?)(???B A

③0A A =?

④0)B A (A =??

⑤)()B A )(C B (A

??=??=??C A C B

⑥)()()B A C C A B C B (A

?-?=??

多元函数微分运算的两个公式

z)y,f(x,-z)z y,y x,f(x z)y,f(x,?+?+?+=?, ⑦

偏导数含义:看作常数将为变量仅以z y dx df

x f x ,,x ,=??。

二、标量场和矢量场

什么是场 指在空间连续分布的某种客体。

标量场z)y,T(x,:指每一点由一个标量给定的那种空间分布的客体。

等值面(线)

矢量场z)y,(x,f

:指每一点由一个矢量给定的那种空间分布的客体。

如电场、磁场、电流场、速度矢量场),,(z y x v 等。

矢量场的场线

标量场和矢量场随时间的变化 t)z,y,T(x, t)z,y,(x,f

(t T ??,t f ?? )或(22t T ??,22t f

?? )

标量场和矢量场随空间的变化

某点的场与相邻点的场之间的关系

三、标量场对空间的一阶微商——梯度

标量场),,(z y x T 对空间的微商

标量场T 在场点P 随空间的变化与方向有关,沿不同方向T 对空间距离的微商不相同。

证明T 的三个分量微商构成一个矢量 两个无限靠近的场点P 1和P 2, P 1坐标为)z ,y ,x (,

P 2坐标为)z z ,y y ,x x (?+?+?+,

)z ?

连接P 1P 2的矢量为k ?z j ?y i ?x r ?+?+?=? ,

标量场T 在P 1P 2两点的函数差)T(P -)T(P T 12=?,是一个标量。

(1.1) 根据两矢量点积为一标量可知()z

T

,y T ,x T ??????构成一个矢量。

梯度的定义

称为T 的梯度,记作gradT 或T ?。

k ?

z T j ?y T i ?x T T gradT ??+??+??=?= (1.2)

哈密顿算符 k ?

z j ?y i ?x ??+??+??=? (1.3)

?是一个矢量微分算符,是表示场对空间微商的算符。

算符?本身也可以看作是一个矢量,在直角坐标系下:

x x ??

=?, y y ??=?, z z ??=?, (1.4)

标量场T 的梯度T ?是一个矢量场,代表T 对空间的一阶微商,反映标量场T 的空间分布状况。

梯度的大小和方向

x

T

T)(x ??=?, y T T)(y ??=?, z T T)(z ??=?, (1.5)

(θ是 ?与T ?的夹角)

上式的含意是T 沿某方向 ?对空间的变化率,就等于T 的梯度T ?沿该方向的分量。

对标量场任一点P ,都有一个特定的方向

?(对应1cos =θ),沿着此方向 ?的变化率

??T

是最大的,此最大值就是该P 点梯度T ?的大小;此特定方向 ?就是梯度T ?矢量的方向。

梯度T ?给出某点的场与其相邻点的场之间的关系

(1.6)

四、矢量场对空间的一阶微商

矢量场对空间的微商

两种基本方式:f ??标量场 ,f

??矢量场

f

的散度:f ??是一个标量场。记作的散度f f f div =??=。

1.7) 散度的意义: 一般来说是指矢量场在该点的“发散程度”,也就是从该点发出或会聚的场线条数的多少。散度是一个标量,正值代表从场点发散,负值代表汇聚。

f

的旋度:

f

??是一个矢量场。

2

1

记作的旋度f f f rot

=??=。

y z z y x f f )f (?-?=??

z x x z y f f )f (?-

?=??

(1.8)

x y y x z f f )f (?-?=??

旋度的意义: 一般来说是指矢量场在该点处的“涡旋程度”,就是环绕该点的闭合场线条数密度的大小。

标量场和矢量场对空间求微商小结

哈密顿算符? T T g r a d

T 的梯度=?=(矢量) 的散度f f f div

=??=(标量)

的旋度f f f rot

=??=(矢量)

麦克斯韦方程组:

c D ρ=?? , 0=??B

t B E ??-=?? , c j t

D H

+??=??, 五、对空间的二阶微商

求二阶微商分为五种情况:

1))T (???,2))T (???,3))f (

????,4))f ( ????,5))f ( ???。

1))T (???

)k ?T j ?T i ?T ()k ?j ?i ?()T (z

y x z y x ?+?+???+?+?=???

)T T (T)(z z y y x x ??+??+??=()

z

T

y T x T 222222标量=??+??+??= T T )(T T)(2

?=???=???=??? z

T y T x T 22

2222标量=??+??+??=

拉普拉斯算符

2))T (???=0 (重要恒等式)

0T )(T T)(=???=???=???

0x

T

y y T x T )(T )(T )]([x y y x z =????-????=??-??=???

数学定理1.1 如果一个矢量场A

,它的旋度恒为零,0A =?? ,

则始终存在某一个标量场,或者说就有一个标量场ψ,使得ψ?=A

3))f (

????=0 (重要恒等式)

数学定理1.2 如果一个矢量场B

,它的散度恒为零,0B =?? ,

则始终存在某一个矢量场,或者说就有一个矢量场A

,使得A B ??=。

4))f (

????=矢量

5))f (

???=矢量

§2 矢量场的积分运算

一、 梯度T ?的线积分

线积分的定义:函数G 从P 1到P 2沿着路径L 的线积分为,

∑?

?=→?i

i

P P G lim

d )z ,y ,x (G i 2

1

(2.1)

梯度的线积分:任取一条路径L 连接P 1和P 2,将L

分割成无穷多线元

?。对于任

一线元

?,

???=?T T ,

???=?∑

∑→?→?T lim T lim 00

l l

)()(T lim 120

2

1

P T P T dT P P -==??

∑→?

?∑??=???→?2

1

T lim 0P P l d T 数学定理2.1梯度的线积分等于场在过程起点和终点的数值之差。

?

??=2

1

P P 12d T )T(P -)T(P

(2.2)

0=???L

l d T

(等价的表达)

二、矢量场的通量

矢量场通量的定义 矢量的法向分量在曲面上的面积分。

????=?=S n S dS f S d f

φ (2.3)

P 1

)

,,(z y x G i

?P 2

i ?

L

任取一体积V ,其表面积为S 。 V 1的表面积为S 1=S 1a +S 1ab , V 2的表面积为S 2=S 2b +S 2ab 。

???????=?+?1

1ab

1a

S S S S

d f S d f S d f

???????=?+?2

2ab

2b

S S S S d f S d f S d f

?????-=?2ab 1ab

S S S d f S d f (2.4)

数学定理2.2 通过体积V 外表面S 的通量,等于S 内包含的所有各个部分小体积dV 外表面的通量之和。

如V 分割成许多小立方体0→?V 。

S d f V S S

V ?=???

∑→?表面的通量小立方体内

三、对小立方体表面的通量

计算对六个正方形面元的通量之和

对1、2面的通量: z y x x

f z y (1)]f -(2)[f z

y i ?)2(f z y )i ?()1(f x

x x ?????=??=???+??-?

同理对3、4和5、6面的通量:z y x y f y

?????,z y x z f z

?????,

对小立方体表面的通量:

S 1a

S 2b

S 1ab

2ab V ,S

(2.5) 对小立方体表面的通量等于该点的散度与小立方体体积的乘积。

dV f S lim V 0

???=???∑→?

小立方体的通量内V (2.6) 一般矢量场的高斯定理

对任一闭合曲面S 的通量,等于在V 内该矢量的散度的体积分。

(2.7)

散度的定义式

(2.8)

散度的含义:P 点散度等于该点单位体积小立方体表面的通量。

四、矢量场的环流(环量)

矢量场环流(环量)定义:矢量f

切向分量沿闭合曲线

L 的线积分。

??=?=L

L

d f d f

环量(2.9)

任取一闭合回路L ,现以曲线段L ab 将L 分割为L 1和L 2两个回路,其中L 1=L 1a +L 1ab , L 2=L 2b +L 2ab.

????=?+?11ab 1a L L L d f d f d f

????=?+?2

2

a b

2b

L L L d f d f d f

L L 2b

L 1ab

2ab L ,S

???-=?2a b 1a b

L L d f d f

(2.10)

数学定理2.3 矢量场对回路L 的环量,等于对该回路L 内包含的所有无穷小正方形回路的环量之和。

小正方形的环量内∑?→?=

?0

S L L d f

(2.11)

五、对小正方形的环流(环量)

计算小正方形回路的环量

取小正方形的绕向与Z 轴构成右手螺旋关系,Z 轴正方向也就是小正方形面元法线的正方向。

y )j ?()4(f x )i ?()3(f y j ?(2)f x i ?)1(f ?-?+?-?+??+??

y )]4(f )2(f [x (3)]

f )1(f [y y x x ?-+?-= y x )y f -x f (y x x f y x y f x y y x

??????=????+????-=

S )f (z ????=

小正方形回路的环量S )f (n ????=

S )f ( ????=(2.12)

S d )f (L lim S

???=??

∑→?小正方形的环量内S (2.13)

一般矢量场的斯托克斯定理 矢量场对任一闭合回路L 的环量,等于以回路L 为边界的任一曲面S 上矢量场旋度的通量。

(2.15)

旋度的定义式

旋度的含义:P点的旋度沿某方向的分量,等于P点附近垂直该方向的单位面积小正方形的环量。

旋度的大小和方向(和梯度对比)

在矢量场某一点上,计算单位面积小正方形的环量,当此环量取最大值时,小正方形面元法线方向就是该点旋度的方向,此环量的最大值就是该点旋度的大小。

总 结

1. 矢量微分算符(哈密顿算符)

k ?z

j ?y i ?x ??+??+??=?

x x ??

=?, y y ??=?, z z ??=?

2. 标量场梯度的线积分

?

??=2

1

P P 12d T )T(P -)T(P

引申: 0d )T (L

=???

→ 0S d )]T ([S

=??????

0)T (=??? (矢量恒等式)

旋度为零的矢量场,可表述为一标量场(即标量势函数)的梯度。 3. 矢量场的高斯定理

dV f S d f V S ???=??????

4. 矢量场的斯托克斯定理

S d )f (d f S L

???=????

引申: 0S d )f (S

=?????

0dV )f (V

=????????

→ 0)f (=????

(矢量恒等式)

散度为零的矢量场,可表述为一矢量场(即矢量势函数)的旋度。

距离矢量和链路状态区别

距离矢量和链路状态区别 距离矢量(DV)是“传说的路由”,A发路由信息给B,B加上自己的度量值又发给C,路由表里的条目是听来的,虽说“兼听则明,偏信则暗”,但是选出最优路径的同时会引发环路问题,当然,DV协议也使用水平分割,毒性逆转,触发更新等特性来避免,无奈的是,这种问题对于竞争对手LS而言是天生免疫的。 链路状态(LS)是“传信的路由”,A将信息放在一封信里发给B,B对其不做任何改变,拷贝下来,并将自己的信息放在另一封信里,两封信一起给C,这样,信息没有任何改变和丢失,最后所有路由器都收到相同的一堆信,这一堆信就是LSDB。然后,每个路由器运用相同的SPF算法,以自己为根,计算出SPF Tree(即到达目的地的各个方案),选出最佳路径,放入转发数据库中(即路由表)。 链路状态协议有三样看家本领:LSDB,SPF算法,SPF Tree。还有三张表:邻居表,拓扑表,路由表,但这三张表并不是DV和LS的根本区别,EIGRP作为高级的距离矢量路由协议同样有这三张表,关键点在于表的内容和传递信息的过程。 DV的拓扑表事实上是邻居通告的路由条目的集合,依据算法从中选出最佳的放进路由表,它并不完全了解网络拓扑;而LS的拓扑表是真正意义上的网络拓扑,路由器对网络信息完全了解,所以可以独立的做出决策,确定最佳路由。举例来说,如果我是DV的思维,我从华师去火车东站,通过询问知道,我可以在走到师大暨大车站坐515路车,也可以走到坐177路车,这样问下来有几种方案,我再选一个最优的,以这样的方式我就知道广州市内的一些地方该怎么去;而如果我是LS的思维,我会先去四下打听,搜集信息然后汇总成一张广州市区的地图,然后依据这张地图自己决定如何去火车东站以及其它地方。 路由过滤器对DV和LS的影响也是不同的。运行DV的路由器基于自身的路由表来通告路由信息,其结果是路由过滤器将会对通告产生影响。 运行LS的路由器是基于自身的链路状态数据库来计算出自己的路由,路由过滤器对两路状态的通告和链路状态数据库没有影响,所以只会影响本路由器的路由表的安装,正是因为这种特性,路由过滤器主要被用在进入链路状态域的重新分配点上,即在ASBR执行重发布时,控制那些要进入或离开的路由. ------------------------------------------------------------------- 所以我们总结一下链路状态选择协议的优缺点如下: 链路状态路由选择的优点: 1.收敛速度快:触发更新在每个路由器上进行 2.没有路由环路:才用SPF算法 3.分等级设计网络和路由,更合理的利用网络资源 4.和距离矢量路由协议相比,链路状态路由协议的

常用地一些矢量运算公式

常用的一些矢量运算公式 1.三重标量积 如a ,b 和c 是三个矢量,组合 ()a b c ??叫做他们的三重标量积。三重标量积等于这三 个矢量为棱边所作的平行六面体体积。在直角坐标系中,设坐标轴向的三个单位矢量标记为 (),,i j k ,令三个矢量的分量记为()()1 2 3 1 2 3 ,,,,,a a a a b b b b 及()1 2 3 ,,c c c c 则有 ( )() 123123123123 123123 c c c i jk a b c a a a c i c j c k a a a b b b b b b ??=?++= 因此,三重标量积必有如下关系式: ()()()a b c b c a c a b ??=??=??即有循环法则成立,这就是说不改变三重标量积中三个矢量顺序的组合,其结果相等。 2.三重矢量积 如a ,b 和c 是三个矢量,组合 ( ) a b c ??叫做他们的三重标量积,因有 ()()()a b c a c b c b a ??=-??=?? 故有中心法则成立,这就是说只有改变中间矢量时,三重标量积符号才改变。三重标量积有一个重要的性质(证略):() ()()a b c a b c a c b ??=-?+? (1-209) 将矢量作重新排列又有:()()() a b c b a c b a c ?=??+? (1-210) 3.算子( a ? ) ? 是哈密顿算子,它是一个矢量算子。( a ? )则是一个标量算子,将它作用于标量φ ,即 ()a φ?是φ在a 方向的变化速率的a 倍。如以无穷小的位置矢量 d r 代替以上矢量a ,则 ()dr φ ?是φ在位移方向 d r 的变化率的 d r 倍,即 d φ 。 () ()d dr dr φφφ=?=? 若将 () dr ?作用于矢量v ,则 ()dr v ?就是v 再位移方向 d r 变化率的 d r 倍,既为速度矢量 的全微分() dv dr v =? 应 用 三 重 矢 量 积 公 式 ( 1-209 ) ()()() 00()()()() a b a b a b b a a b b a a b ???=???+???=??-??-??+??

计算机网络原理 距离矢量路由

计算机网络原理距离矢量路由 距离矢量路由选择(Distance Vector Routing)算法是通过每个路由器维护一张表(即一个矢量)来实现的,该表中列出了到达每一个目标地的可知的最短路径及所经过的线路,这些信息通过相邻路由器间交换信息来更新完成。我们称这张表为路由表,表中按进入子网的节点索引,每个表项包含两个部分,到达目的地最优路径所使用的出线及一个估计的距离或时间,所使用的度量可能是站段数,时间延迟,沿着路径的排队报数或其他。 距离矢量路由选择算法有时候也称为分布式Bellman-Ford路由选择算法和Ford-Fulkerson算法,它们都是根据其开发者的名字来命名的(Bellman,1957;Ford and Fulkerson,1962)。它最初用于ARPANET路由选择算法,还用于Internet和早期版本的DECnet 和Novell的IPX中,其名字为RIP。AppleTalk t Cisco路由器使用了改进型的距离矢量协议。 在距离矢量路由选择算法中,每个路由器维护了一张子网中每一个以其他路由器为索引的路由选择表,并且每个路由器对应一个表项。该表项包含两部分:为了到达该目标路由器而首选使用的输出线路,以及到达该目标路由器的时间估计值或者距离估计值。所使用的度量可能是站点数,或者是以毫秒计算的延迟,或者是沿着该路径排队的分组数目,或者其他类似的值。 假设路由器知道它到每个相邻路由器的“距离”。如果所用的度量为站点,那么该距离就为一个站点。如果所用的度量为队列长度,那么路由器只需检查每一个队列即可。如果度量值为延迟,则路由器可以直接发送一个特殊的“响应”(ECHO)分组来测出延时,接收者只对它加上时间标记后就尽快送回。

高等数学应用案例讲解

高等数学应用案例案例1、如何调整工人的人数而保证产量不变 一工厂有x名技术工人和y名非技术工人,每天可生产的产品产量为 , (=(件) f2 ) x x y y 现有16名技术工人和32名非技术工人,如何调整非技术工人的人数,可保持产品产量不变? 解:现在产品产量为(16,32)8192 f=件,保持这种产量的函数曲线为y (= x f。对于任一给定值x,每增加一名技术工人时y的变化量即为, 8192 ) dy。而由隐函数存在定理,可得 这函数曲线切线的斜率 dx 所以,当增加一名技术工人时,非技术工人的变化量为 dy。 当16,32 ==时,可得4-= x y dx 因此,要增加一个技术工人并要使产量不变,就要相应地减少约4名非技术工人。 下面给出一个初等数学解法。令 c:每天可生产的产品产量; x;技术工人数; y;非技术工人数; x?;技术工人增加人数; y?;在保持每天产品产量不变情况下,当技术工人由16名增加到17名时,非技术人员要增加(或减少)的人数。 由已知列方程:

(1)当技术工人为16名,非技术工人为32名时,每天的产品产量为c ,则有方程: c y x =?020 (1) (2)当技术工人增加了1名时,非技术工人应为(y y ?+0)名,且每 天的产品产量为c ,则有方程: c y y x x =?+??+)()(020 (2) 联立方程组(1)、(2),消去c 得: 即 [] 002020)/(y y x x x y -??+=????????+--=20200)(1x x x y 代入x y x ?,,00,得:46.3-≈-≈?y 名,即减少4名非技术工人。 比较这两种解法我们可以发现,用初等数学方法计算此题的工作量很大,究其原因,我们注意到下面之展开式: 从此展开式我们可以看到,初等数学方法不能忽略掉高阶无穷小: 0)x ( )1(31 04120→????? ???-+???? ???--∞=-∑n n n x x n x x (3) 而高等数学方法却利用了隐函数求导,忽略掉高阶无穷小(3),所以计算较容易。

高等数学同济大学版课程讲解函数的极限

高等数学同济大学版课程讲解函数的极限 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

课 时 授 课 计 划 课次序号:03 一、课 题:§函数的极限 二、课 型:新授课 三、目的要求:1.理解自变量各种变化趋势下函数极限的概念; 2.了解函数极限的性质. 四、教学重点:自变量各种变化趋势下函数极限的概念. 教学难点:函数极限的精确定义的理解与运用. 五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合. 六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编, 高等教育出版社; 2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社. 七、作业:习题1–31(2),2(3),3,6 八、授课记录: 九、 授课 效果分析: 第三节函数的极限 复习 1.数列极限的定义:lim 0,N,N n n n x a n x a εε→∞ =??>?>-<当时, ; 2.收敛数列的性质:唯一性、有界性、保号性、收敛数列与其子列的关系. 在此基础上,今天我们学习应用上更为广泛的函数的极限.与数列极限不同的是,对 于函数极限来说,其自变量的变化趋势要复杂的多. 一、x →∞时函数的极限 对一般函数yf (x )而言,自变量无限增大时,函数值无限地接近一个常数的情形与数列极限类似,所不同的是,自变量的变化可以是连续的. 定义1若?ε>0,?X >0,当x >X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )A |<ε),则称x →∞时,f (x )以A 为极限,记为lim x →+∞ f (x )A . 若?ε>0,?X >0,当x <X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )A |<ε),则称

距离矢量协议和链路状态协议的区别

距离矢量协议和链路状态协议的区别 一.什么是距离向量路由协议以及什么是链接状态路由协议? (1.)这类协议使用贝尔曼-福特算法(Bellman-Ford)计算路径。在距离-矢量路由协议中,每个路由器并不了解整个网络的拓扑信息。它们只是向其它路由器通告自己的距离、也从其它路由器那里收到类似的通告。(如果在90秒内没有收到相邻站点发送的路由选择表更新,它才认为相邻站点不可达。每隔30秒,距离向量路由协议就要向相邻站点发送整个路由选择表,使相邻站点的路由选择表得到更新。这样,它就能从别的站点(直接相连的或其他方式连接的)收集一个网络的列表,以便进行路由选择。距离向量路由协议使用跳数作为度量值,来计算到达目的地要经过的路由器数。) 每个路由器都通过这种路由通告来传播它的路由表。在之后的通告周期中,各路由器仅通告其路由表的变更。该过程持续至所有路由器的路由表都收敛至一稳定状态为止。 这类协议具有收敛缓慢的缺点,然而,它们通常容易处理且非常适合小型网络。距离-矢量路由协议的一些例子包括:路由信息协议(RIP)内部网关路由协议(IGRP) (2.)链接状态路由协议更适合大型网络,但由于它的复杂性,使得路由器需要更多的C P U 资源。 在链路状态路由协议中,每个节点都知晓整个网络的拓扑信息。各节点使用自己了解的网络拓扑情况来各自独立地对网络中每个可能的目的地址计算出其最佳的转发地址(下一跳)。所有最佳转发地址汇集到一起构成该节点的完整路由表。 与距离-矢量路由协议使用的那种每个节点与其相邻节点分享自己的路由表的工作方式不同,链路状态路由协议的工作方式是节点间仅传播用于构造网络连通图所需的信息。最初创建这类协议就是为了解决距离-矢量路由协议收敛缓慢的缺点,然而,为此链路状态路由协议会消耗大量的内存与处理器能力。 (它能够在更短的时间内发现已经断了的链路或新连接的路由器,使得协议的会聚时间比距离向量路由协议更短。通常,在1 0秒钟之内没有收到邻站的H E L LO报文,它就认为邻站已不可达。一个链接状态路由器向它的邻站发送更新报文,通知它所知道的所有链路。它确定最优路径的度量值是一个数值代价,这个代价的值一般由链路的带宽决定。具有最小代价的链路被认为是最优的。在最短路径优先算法中,最大可能代价的值几乎可以是无限的。) 如果网络没有发生任何变化,路由器只要周期性地将没有更新的路由选择表进行刷新就可以了(周期的长短可以从3 0分钟到2个小时)。 链路状态路由协议的例子有:开放式最短路径优先协议(OSPF),中间系统到中间系统路由交换协议(IS-IS) 二.具体理解链路状态和距离矢量路由协议 距离矢量(DV)是“传说的路由”,A发路由信息给B,B加上自己的度量值又发给C,路由表里的条目是听来的,虽说“兼听则明,偏信则暗”,但是选出最优路径的同时会引发环路问题,当然,DV协议也使用水平分割,毒性逆转,触发更新等特性来避免,无奈的是,

矢量计算题

矢量的基本知识和运算法则 1.矢量和标量的不同点在于:矢量除了有大小之外,还有方向,矢量A 记做A ,其大小等于A 矢量的图示:通常用一条带有箭头的线段来表示,(线段的长度表示大小,箭头表示方向)如图5-1所示。 两个矢量相等的条件是:大小相等,方向相同。如图5-2所示。两矢量的夹角定义为两矢量所构成的小于或等于1800的角。在一般问题中(除非特别指明),矢量的始点位置不关重要的,在进行矢量运算时可将矢量平移。 2.矢量的加减法运算遵从平行四边形法则或三角形法则。 对三个以上的矢量相加,通常使用多边形法则。 3.矢量A 与数量K 相乘时,其结果仍是一个矢量。所得矢量的大小等于原矢量大小乘以,所得矢量的方向:当K >0时,与原矢量方向相同;当K<0 时,与原矢量方向相反 如动量()mV 、冲量()F t ??都是矢量,其方向分别与矢量V 和F 矢量相同。动量的变化量()m V ?也是矢量,其方向与V ?相同。 矢量A 与数量K 相除,可以看成A 矢量乘以数量 1K ,如加速度1F a F m m ==?,方向与F 相同。 4.矢量A 与矢量B 相乘 一种乘法叫做两矢量的数量积(又叫点积),用AB ?表示,乘得的积是标量,大小等于两矢量的大小与两矢量夹角余弦的积。即:c o s A B A B θ?=。如:功是力F 与位移S 的数量积,是标量。c o s W F S F S θ=?= 另一种乘法运算是两矢量的矢量积(又叫叉积),用A B ?表示,矢量积A B C ?=还是一个矢量,其大小等于两矢量的大小和两矢量夹角的正弦的乘积。sin C A B θ=?,即矢量C 的大小等于两矢量A 和B 为邻边的平行四边形的面积,矢量C 的方向垂直于矢量A 和B 所决定的平面,指向用“右手螺旋法则”来确定,如图5-5(甲)或(乙)所示。 A B B A ?≠?,A B ?与B A ?大小相等,方向相反。 如力矩M 等于力F 和矢径r 两矢量的矢量积,力矩M r F =?,大小为sin M Fr θ=。带电粒子所受的磁场力(即洛仑兹力)F qV B =?,大小为sin F q vB θ=?(若是负电荷受力方向与此相反) 例5-1为什么说匀速园周运动既不是匀速运动,也不是匀变速运动?物体在运动过程中合外力是否做功? 解:因为速度和加速度都是矢量,在图5-6所示的圆周上任意取两点A 、B ,虽然,A B A B v v a a ==,但方向不同,由矢量相等的条件可知:A B v v ≠,A B a a ≠,因此匀速园周运动既不是匀速运动,也不是匀变速运动。

距离矢量路由算法原理

距离矢量路由算法原理实验 【实验目的】 1、要求实验者利用路由选择算法模拟软件提供的通信功能,模拟距离矢量路由选择算法的初始化、路由信息扩散过程和路由计算方法; 2、掌握距离矢量算法的路由信息扩散过程; 3、掌握距离矢量算法的路由计算方法。 【预备知识】 1、路由选择算法的特征、分类和最优化原则 2、路由表的内容、用途和用法 3、距离矢量算法的基本原理 【实验环境】 1、分组实验,每组4~10人。 2、拓扑: 虚线表示节点之间的逻辑关系,构成一个逻辑上的网状拓扑结构。 3、设备:小组中每人一台计算机。 4、实验软件:路由选择算法模拟软件(routing.exe ) 【实验原理】 路由选择算法模拟软件根据给定的拓扑结构,为实验者提供基本的本地路由信息,并能发送和接收实验者所组织的路由信息,帮助实验者完成路由选择算法的路由信息扩散过程、路由计算过程和路由测试过程。 1、模拟软件的功能(图2-1) ● 在局域网内根据小组名称和成员数量建立一个模拟网络拓扑结构,每个成员模拟拓扑中的一台路由器,路由器上的本地路由信息由实验软件提供。 ● 向实验者指定的发送对象发送实验者自行组织的发送内容。 ● 提示实验者有数据需要接收,并显示接收内容。 N 路由节点2 路由节点N-1 N = 4 ~ 10

●为实验者提供记录路由计算结果的窗口——路由表窗口。 ●为实验者提供分组逐站转发方法来验证路由选择的结果。 图2-1 路由选择算法模拟软件主界面 2、模拟软件的使用方法 1)建立小组 通过建立小组,每个小组成员可以获得本节点的编号和本地直连链路信息。 a)4~10人一组,在实验前自由组合形成小组。小组人数尽量多些,每人使用一台计算机。启动实验软件后点击“建立小组”按钮。(图2-2) 图2-2 选择建立小组 b)在建立小组的窗口内填入小组名称和成员数量。同一小组成员必须填写同样的小组名称和成员数量才能正确建立小组。(图2-3) 图2-3 建立小组窗口图2-4 小组建立过程

高等数学基础例题讲解

第1章 函数的极限与连续 例1.求 lim x x x →. 解:当0>x 时,0 00lim lim lim 11x x x x x x x + ++ →→→===, 当0

实验四 配置距离矢量协议RIP实验

实验四配置距离矢量协议RIP实验 一、背景知识: RIP(Routing information Protocol,路由信息协议)是应用较早、使用较普遍的内部网关协议(Interior Gateway Protocol,IGP),适用于小型同类网络的一个自治系统(AS)内的路由信息的传递。RIP协议是基于距离矢量算法(Distance Vector Algorithms,DVA)的。它使用“跳数”,即metric 来衡量到达目标地址的路由距离。它是一个用于路由器和主机间交换路由信息的距离向量协议,目前最新的版本为v4,也就是RIPv4。 在路由实现时,RIP 负责从网络系统的其它路由器接收路由信息,从而对本地IP 层路由表作动态的维护,保证IP 层发送报文时选择正确的路由。同时负责广播本路由器的路由信息,通知相邻路由器作相应的修改。RIP 协议处于UDP 协议的上层,RIP 所接收的路由信息都封装在UDP协议的数据报中,RIP 在520号UDP端口上接收来自远程路由器的路由修改信息,并对本地的路由表做相应的修改,同时通知其它路由器。通过这种方式,达到全局路由的有效。 二、实验目的 实验目的:了解RIP协议的工作原理及距离矢量算法生成路由表的过程;在路由器上通过设置运行RIP协议,并查看在路由器上所生成的最终路由表,是否和按照工作原理和距离矢量算法所生成的路由表相同,并对路由器建立路由表有一个深刻的认识。 三、实验内容: 实验内容:1、用Boson Network Designer画出网络拓朴结构图;2、对路由器、pc机进行设置,配置RIP 协议;3、检验配置是否成功。 四、实验步骤: (一)画出网络拓扑结构图: 用Boson Network Designer画出网络拓朴结构图,如下所示: 其中,路由器选择思科2514。

最新高等数学(上)重要知识点归纳讲解学习

高等数学(上)重要知识点归纳 第一章 函数、极限与连续 一、极限的定义与性质 1、定义(以数列为例) ,,0lim N a x n n ?>??=∞ →ε当N n >时,ε<-||a x n 2、性质 (1) )()()(lim 0 x A x f A x f x x α+=?=→,其中)(x α为某一个无穷小。 (2)(保号性)若0)(lim 0 >=→A x f x x ,则,0>?δ当),(0δx U x o ∈时,0)(>x f 。 (3)*无穷小乘以有界函数仍为无穷小。 二、求极限的主要方法与工具 1、*两个重要极限公式 (1)1sin lim =??→? (2)e =? +? ∞ →?)11(lim 2、两个准则 (1) *夹逼准则 (2)单调有界准则 3、*等价无穷小替换法 常用替换:当0→?时 (1)??~sin (2)??~tan (3)??~arcsin (4)??~arctan (5)??+~)1ln( (6)?-?~1e (7)221 ~cos 1??- (8)n n ?-?+~11

4、分子或分母有理化法 5、分解因式法 6用定积分定义 三、无穷小阶的比较* 高阶、同阶、等价 四、连续与间断点的分类 1、连续的定义* )(x f 在a 点连续 )()()()()(lim 0lim 0 a f a f a f a f x f y a x x ==?=?=??-+→→? 2、间断点的分类?? ?? ? ? ?????????? ?其他震荡型(来回波动) ) 无穷型(极限为无穷大第二类但不相等)跳跃型(左右极限存在可去型(极限存在) 第一类 3、曲线的渐近线* a x x f A y A x f a x x =∞===→∞ →则存在渐近线:铅直渐近线:若则存在渐近线:水平渐近线:若,)(lim )2(,)(lim )1( 五、闭区间连续函数性质 1、最大值与最小值定理 2、介值定理和零点定理

高等数学试题及答案讲解

《高等数学》 一.选择题 1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( ) A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y 2. 函数f(x)在点x 0极限存在是函数在该点连续的( ) A )、必要条件 B )、充分条件 C )、充要条件 D )、无关条件 3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、(( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4. 下列各式正确的是( ) A )、2ln 2x x x dx C =+? B )、sin cos tdt t C =-+? C )、 2arctan 1dx dx x x =+? D )、2 11 ()dx C x x -=-+? 5. 下列等式不正确的是( ). A )、 ()()x f dx x f dx d b a =??????? B )、()()()[]()x b x b f dt x f dx d x b a '=???? ??? C )、()()x f dx x f dx d x a =??????? D )、()()x F dt t F dx d x a '=???? ??'? 6. 0 ln(1)lim x x t dt x →+=?( ) A )、0 B )、1 C )、2 D )、4 7. 设bx x f sin )(=,则=''?dx x f x )(( ) A )、 C bx bx b x +-sin cos B ) 、C bx bx b x +-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin

路由算法介绍

路由算法介绍 网络层的作用:1、路由选择 2、网络互连 3、拥塞控制 4、为上层提供服务 网络层的主要功能是将分组从源机器路由到目标机器。完成路由选择的路由算法是网络层设计的最主要内容。 路由算法:它负责确定一个进来的分组应该被传送到哪一条输出线路上。 如果是数据报子网,将在每一个分组到达时作此决定 如果是虚电路子网,是在虚电路建立时决定,该连接上所有分组都将沿此线路传输 路由算法设计必须考虑的问题:正确性简单性健壮性稳定性公平性最优性路由算法的原则:按照某种指标(传输延迟,所经过的站点数目等)找到一条从源节点到目标节点的较好路径。 静态算法:不会根据当前测量或者估计的流量和拓扑结构,来调整它们的路由决策,所有的路由选择是预先在离线情况下计算好的,在网络启动的时候被下载到路由器中。 1、最短路径路由:

如图所示,图中的每个节点代表一台路由器,每条弧代表一条通信线路,线路上的数字是它的开销。现在我们想找到从A到D的最短路径。过程: (1)节点A标记为永久节点,依次检查每一个与A相邻的节点,并检查它们与A之间的距离。 (2)如果新的标记距离小于该节点原来的标记,说明找到了一条更短路径,该节点需要重新标记,作为暂时性标记 (3)检查整个图中所有有暂时性标记的节点,使其中具有最小标记的那个节点成为永久节点,并且作为下一个工作节点。 (4)重复上述过程,直到没有新的永久节点为止。 如下图所示 2、扩散法:每一个进来的分组将被发送到除了它进来的那条线路之外的每一条输出线路上。 产生的问题:会产生大量的重复分组。

解决办法: 在数据包头设一个计数器初值,每经过一个节点自动减1,计数值 为0 时,丢弃该数据包 在每个节点上建立登记表,则数据包再次经过时丢弃 缺点:重复数据包多,浪费带宽 优点:可靠性高,可用于并发数据库更新。极好的健壮性,可用于军事应用。常作为衡量标准,评价其它路由算法 现代计算机网络通常使用动态的路由算法(自适应算法),而不是上面介绍的静态路由算法,因为静态路由算法不会考虑到网络的当前负载情况。 自适应算法:随拓扑结构和流量的变化改变它们的路由决策,又称为动态路由算法。 1、 距离矢量路由:每个路由器维护一张表(即一个矢量),表中列出了当前抑制的到每个目标的最佳距离,以及所使用的线路。通过邻居之间互相交换信息,路由器不断更新它们内部的表。 举例: B A E F D C 2 3 7 6 1 8 5 4 延迟信息B

高等数学知识点归纳知识讲解

第一讲: 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=? >?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () () x x t y y t =?? =? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→ 1(0)x x →→∞, 0lim 1x x x +→=, lim 0n x x x e →+∞=, ln lim 0n x x x →+∞=, 0 lim ln 0n x x x + →=, 0, x x e x →-∞ ?→?+∞→+∞ ?

计算机网络距离矢量路由算法实验报告

计算机网络实验报告

距离矢量路由算法 一,实验内容: A D 设计一个算法,实现上面拓扑图的各个结点之间路由表的交换,要求显示出结点路由表的交换过程并显示每次交换结束后的各个结点保存的路由表的内容。最后显示交换了几次后各个结点路由表开始变得稳定。 二,算法设计: 首先创建一个类。它有两个成员变量。一个是二维数组型的x[i][j]用来存放从加点i到结点j的距离,一个是一位数组型的y[i]用来存放从源结点到目标结点i的路径上的第一个途经的结点。然后为每一个结点实例化一个对象用来存放此节点的路由表。初始化各个节点的路由表,如果两个节点之间有连线则将其之间的距离赋给x[i][j],y[j]=j.如果没有直接路径则设 x[i][j]=1000,y[j]=0.算法开始的时候各个结点交换路由表。比较如果有类似x[i][j]和x[j][k]的项则设置 x[i][k]=MIN(x[i][k],x[i][j]+x[j][k]),为了在结点A的邻居节点执行距离矢量路由更新时,它使用的是A的旧表,可以再设置两个二

维数组用来暂时存放各个节点的新路由表,待各个节点一次交换都完毕后在把暂存的新节点依次赋给各个节点的路由表。各个节点都执行此操作,为了确定供交换了几次可以设置一个标质量k.初始k=0,交换一次K就加一,最后k的值便是交换的次数。 三,遇到的问题及解决方案: 刚开始遇到这个题目是觉得无从下手,觉得这个图这么复杂函数循环又没有规律怎样让各个节点依次交换呢,又怎样判断什么时候各个节点的路由表变稳定呢?着一些列的问题使自己变得很烦躁。待到心情平静下来认真的一点一点推敲的时候发现只有七个节点,为每个节点设置一个交换函数也不麻烦而且这样思路便变得非常的清楚,至于怎样知道何时路由表稳定则我在每个结点函数中设置了一个标志量,在主函数中将其初始化为零,在下面的结点函数中都将其变成1,这样只有调用子函数这个标志量便会变成1,检测标质量是否为1来判断路由表是否变的稳定。 四,源代码 package wangluo; class Jiedian { int y[]=new int[8]; //存放路径上的下一个节点 int x[][]=new int[8][8]; //存放节点间的距离 } public class Luyou { public static void main(String[] args) { Jiedian a=new Jiedian();

§1 矢量的基本知识和运算法则

§1 矢量的基本知识和运算法则 1.矢量和标量的不同点在于:矢量除了有大小之外,还有方向,矢量A 记做A ,其大小等于A 矢量的图示:通常用一条带有箭头的线段来表示,(线段的长度表示大小,箭头表示方向)如图5-1所示。 两个矢量相等的条件是:大小相等,方向相同。如图5-2所示。两矢量的夹角定义为两矢量所构成的小于或等于1800的角。在一般问题中(除非特别指明),矢量的始点位置不关重要的,在进行矢量运算时可将矢量平移。 2.矢量的加减法运算遵从平行四边形法则或三角形法则。 对三个以上的矢量相加,通常使用多边形法则。 10N F 图5-1 A /A /A A /A A /A A = /A A ≠ /A A =- 图5- 2 C A B A B C += C A B ()A B A B C -=+-= C A B A B C += A B C A B C -= 图5- 3 A B C D E A B C D E +++= A B C D E B D A C E +++= 图5-4

3.矢量A 与数量K 相乘时,其结果仍是一个矢量。所得矢量的大小等于原矢量大小乘以,所得矢量的方向:当K >0时,与原矢量方向相同;当K<0 时,与原矢量方向相反 如动量() mV 、冲量() F t ??都是矢量,其方向分别与矢量V 和F 矢量相同。动量的变化量() m V ?也是矢量,其方向与V ?相同。 矢量A 与数量K 相除,可以看成A 矢量乘以数量 1K ,如加速度1 F a F m m = =?,方向与F 相同。 4.矢量A 与矢量B 相乘 一种乘法叫做两矢量的数量积(又叫点积),用A B ?表示,乘得的积是标量,大小等于两矢量的大小与两矢量夹角余弦的积。即:cos A B AB θ?=。如:功是力F 与位移S 的数量积,是标量。cos W F S FS θ=?= 另一种乘法运算是两矢量的矢量积(又叫叉积),用A B ?表示,矢量积A B C ?=还是一个矢量,其大小等于两矢量的大小和两矢量夹角的正弦的乘积。 sin C A B θ=?,即矢量C 的大小等于两矢量A 和B 为邻边的平行四边形的面积, 矢量C 的方向垂直于矢量A 和B 所决定的平面,指向用“右手螺旋法则”来确定,如图5-5(甲)或(乙)所示。 注意:A B B A ?≠?,A B ?与B A ?大小相等,方向相反。 如力矩M 等于力F 和矢径r 两矢量的矢量积,力矩M r F =?,大小为

高等数学求极限的常用方法(附例题和详细讲解)

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii )A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 ) (lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L’ho spital )法则(大题目有时候会有暗示要你使用这个方法) 洛必达法则(定理) 设函数f(x )和F(x )满足下列条件: ⑴x→a 时,lim f(x)=0,lim F(x)=0; ⑵在点a 的某去心邻域内f(x )与F(x )都可导,且F(x )的导数不等于0; ⑶x→a 时,lim(f'(x)/F'(x))存在或为无穷大 则 x→a 时,lim(f(x)/F(x))=lim(f'(x)/F'(x)) 注: 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x

★距离矢量路由算法中避免环路的方法

距离矢量路由协议中路由环路问题的解决方法 距离矢量路由协议中路由环路问题的解决方法: 概括来讲,主要分为六种: 1.定义最大值; 2.水平分割技术; 3.路由中毒; 4.反向路由中毒; 5.控制更新时间; 6.触发更新。 1.定义最大值: 距离矢量路由算法可以通过IP头中的生存时间(TTL)来纠错,但路由环路问题可能首先 要求无穷计数。为了避免这个延时问题,距离矢量协议定义了一个最大值,这个数字是指最 大的度量值(如rip协议最大值为16),比如跳数。也就是说,路由更新信息可以向不可到达的网络的路由中的路由器发送15次,一旦达到最大值16,就视为网络不可到达,存在故障, 将不再接受来自访问该网络的任何路由更新信息。 2.水平分割: 一种消除路由环路并加快网络收敛的方法是通过叫做“水平分割”的技术实现的。其规则就是不向原始路由更新的方向再次发送路由更新信息(个人理解为单向更新,单向反馈)。比如 有三台路由器ABC,B向C学习到访问网络10.4.0.0的路径以后,不再向C声明自己可以通过C访问10.4.0.0网络的路径信息,A向B学习到访问10.4.0.0网络路径信息后,也不再向B声明,而一旦网络10.4.0.0发生故障无法访问,C会向A和B发送该网络不可达到的路由更新信息,但不会再学习A和B发送的能够到达10.4.0.0的错误信息。 3.路由中毒(也称为路由毒化): 定义最大值在一定程度上解决了路由环路问题,但并不彻底,可以看到,在达到最大值之前,路由环路还是存在的。为此,路由中毒就可以彻底解决这个问题。其原理是这样的:假设有 三台路由器ABC,当网络10.4.0.0出现故障无法访问的时候,路由器C便向邻居路由发送

高等数学应用案例讲解.

高等数学应用案例 案例1、如何调整工人的人数而保证产量不变 一工厂有x 名技术工人和y 名非技术工人,每天可生产的产品产量为 y x y x f 2),(= (件) 现有16名技术工人和32名非技术工人,如何调整非技术工人的人数,可保持产品产量不变? 解:现在产品产量为(16,32)8192f =件,保持这种产量的函数曲线为8192),(=y x f 。对于任一给定值x ,每增加一名技术工人时y 的变化量即为这函数曲线切线的斜率dx dy 。而由隐函数存在定理,可得 y f x f dx dy ????= 所以,当增加一名技术工人时,非技术工人的变化量为 x y y f x f dx dy 2-=????= 当16,32x y ==时,可得4-=dx dy 。 因此,要增加一个技术工人并要使产量不变,就要相应地减少约4名非技术工人。 下面给出一个初等数学解法。令 c :每天可生产的产品产量; 0x ;技术工人数; 0y ;非技术工人数;

x ?;技术工人增加人数; y ?;在保持每天产品产量不变情况下,当技术工人由16名增加到17名时,非技术人员要增加(或减少)的人数。 由已知列方程: (1)当技术工人为16名,非技术工人为32名时,每天的产品产量为c ,则有方程: c y x =?020 (1) (2)当技术工人增加了1名时,非技术工人应为(y y ?+0)名, 且每天的产品产量为c ,则有方程: c y y x x =?+??+)()(020 (2) 联立方程组(1)、(2),消去c 得: )(020020y y x x y x ?+??+=?)( 即 [] 002020)/(y y x x x y -??+=????????+--=20200)(1x x x y ????????????? ????? ???+--=200111x x y 代入x y x ?,,00,得:46.3-≈-≈?y 名,即减少4名非技术工人。 比较这两种解法我们可以发现,用初等数学方法计算此题的工作量很大,究其原因,我们注意到下面之展开式: ∑∞=--???? ???-+???? ???-?=???? ???+-110120020)1(32111n n n x x n x x x x x x 从此展开式我们可以看到,初等数学方法不能忽略掉高阶无穷

高等数学例题讲解(提高篇)

第1章 函数的极限与连续 例1.求下列极限: 1))1ln(1 2 )(cos lim x x x +→ 2)βαβ αβα--→e e lim 解:1)原式 2 201 ln cos ln cos lim ln(1) ln(1) lim x x x x x x e e →++→==,而 21)2(lim 22sin 2lim )1ln()2sin 21ln(lim )1ln(cos ln lim 22 02 2022020-=-=-=+-=+→→→→x x x x x x x x x x x x 所以, e e x x x 1) (cos lim 2 1 ) 1ln(1 2= =- +→ 2)原式11 lim lim e e e e αβαββ βαβαβαβαβ--→→--==-- 令t =-βα,当βα→时,0→t ,所以, 1lim 1lim 1lim 00==-=--→→-→t t t e e t t t βαβαβα. 从而,ββ αβαβαe e e =--→lim . 例2.求 lim(1) p x x mx →-,其中 m 、p 是正整数. 解:因为 mp mx mp mx x p mx mx mx ]) 1[(1) 1()1(1)(1 --- -= -=-, 令mx u -=,当0→x 时,0→u 1 1 111lim(1)lim lim [(1) ] [(1)] p mp x mp x x u mp mp mx u mx e e mx u -→→→--=== =-+. 例3.若()0f x >,0 lim ()(0)x x f x A A →=> 且0 lim x x → lim x x → 解:设 lim x x a →= a β=+,β是0x x →时的无穷小量, 22()2f x a a ββ=++ 222 lim ()lim(2)x x x x f x a a a ββ→→=++= 由题应有:2 A a = ,a = a = x x →= 例4.证明:半径为R 的圆面积2 R S π= 证:做圆的内接正n (3≥n )边形,如图1-13所示,记AOP n ∠=α其面积为 n R n R n R R n OP AB n S n n n n π ααα2sin 22sin 2cos sin 22222==?=?= 当边数n 取3,4, ,5,对应的面积3S ,4S , ,5S 构成了一数列}{n S ,图1-13

相关主题