搜档网
当前位置:搜档网 › 电力电子课程设计基于PWM逆变器的设计与仿真

电力电子课程设计基于PWM逆变器的设计与仿真

电力电子课程设计基于PWM逆变器的设计与仿真
电力电子课程设计基于PWM逆变器的设计与仿真

电力电子系统仿真设计报告题目:基于PWM逆变器的设计与仿真

指导老师:杨小玲

院系:电气三班

姓名:吴明

学号:08230318

时间:2011.12

摘要

现在大量应用的逆变电路中,绝大部分都是PWM型逆变电路。通过对PWM

型逆变电路进行研究,首先建立了逆变器单极性控制和双极性控制所需的电路模型,采用IGBT作为开关器件,并对单相桥式电压型逆变电路和三相桥式电压型逆变电路的工作原理进行了分析,运用MATLAB中的SIMULINK对电路进行了仿真,并给出了仿真结果波形,证实了MATLAB软件的简便直观、高效快捷和真实准确性。

关键词:SPWM;PWM;逆变器;MATLAB

目录

引言 (4)

第一章对仿真软件以及设计内容及技术要求简单介绍 (5)

1.1对仿真软件MATLAB的介绍 (5)

1.2设计内容 (6)

1.1.1设计的内容: (6)

1.1.2PWM逆变器的电路参数要求 (6)

1.2设计技术要求 (6)

1.2.1仿真任务要求: (6)

1.2.2设计的总体要求 (6)

第二章对电力电子器件的简单介绍 (7)

2.1.电力电子中常用的器件做简单的介绍: (7)

第三章 PWM逆变器电路的设计和工作原理 (12)

3.1、SPWM逆变器调制原理 (12)

3.2、SPWM控制方式 (13)

3.2.1单极性SPWM调制方法 (13)

3.2.2双极性SPWM调制方法 (14)

3.3调制法 (15)

第四章. PWM逆变器电路的电路仿真及分析 (19)

4.1PWM技术逆变器原理 (19)

4.2于PWM技术逆变器及其仿真 (19)

4.2.1GBT在MATLAB中的实现 (19)

4.2.2PWM发生器 (21)

4.3.3相单极性PWM仿真 (22)

第五章心得体会与总结 (32)

参考文献33

引言

电力电子学是由电力学,电子学和控制理论三个学科交叉而形成的,电力电子技术的应用范围十分广泛。其不仅应用于一般的工业,同时广泛应用于电力系统,交通运输,通讯系统以及新能源系统。电力电子技术是电气工程及其自动化专业的一门专业基础课,实践性和应用性都很强,教学效果的好坏直接影响着后续专业课的学习。

电力电子电路主要包括控制电路,检测电路。驱动电路和主电路,在所学电力电子技术课程中主要是以分析主电路为主,AC--DC则是相控分析法的基础和

重点,三相可控桥整流电路则是整流电路的难点。

“电力电子电路的计算机仿真”针对电力电子电路的特点,对器件,装置和系统3个层次阐述了电力电子电路计算机辅助设计中各种数学模型的基本原理,分析方法和应用实例。“电力电子电路的计算机仿真”注重将理论分析和实际应用相结合,通过大量的应用实例,对不同类型仿真软件在电力电子技术仿真计算机中的适用性进行了详细的讨论,以期对进行电力电子电路分析设计的读者起到帮助和指导作用。

近年来,MATLAB已成为科学研究和过程设计中最重要的工具之一。在电力电子教学实践中,我们立足于传统的授课模式,引入MATLAB/SIMULINK仿真工具,把传统授课方式和现代多媒体授课方式有机的结合起来。

随着地球非可再生资源的枯竭日益以及人们对电力的日益依赖,逆变器在人们日常生活中扮演着越来越重要的角色.近年来,PWM型逆变器的的应用十分广泛,它使电力电子装置的性能大大提高,并显示出其可以同时实现变频变压反抑制谐波的优越性,因此它在电力电子技术的发展史上占有十分重要的地位。PWM 控制技术正是有赖于在逆变电路中的成功应用,才确定了它在电力电子技术中的重要地位。

第一章对仿真软件以及设计内容及技术要求简单介绍

1.1对仿真软件MATLAB的介绍

MATLAB俗称“矩阵实验室”,是Matrix Laboratory 的缩写。1984年由美国MathWorks公司研制开发,以矩阵计算为基础的交互式的功能强大的科学及工程计算软件。首创者是在数值线性代数领域颇有影响的Cleve Moler博士。Matlab 将高性能的数值计算和可视化集成在一块,并提供了大量的内置函数,从而使其广泛应用于数学计算和分析,自动控制,系统仿真,数字信号处理,图形图像分析,数理统计,人工智能,虚拟现实技术,通讯工程,金融系统等领域。

除了MATLAB语言的强大数值计算机和图形功能外,它还有其他语言难以比拟的功能,此外,它和其他语言的接口能够保证它可以和各种各样的强大计算机软件相结合,发挥更大的作用。MATLAB目前可以在各种类型的常用计算机上运行,如在PC兼容微型计算机,Sun Sparc工作站,Silicon Graphics工作站,惠普工作站和其他一些计器上完全兼容。MATLAB语言具有较高的运算精度,一般情况下,在矩阵类运算中往往可达到10-15数量级的精度,MATLAB 是以复数矩阵作为基本编程单元的一种高级程序设计语言,它提供了各种矩阵的运算与操作,并有较强的绘图能力,所以得以广为流传。

Simulink是The Math works公司于1990年推出的产品,是用于MATLAB下建立系统框图和仿真的环境。该环境刚推出时的名字叫Simulab,由于其名字很类似于当时一个很著名的语言—Simula语言,所以次年更名为Simulink。和MATLAB其他内容一样,Simulink也提供了较完善的联机帮助系统,选中一个模块,选择Help菜单项或右击该模块,并在快捷菜单中选择Help。

1.2设计内容

1.1.1设计的内容:

(1)制定设计方案;

(2)主电路设计及主电路元件选择;

(3)驱动电路和保护电路设计及参数计算、器件选择;

(4)绘制电路原理图;

(5)总体电路原理图及其说明。

1.1.2 PWM逆变器的电路参数要求

电源工频220V,阻感负载。负载参数、输出频率自定。要求分别用单极性和双极性SPWM。

1.2设计技术要求

1.2.1仿真任务要求:

(1)熟悉matlab/simulink/powersystem中的仿真模块用法及功能;

(2)根据设计电路搭建仿真模型;

(3)设置参数并进行仿真;

(4)给出不同触发角是对应电压电流的波形;

1.2.2设计的总体要求

(1)熟悉整流和触发电路的基本原理,能够运用所学的理论知识分析设计任务;

(2)掌握基本电路的数据分析、处理;描绘波形并加以判断;

(3)能真确设计电路,画出线路图,分析电路原理;

(4)广泛收集相关技术资料;

(5)按时完成课程设计任务,认真、正确书写课程设计报告

第二章对电力电子器件的简单介绍

2.1.电力电子中常用的器件做简单的介绍:

按照器件能够被控制信号所控制的程度,一般电力电子器件可以分为三种情况:

半控型器件:通过控制信号可以控制其导通而不能控制其关断。

全控型器件:通过控制信号既可以控制其导通又可以控制其关断,又称自关断器件。

不可控器件:不能用控制信号控制其通断,因此也就不需要驱动电路。

1. 电力二极管(Power Diode)---不可控器件

电力二极管是一种具有单向导电性的半导体器件,即正向导电性,反向阻断。电力二极管实际上是由一个较大的PN结和两端引线以及封装组成的。电力二极管的主要参数包括:正向平均电流IF(AV),正向压降UF,反向重复峰值电压,等。电力二极管的主要类型包括:普通二极管(又称整流二极管),快恢复二极管,肖特基二极管。

电力二极管的仿真模型是由一个电阻,一个电感,一个直流电压源和一个开关串联组成的。

工作特性:二极管具有单向导电能力,二极管正向导电时必须克服一定的门坎电压Uth(又称死区电压),当外加电压小于门坎电压,正向电流几乎为零。硅二极管的门坎电压约为0.5V,当外加电压大于Uth后,电流会迅速上升,当外加反向电压时,二极管的反向电流Is是很小的,但是当外加反向电压超过二极管反向击穿电压U RO后二极管被电击穿,反向电流迅速增加。

电力二极管的基本特性:

2. 晶闸管(Thyristor)---半控型器件

晶闸管又可称为可控硅整流器,是一种具有开关作用的大功率半导体器件,目前容量可达8kV/6kA以上。它具有4层PN结构,3端引出线(A,K,g)的器件,阳极,阴极,门极分别表示为A,K,g .晶闸管的容量水平已达到8kV/6kV。晶闸管的主要参数包括:电压定额(电压选择应取2-3倍的安全裕量),电流定额(在稳定的额定结温时所允许的最大通态平均电流),动态参数(开通时间和关断时间)。晶闸管具有四种派生器件,分别是快速晶闸管(与普通晶闸管相同),双向晶闸管,逆导晶闸管和光控晶闸管。晶闸管导通需要具备两个条件:晶闸管的阳极和阴极之间加正向电压以及门极和阴极之间也加正向电压和电流,晶闸管一旦导通,门极即失去控制作用,故晶闸管为半控型器件,为使晶闸管关断,必须使其阳极电流减小到一定数值以下,这只有用使阳极电压减小到零或反向的方法来实现。

晶闸管的仿真模型是由一个电阻,一个电感,一个直流电压源和一个开关串联组成。开关受逻辑信号控制,该逻辑信号由电压,电流和门极触发信号决定,即信号电压大于电压源电压,门极触发信号大于0致使晶闸管导通以及电流大于0.

工作特性:当阳极和阴极之间的电压大于Vf且门极触发脉冲为正时,晶闸管开通。该触发脉冲的幅值必须大于零且有一定的持续时间,以保证晶闸管阳极电流大于擎住电流。当晶闸管阳极电流下降到0且阳极和阴极之间施加反向电压的时间大于或等于晶闸管的关断时间时,晶闸管关断。如果阳极和阴极之间施加的反向电压的持续时间小于晶闸管的关断时间时,晶闸管就会自动导通,除非没有门极触发信号且阳极电流小于擎住电流。

晶闸管的伏安特性:

3. 门极可关断晶闸管(GTO)

GTO是一种多元的功率集成器件,是PNPN四层半导体结构,外部也是引出阳极,阴极和门极。目前,GTO的容量水平达6000A/6000V,频率为1kHZ,开通过程中需要经过延时时间和上升时间,关断过程中需要经历抽取饱和导通是储存多大的大量载流子的时间,从而使等效晶体管退出饱和状态。主要参数包括:最大可关断阳极电流,电流关断增益,开通时间,关断时间。

工作特性:开通过程:GTO也等效成两个晶体管P1N1P2和N1P2N2互连,GTO与晶闸管最大区别就是导通后回路增益数值不同。晶闸管的回路增益常为1.15左右,而GTO的增益非常接近1.因而GTO处于临界饱和状态。这为门极负脉冲关断阳极电流提供有利条件。关断过程:GTO关断时,随着阳极电流的下降,阳极电压逐步上升,因而关断时的瞬时功耗较大,在电感负载条件下,阳极电流和阴极电压有可能同时出现最大值,此时的瞬间关断功耗尤为突出。

GTO的阳极伏安特性:

4.绝缘栅双极晶体管(IGBT)

绝缘栅综合了电力晶体管和电力场效应管的优点,因而具有低导通压降和高输入阻抗的综合优点。IGBT也是三个端子器件,具有栅极g,集电极C和发射极E。IGBT是一种场控器件,其开通和关断是由栅极和发射极间的电压UGE决定的,当UGE为正且大于开启电压Uth时,IGBT导通。当栅极与发射极之间施加反向电压时,IGBT关断。IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP 晶体管提供基极电流,使IGBT导通。反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT关断。

IGBT的仿真模型是由一个电阻,一个电感,一个直流电压源和一个逻辑信号控制的开关串联电路组成的。

IGBT的工作特性:当基极电压为正且大于Vf,同时门极施加正信号时(g》0),IGBT开通;当基极电压为正,但门极信号为0时IGBT关断;当基极电压为负是,IGBT处于关断状态。

IGBT的伏安特性和转移特性:

第三章PWM逆变器电路的设计和工作原理

3.1、SPWM逆变器调制原理

PWM控制技术在逆变电路中的应用十分广泛,目前中小功率的逆变电路几乎都采用了PWM技术。常用的PWM技术主要包括:正弦脉宽调制(SPWM)、选择谐波调制(SHEPWM)、电流滞环调制(CHPWM)和电压空间矢量调制(SVPWM)。

在采样控制理论中有一个重要的结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。图3.1中各个形状的窄脉冲在作用到逆变器中电力电子器件时,其效果是相同的,正是基于这个理论,SPWM调制技术才孕育而生。

重要理论基础——面积等效原理

.

a)矩形脉冲 b)三角脉冲

c)正弦半波脉冲 d)单位脉冲函数

图3.1 形状不同而冲量相同的各种窄脉冲

下面分析如何用一系列等幅不等宽的脉冲来代替一个正弦半波。把正弦半波分成N 等分,就可以把正弦半波看成由N 个彼此相连的脉冲序列所组成的波形。如果把这些脉冲序列用相同数量的等幅不等宽的矩形脉冲代替,使矩形脉冲的中点和相应正弦波部分的中点重合,且使矩形脉冲和相应的正弦波部分面积(冲量)相等,就可得到下图所示的脉冲序列,这就是PWM 波形。像这种脉冲的宽度按正弦规律变化而和正弦波等效的PWM 波形,也称为SPWM 波形。SPWM 波形如下图3.2所示:

图3.2(一):单极性PWM 控制方式波形

上图波形称为单极性SPWM 波形,根据面积等效原理,正弦波还可等效为下图中的PWM 波,即双极性SPWM 波形,而且这种方式在实际应用中更为广泛。

图3.2(二):双极性PWM 控制方式波形

3.2、SPWM 控制方式

3.2.1单极性SPWM 调制方法

如果在正弦调制波的半个周期内,三角载波只在正或负的一种极性范围内变化,所得到的SPWM 波也只处于一个极性的范围内,叫做单极性控制方式。

O U d -U O t U d - U d

3.2.2 双极性SPWM调制方法

如果在正弦调制波半个周期内,三角载波在正负极性之间连续变化,则SPWM 波也是在正负之间变化,叫做双极性控制方式。

图3.3双极性PWM控制方式

其中:载波比——载波频率f c与调制信号频率f r 之比N,既

N = f c / f r

调制度――调制波幅值Ar与载波幅值Ac之比,即Ma=Ar/Ac

同步调制——N 等于常数,并在变频时使载波和信号波保持同步。

基本同步调制方式,f r 变化时N不变,信号波一周期内输出脉冲数固定;

三相电路中公用一个三角波载波,且取N 为3的整数倍,使三相输出对称;

为使一相的PWM波正负半周镜对称,N应取奇数;

f r 很低时,f c 也很低,由调制带来的谐波不易滤除;

f r 很高时,f c 会过高,使开关器件难以承受。

异步调制——载波信号和调制信号不同步的调制方式。

通常保持f c 固定不变,当f r 变化时,载波比N 是变化的;

在信号波的半周期内,PWM波的脉冲个数不固定,相位也不固定,正负半周期的脉冲不对称,半周期内前后1/4周期的脉冲也不对称;

当f r 较低时,N 较大,一周期内脉冲数较多,脉冲不对称产生的不利影响都较小;

当f r 增高时,N 减小,一周期内的脉冲数减少,PWM 脉冲不对称的影响就变大。

3.3 调制法

PWM逆变电路可分为电压型和电流型两种,目前实际应用的几乎都是电压型电路,因此主要分析电压型逆变电路的控制方法。要得到需要的PWM波形有两种方法,分别是计算法和调制法。根据正弦波频率、幅值和半周期脉冲数,准确计算PWM波各脉冲宽度和间隔,据此控制逆变电路开关器件的通断,就可得到所需PWM波形,这种方法称为计算法。由于计算法较繁琐,当输出正弦波的频率、幅值或相位变化时,结果都要变化。与计算法相对应的是调制法,即把希望调制的波形作为调制信号,把接受调制的信号作为载波,通过信号波的调制得到所期望的PWM波形。通常采用等腰三角波作为载波,在调制信号波为正弦波时,所得到的就是SPWM波形。下面具体分析单相桥式逆变电路的单极性控制方式和三相桥式逆变电路的双极性控制方式。

3.3.1结合IGBT单相桥式电压型逆变电路对调制法进行说明

图3.4是采用IGBT作为开关器件的单相桥式电压型逆变电路。

图3.4:单相桥式PWM逆变电路

图3.4所示为采用了IGBT作为开关器件的单相桥式电压型逆变电路。设负

载为阻感负载,工作时V1和V2的通断状态互补,V3和V4的通断状态也互补。具体控制规律如下:在期望输出电压U

O

的正半周,让V1保持通态,V2保持断态,V3和V4交替通断。由于负载电流比电压滞后,因此在电压正半周,电流有一段区间为正,一段区间为负。在负载电流为正的区间,V1和V4导通时,负载电压

u o =U

d

;V4关断时,负载电流通过V1和VD3续流,u

o

=0.在负载电流为负的区间,

i o 实际上从VD1和VD4流过,仍有u

o

=U

d

。;V4关断,V3导通后,i

o

从V3和VD1

续流,u

o =0。这样,u

o

总可以得到U

d

和零两种电平。同样,在期望输出u

o

的负半

周,让V2保持通态,V1保持断态,V3和V4交替通断,负载电压u

o 可以得到-U

d

和零两种电平。

控制V3和V4通断的方法为:在u

r 和u

c

的交点时刻控制IGBT的通断。在

u r 的正半周,V1保持通态,V2保持断态,当u

r

>u

c

时使V4导通,V3关断,u

o

=U

d

;

当u

r

c

时使V4关断,V3导通,u

o

=0。在u

r

的负半周,V1保持通态,V2保持断

态,当u

r

c

时使V3导通,V4关断,u

o

=-U

d

;当u

r

>u

c

时使V3关断,V4导通,u

o

=0。

如图3.2(一)即为PWM单极性PWM模式。

与单极性PWM相对应的是双极性PWM模式。图3.4所示的单相桥式逆变电路在采用双极性PWM模式时的波形如图3.2(二)所示。仍然在调制信号u

r

和载

波信号u

c 的交点时刻控制各开关器件的通断。在u

r

的正负半周,对各开关器件

的控制规律相同。即当u

r >u

c

时,给V1和V4以导通信号,给V2和V3以关断信

号,这时如i

o >0,则V1和V4通,如i

o

<0,则VD1和VD4通,不管哪种情况都是

输出电压u

o =U

d

。当u

r

c

时,给V2和V3以导通信号,给V1和V4以关断信号,

这时如i

o <0,则V2和V3通,如i

o

>0,则VD2和VD3通,不管哪种情况都是u

o

=-U

d

可见在每个开关周期内,电路输出的PWM波只有±U

d

两种电平,而不像单极性控制时还有零电平。

3.3.2结合IGBT三相桥式电压型逆变电路对调制法进行说明

图3.3 三相桥式PWM型逆变电路

2)U 、V、W三相的PWM控制是通常公用一个三角波Uc,三相的调制信号Uru、Urv、Urw依次相差120°。U、V、W各相功率开关器件的控制规律相同,现以U 相为例来分析。当Uru>Uc时,给桥臂V1以导通的信号,给下桥臂V4以关断的信号,则U相相对于直流电源假想中点N’的输出电压UN’=Ud/2。当Uru

UN=UN’-(UN’+VN’+WN’) /3

在电压型逆变电路的PWM控制中,同一相上下两个臂的驱动信号都是互补的。3)双极性PWM控制方式(三相桥逆变)

下面以U 相为例分析控制规律:

当u rU>u c 时,给V1导通信号,给V4关断信号,u UN’=U d/2。 当u rU

当给V1(V4)加导通信号时,可能是V1(V4)导通,也可能是VD1(VD4)导通。u UN’、

u VN ’和u WN’的PWM 波形只有±U d/2两种电平。

u UV 波形可由u UN’-u VN ’得出,当1和6通时,u UV=U d ,当3和4通时,u UV=-U d ,当1和3或4和6通时,u UV=0。输出线电压PWM 波由±U d 和0三种电平构成

负载相电压PWM 波由(±2/3)U d 、(±1/3)U d 和0共5种电平组成。 防直通的死区时间

同一相上下两臂的驱动信号互补,为防止上下臂直通而造成短路,留一小段上下臂都施加关断信号的死区时间。

死区时间的长短主要由开关器件的关断时间决定。

死区时间会给输出的PWM 波带来影响,使其稍稍偏离正弦波。

可以看出,单相桥式电路既可以工作在单极性模式,也可以工作在双极性模式,由于对开关器件通断控制的规律不同,它们的输出波形也有较大的差别。单极性PWM 模式的交流输出更接近于正弦波,所含的高次谐波含量要小的多,这是单极性PWM 模式的优点。与单极性PWM 相比,双极性PWM 模式在PWM 信号的产

u

u UN' u VN' u WN' u UN

u UV U d - U O O O O O O 2 U ?

2 U 2 U ?

2 U 2

U

生和主电路的结构方面都比较简单,因此应用更加广泛。 .

.第四章. PWM 逆变器电路的电路仿真及分析

4.1PWM 技术逆变器原理

4.2于PWM 技术逆变器及其仿真

4.2.1GBT 在MATLAB 中的实现

由电阻Ron 、电感Lon 和直流电压源Vf 与逻辑信号(g>0或g=0)控制的开关串联电路组成

+Ed

V1V4

V3V2

π

2ππ

π

2+Ed -Ed

-Ed

(a)

(b)

输入C和输出E对应于绝缘栅双极型晶体管的集电极C和发射极E 输入g为加在门极上的逻辑控制信g

输出m用于测量输出向量[Iak,Vak]

IGBT的参数设置

绝缘栅双极型晶体管:

内电阻Ron

电感Lon

正向管压降Vf

基于Matlab的电力电子技术课程设计报告

《电力电子技术》 课程设计报告 题目:基于Matlab的电力电子技术 仿真分析 专业:电气工程及其自动化 班级:电气2班 学号:Z01114007 姓名:吴奇 指导教师:过希文 安徽大学电气工程与自动化学院 2015年 1 月7 日

中文题目 基于Matlab 的电力电子技术仿真分析 一、设计目的 (1)加深理解《电力电子技术》课程的基本理论; (2)掌握电力电子电路的一般设计方法,具备初步的独立设计能力; (3)学习Matlab 仿真软件及各模块参数的确定。 二、设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: (1)根据设计题目要求的指标,通过查阅有关资料分析其工作原理,设计电路原理图; (2)利用MATLAB 仿真软件绘制主电路结构模型图,设置相应的参数。 (3)用示波器模块观察和记录电源电压、控制信号、负载电压、电流的波形图。 三、设计内容 (1)设计一个降压变换器(Buck Chopper ),其输入电压为200V ,负载为阻感性带反电动势负载,电阻为2欧,电感为5mH ,反电动势为80V 。开关管采用IGBT ,驱动信号频率为1000Hz ,仿真时间设置为0.02s ,观察不同占空比下(25%、50%、75%)的驱动信号、负载电流、负载电压波形,并计算相应的电压、电流平均值。 然后,将负载反电动势改变为160V ,观察电流断续时的工作波形。(最大步长为5e-6,相对容忍率为1e-3,仿真解法器采用ode23tb ) (2)设计一个采用双极性调制的三相桥式逆变电路,主电路直流电源200V ,经由6只MOSFET 组成的桥式逆变电路与三相阻感性负载相连接,负载电阻为1欧,电感为5mH ,三角波频率为1000Hz ,调制度为0.7,试观察输入信号(载波、调制波)、与直流侧假想中点N ‘的三相电压Uun ’、Uvn ’、Uwn ’,输出线电压UV 以及负载侧相电压Uun 的波形。 四、设计方案 实验1:降压变换器 dc-dc 变流电路可以将直流电变成另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。其中,直接直流变流电路又称为斩波电路,功能是将直流电变为另一直流电。本次实验主要是在Matlab 中设计一个降压斩波电路并仿真在所给条件下的波形和数值与理论计算相对比。降压斩波电路原理图如下所示,该电路使用一个全控型器件V ,这里用IGBT ,也可采用其他器件,例如晶闸管,若采用晶闸管,还需设置使晶闸管关断的辅助电路。为在V 关断时给负载中电感电流提供通道,设置了续流二极管VD 。斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等,后两种情况下负载中均会出现反电动势,图中用m E 表示。若无反电动势,只需令0m E ,以下的分析和表达式中均适用。

电力电子课设(参考版)

一总体方案设计级总体框图 1、1总体方案设计 根据任务湖中的,本次设计的是dcdc降压变换器。DC-DC变换 器有两类:一类由两级电路组成DC-AC-DC变换,第一级为逆变,实现DC-AC变换,第二级为整流,实现AC-DC变换。另一类变 换器由晶体管和二极管开关组合成PWM开关,将输入直流电 压斩波后,再经滤波后输出。由于第一类比较复杂,方针起来 比较麻烦。第二类简单方便,比较贴合课本中的知识。第二类 dcdc降压电路有以下几种: BUCK PWM变换器在CCM下的工作原理(如图2-2):一个开 关周期内,开关晶体管的开,关过程将直流输入电压斩波,形 成脉宽为onT的方波脉冲(onT为开关管导通时间)。当开关晶 体管导通时,二极管关断,输入端直流电流电源Vi将功率传送 到负载,并使用电感储能(电感电流上升):当开关晶体管关断 时,二极管导通,续流,电感储能向负载释放(电感电流下降)。 一个开关周期内,电感电流的平均值等于负载电流OI(忽略滤 波电容C的ESR)。根据原理和电路拓扑可以推导出工作在CCM 下的DC-DC PWM变换器的输出-输入电压变换比: DVi Vo (2-1)

占空比D总是小于1的,所以BUCK变换器是一种降压变换器。 升降压型BUCK-BOOST技术 图2-4 升降压反极性(BUCK-BOOST)变换器电路拓扑 如图2-4所示,极性反转型(BUCK-BOOST)变换器主电路如用 元器件与BUCK,BOOST变换器相同,由开关管,储能电感,整 流二极管及滤波电容等元器件组成。这种电路具有BUCK变换 器降压和BOOST变换器升压的双重作用。升压还是降压取决与 PWM驱动脉冲的占空比D。虽然输入与输出共用一个连接端,但输出电压的极性与输入电压是相反的,故称为降压反极性变 换器。,根据我们的设计要求,是要求把12-18V的直流电压转 换到5V的直流电压,那么分析后可得降压型BUCK转换技术最 适合这次设计。 1、2总体框图设计

电力电子装置及系统设计课程设计

《电力电子装置及系统》 课程设计 题目:基于UC3842的单端反激 开关电源的设计 学院电力学院 专业电子科学与技术 姓名 学号 指导教师 完成时间2016.11.25

目录 摘要 (1) 第一章:开关电源的概述 1.1:开关电源的发展历史 (2) 1.2:开关稳压电源的优点 (2) 1.2.1:内部功率损耗小,转换效率高 (2) 1.2.2:体积小,重量轻 (3) 1.2.3:稳压范围宽 (3) 1.2.4:滤波效率大为提高,滤波电容的容量和体积大为减小 (3) 1.2.5:电路形式灵活多样,选择余地大 (3) 1.3:开关稳压电源的缺点 (3) 1.3.1:开关稳压电源存在着较为严重的开关噪声和干扰 (4) 1.3.2:电路结构复杂,不便于维修 (4) 1.3.3:成本高,可靠性低 (4) 第二章:UC3842的原理及技术参数 2.1:UC3842的工作原理 (5) 2.2:UC3842的引脚及技术参数 (6) 第三章:单端反激开关电源 3.1:单端反激开关电源的原理 (7) 3.2:反激式开关电源设计 (9) 3.2.1:输出直流电压隔离取样反馈外回路 (9) 3.2.2:初级线圈充磁峰值电流取样反馈内回路 (11) 总结 (13) 参考文献 (13)

基于UC3842的单端反激开关电源的设计 摘要 开关电源是一种利用现代电子技术,控制开关晶体管和关断的时间比率,维持稳定输出电压的一种电源,也是一种效率很高的电源变换电路,开关电源一般由脉冲宽度调制(PWM)和MOSFET构成。具有高频率,高功率密度,高可靠性等优点。 本文主要介绍一种以UC3842作为控制核心,根据UC3842的应用特点,设计了一种基于UC3842为控制芯片,实现输出电压可调的开关稳压电源电路。 关键词:开关电源脉冲宽度调制 UC3842

单相PWM整流电路设计(电力电子课程设计)

重庆大学电气工程学院 电力电子技术课程设计 设计题目:单相桥式可控整流电路设计 年级专业:****级电气工程与自动化学生姓名:***** 学号: **** 成绩评定: 完成日期:2013年6月 23 日

指导教师签名:年月日

重庆大学本科学生电力电子课程设计任务书

单相桥式可控整流电路设计 摘要:本文主要研究单相桥式PWM整流电路的原理,并运用IGBT去实现电路的设计。概括地讲述了单相电压型PWM整流电路的工作原理,用双极性调制方式去控制IGBT的通断。在元器件选型上,较为详细地介绍了IGBT的选型,分析了交流侧电感和直流侧电容的作用,以及它们的选型。最后根据实际充电机的需求,选择元器件具体的参数,并用simulink进行仿真,以验证所设计的单相电压型PWM整流器的性能。实现了单相电压型PWM整流器的高功率因数,低纹波输出等功能。 关键词:PWM整流simulink 双极性调制IGBT

目录 1.引言 ......................................................... - 5 - 1.1 PWM整流器产生的背景.................................... - 5 - 1.2 PWM整流器的发展状况.................................... - 5 - 1.3 本文所研究的主要内容.................................... - 6 - 2.单相电压型PWM整流电路的工作原理 ............................. - 7 - 2.1电路工作状态分析......................................... - 7 - 2.2 PWM控制信号分析......................................... - 8 - 2.3 交流测电压电流的矢量关系............................... - 9 - 3.单相电压型PWM整流电路的设计 ................................ - 10 - 3.1 主电路系统设计......................................... - 10 - 3.2 IGBT和二极管的选型设计................................. - 11 - 3.3 交流侧电感的选型设计................................... - 11 - 3.4 直流侧电容的选型设计................................... - 12 - 3.5 直流侧LC滤波电路的设计................................ - 13 - 4.单相PWM整流电路的仿真及分析 ................................ - 13 - 4.1 整流电路的simulink仿真............................... - 13 - 4.2 对simulink仿真结果的分析............................. - 16 - 5.工作展望 ................................................... - 16 - 参考文献 ...................................................... - 17 -

电力电子技术课程设计报告

课程设计说明书 设计题目:单相交流调压技术 专业班级: 2009级电气工程及其自动化 姓名:王昊 学号: 0915140068 指导教师:褚晓锐 2011年12月23日 (提交报告时间)

一.课程设计题目:单项交流调压技术的工程应用 二.课程设计日期: 2011年12月19日 三.课程设计目的: “电力电子技术”课程设计是在教学及实验基础上,对课程所学理论知识的深化和提高。因此,要求学生能综合应用所学知识,设计出具有电压可调功能的直流电源系统,能够较全面地巩固和应用本课程中所学的基本理论和基本方法,并初步掌整流电路设计的基本方法。培养学生独立思考、独立收集资料、独立设计的能力;培养分析、总结及撰写技术报告的能力。 四.课程设计要求: :按课程设计指导书提供的课题,根据第下表给出的基本要求及参数独立完成设计,课程设计说明书应包括以下内容: 1、方案的经济技术论证。 2、主电路设计。 3、通过计算选择整流器件的具体型号。 4、确定变压器变比及容量。 5、确定平波电抗器。 7、触发电路设计或选择。 8、课程设计总结。 9、完成4000字左右说明书,有系统电气原理图,内容完整、字迹工整、图表整齐规范、数据详实。 设计技术参数工作量工作计划 1、单相交流220V电源。 2、交流输出电压U d 在0~220V连续可调。 3、交输出电2000W。1、方案的经济技术论证。 2、主电路设计。 3、通过计算选择整流器件的 具体型号。 第一周: 周一:收集资料。 周二~三:方案论证。 周四:主电路设计。

4、触发电路设计。 5、绘制主电路图。 周五:理论计算。 第二周: 周一:选择器件的具体型号 周二~三:触发电路设计。。 周四~五:总结并撰写说明书。 五.课程设计内容: 设计方案图及论证 将一种交流电能转换为另一种交流电能的过程称为交流-交流变换过程,凡能实现这种变换的电路为交流变换电路。对单相交流电的电压进行调节的电路。用在电热控制、交流电动机速度控制、灯光控制和交流稳压器等场合。与自耦变压器调压方法相比,交流调压电路控制方便,调节速度快,装置的重量轻、体积小,有色金属消耗也少。结构原理简单。该方案是由变压器、触发电路、整流器、以及一些电路构成的,为一台电阻炉提供电源。输入的电压为单相交流220V ,经电路变换后,为连续可调的交流电。 各部分电路作用 220V 交流输入部分作用:为电路提供电源,主要是市电输入。 调压环节的作用:将交流220V 电源经过变压器、整流器等电路转换为连续可调的交 220V 交流输入 调压环节 输出连续可调的交流电 触发电路

电力电子技术课程设计范例

电力电子技术课程设计 题目:直流降压斩波电路的设计 专业:电气自动化 班级:14电气 姓名:周方舟 学号: 指导教师:喻丽丽

目录 一设计要求与方案 (4) 二设计原理分析 (4) 2.1总体结构分分析 (4) 2.2直流电源设计 (5) 2.3主电路工作原理 (6) 2.4触发电路设计 (10) 2.5过压过流保护原理与设计 (15) 三仿真分析与调试 (17) 3.1M a t l a b仿真图 (17) 3.2仿真结果 (18) 3.3仿真实验结论 (24) 元器件列表 (24) 设计心得 (25) 参考文献 (25) 致 (26) 一.设计要求与方案 供电方案有两种选择。一,线性直流电源。线性电源(Linear power supply)是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,得到脉冲直流电,后经滤波得到带有微小波纹电压的直流电压。要达到高精度的直流电压,必须经过稳压电源进行稳压。线性电源体积重量大,很难实现小型化、损耗大、效率低、输出与输入之间有公共端,不易实现隔离,只能降压,不能升压。二,升压斩波电路。由脉宽调制芯片TL494为控制器构成BOOST原理的,实现升压型DC-DC变换器,输出电压的可调整与稳压控制的开关源是借助晶体管的开/关实现的。因此选择方案二。 设计要求:设计要求是输出电压Uo=220V可调的DC/DC变换器,这里为升压斩波电路。由于这些电路中都需要直流电源,所以这部分由以前所学模拟电路知识可以由整流器解决。MOSFET的通断用PWM控制,用PWM方式来控制MOSFET的通断需要使用脉宽调制器TL494来产生

电力电子装置课程设计AC-DC-DC电源

学号: 课程设计 题目AC-DC-DC电源(36V,300W)设计 学院自动化学院 专业电气工程及其自动化 班级电气 班 姓名 指导教师许湘莲 2013 年 6 月18 日

课程设计任务书 学生姓名:专业班级: 指导教师:许湘莲工作单位:武汉理工大学 题目: AC-DC-DC电源(36V,300W)设计 初始条件: 设计一个AC-DC-DC电源,具体参数如下:单相交流输入220V/50Hz,输出直流电压36V,纹波系数<5%,功率300W。 要求完成的主要任务: (1)对AC-DC-DC 电源进行主电路设计; (2)控制方案设计; (3)给出具体滤波参数的设计过程; (4)在MATLAB/Simulink搭建闭环系统仿真模型,进行系统仿真;(5)分析仿真结果,验证设计方案的可行性。 时间安排: 2013年6月8日至2013年6月18日,历时一周半,具体进度安排见下表 指导教师签名:年月日 系主任(或责任教师)签名:年月日

摘要 (1) AC-DC-DC电源(36V,300W)设计 (2) 1 设计任务及要求 (2) 1.1.技术要求 (2) 1.2.设计内容 (2) 2电路总体方案及原理 (2) 2.1 开关电源的简介 (2) 2.2设计方案 (2) 3主电路设计及参数计算 (3) 3.1整流电路的设计 (3) 3.2降压斩波电路设计 (4) 3.3控制方案的设计 (6) 3.4主电路参数的计算 (7) 3.4.1主电路参数计算 (7) 3.4.2 滤波参数的计算 (8) 4 系统建模与仿真 (8) 4.1开环系统的仿真 (8) 4.2闭环系统的仿真 (11) 5结果分析 (12) 6总结与体会 (13) 参考文献 (14)

PWM控制芯片认识及外围电路设计实验汇编

实验三十五 PWM 控制芯片认识及外围电路设计实验 (电力电子学—自动控制理论综合实验) 一、 实验原理 1.PWM 控制 电力电子电路控制中广泛应用着脉冲宽度调制技术(Pulse Width Modulation, 简称PWM ),将宽度变化而频率不变的脉冲作为电力电子变换电路中功率开关管的驱动信号,控制开关管的通断,从而控制电力电子电路的输出电压以满足对电能变换的需要。由于开关频率不变,输出电压中的谐波频率固定,滤波器设计比较容易。 PWM 控制的原理可以简单通过图35-1理解。图中,V 1为变换器输出的反馈电压与一个三角波信号V tri 进行比较,比较电路产生的输出电压为固定幅值、宽度随反馈电压的增大而减小的PWM 脉冲方波,如图中阴影部分所示。若将该PWM 方波作为如图35-2所示的直流降压变换器的开关管的驱动信号,当输出电压升高时,输出电压方波宽度变窄,滤波后输出直流电压降低,达到稳定到某一恒定值的目的。 由PWM 控制的原理可知,实现PWM 控制应该具备以下条件: 图35-1 PWM 控制原理 V tri V 1 V 图35-2 直流-直流降压变换电路(Buck 电路) (1) 有三角波或阶梯波这样具有斜坡边的信号,作为调节宽度的调制基础信号;从 图35-1可以知道,三角波的频率就是使图35-2中开关管通断的开关频率。 (2) 有比较器以便将调制基础信号和反馈电压信号进行比较产生PWM 信号;

(3) 对反馈电压幅度的限制门槛电压,以使反馈电压不至于超过三角波最高幅值或 低于三角波最低值。一旦超出其最高值或低于最低值,2个信号没有交点,将出现失控情况; (4) 若同时需要控制多个开关管,尤其是桥式电路的上下桥臂上的一对开关管时, 应具有死区电路。死区即上下桥臂的两个开关管都没有开通脉冲、都不导通的时间,以便待刚关断的开关管经历恢复时间完全关断后,再让另一开关管开通; (5) 有反馈控制环节(即恒定的电压给定、误差放大器及调节器(或校正环节)、 功率放大电路); (6) 按照一定逻辑关系开放脉冲的逻辑控制电路。 按照上述原则,已经有很多集成的PWM 控制芯片面世,在芯片上集成了PWM 控制的许多环节,结合芯片的外围电路,具备了所有的PWM 控制功能。采用集成方式实现PWM 控制,具有很多优越性,不仅成本和体积上具有优势,而且在降低电磁干扰、降低设计难度上也有明显的优点。 本综合实验主要采用比较常用的PWM 集成芯片TL494,下面给出了有关它的介绍以及基本设计原则。其它常用的PWM 芯片如CW3524等,详见本实验附录,或自行查询相关资料,以便完成设计。 2.集成PWM 控制芯片TL494及外围电路介绍 TL494是美国德克萨斯公司研制的PWM 芯片,16端双列直插形式,具有两路输出(从T a 、T b 两个开关管输出)。它将PWM 控制所需要的功能,包括控制器(误差放大器等),都集成到一片芯片上,加上外围电路,组成了比较完善的PWM 控制器。图35-3是其电路功能方框图。其引脚说明及外围电路如下。 (1) 芯片电源 12端接输入工作电压,7端接地。工作电压由于电路的实际情况不同而在一定范围内变化。能工作于较宽的电源电压范围是PWM 控制芯片的一大特点,使它可以方便地应用于各种场合。 CC V 芯片内部还有一个稳压电源,将芯片12端输入的供电电源变换成稳定的5伏直流电压,供内部各电路用,也可供作为控制器(调节器)的标准给定电压,从14端引出。 (2) 输出方式控制端——13端: ① 若13端接地、V 13为低电位时,P = 0,D = 0,E = 0,G 1 = C = G 2,T a 、T b 两路输出相同,如图35-3中所示,即单路输出。若实验电路中只需要驱动一个开关管,则将13点接地用单路输出;若将两路并联可扩大输出容量。 ②若13端接+5V (可接芯片内的稳压直流5V 电源),V 13为高电位时,P = 1, C Q G +=1,C G +=2:

电力电子课设报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:电力电子技术 设计题目:可逆直流PWM驱动电源的设计 院系:电气工程系 班级:0706111 设计者:王勃 学号:1070610602 指导教师:李久胜 设计时间:2010年11月 哈尔滨工业大学教务处

哈尔滨工业大学课程设计任务书

H型单极性同频可逆直流PWM驱动电源的设计 技术指标:被控直流永磁电动机参数:额定电压20V,额定电流1A,额定转 速2000rpm。驱动系统的调速范围:大于1:100。驱动系统应具有软启动功能,软启动时间约为2s。详细设计要求见附录2. 1.整体方案设计 本文设计的H型单极性同频可逆直流PWM驱动电源由四部分组成:主电路,H 型单极模式同频可逆PWM控制电路,IPM接口电路及稳压电源。同时具有软启动功能,软启动时间为2s左右。控制原理如图1所示: 功率转换电路 图1 直流PWM驱动电源的控制原理框图 脉宽调制电路以SG3525为核心,产生频率为5KHz的方波控制信号,占空比可调。经用门电路实现的脉冲分配电路,转换成两列对称互补的驱动信号,同时具有5us的死区时间,该信号驱动H型功率转换电路中的开关器件,控制直流永磁电动机。稳压电源采用LM2575-ADJ系列开关稳压集成电路,通过调整电位器,使其稳定输出15V直流电源。 2.主电路设计 2.1主电路设计要求 直流PWM驱动电源的主电路图如图2所示。此部分电路的设计包括整流电路和H桥可逆斩波电路。二极管整流桥把输入的交流电变为直流电。四只功率器件构成H 桥,根据脉冲占空比的不同,在直流电机上可得到不同的直流电压。 主电路部分的设计要求如下: 1)整流部分采用4 个二极管集成在一起的整流桥模块。 2)斩波部分H 桥不采用分立元件,而是选用IPM(智能功率模块)PS21564来实现。该模块的主电路为三相逆变桥,在本设计中只采用其中U、V 两相即可。

江苏大学电力电子课程设计

电力电子课程设计 学院:电气信息工程学院 专业: 学号: 姓名:

一. 设计要求 (1)根据给定的参数范围,设计BOOST 电路的参数; (2)根据给定的参数范围,设计CUK 电路的参数; (3)利用MATLAB 对上述电路图仿真实验得出波形; (4)在实验室平台上试验,观测数据与波形,并与仿真图形进行比对; (5)撰写实验报告; 二. 电路设计 1.电路工作原理 (1)Boost 电路 Boost 电路原理图 基本原理 假设L ,C 值很大。当可控开关V 处于通态的时候,电源E 向电感L 充电,充电的电流基本恒定不变I 1,同时电容C 向负载R 放电。因为C 很大,基本保持输出电压U 0不变。当可控开关处于断态的时候,E 和电感L 上积蓄的能量共同向电容C 充电并向负载R 提供能量。当电路工作处于稳态时,一个周期T 中电感L 积蓄的 能量与释放的能量相等,即: 化简得: ()off o on t I E U t EI 11-=E t T E t t t U off off off on o =+=

基本数值计算: 输出电压U 0与输入电压E 关系: 01 1 1U E E βα==- 输出电流I0与输入电流I1的关系: 01021U I I E E β== 输出电流I0与输出电压U0的关系: 001U E I R R β== (2)Cuk 电路 Cuk 电路原理图 基本原理 当可控开关V 处于通态的时候,E-L1-V 回路和R-L2-C-V 回路分别流过电流。当V 处于断态的时候,E-L1-C-VD 回路和R-L1-VD 回路分别流过电流。输出电压的极性与电源电压极性相反。

电力电子技术课程设计题目

设计任务书1 舞台灯光控制电路的设计与分析√ 一、设计任务 设计一个舞台灯光控制系统,通过给定电位器可以实现灯光亮度的连续可调。灯泡为白炽灯,可视为纯电阻性负载,灯光亮度与灯泡两端电压(交流有效值或直流平均值)的平方成正比。 二、设计条件与指标 1.单相交流电源,额定电压220V; 2.灯泡:额定功率2kW,额定电压220V; 3.灯光亮度调节范围(10~100)%; 4.尽量提高功率因数,并减小谐波污染; 三、设计要求 1.分析题目要求,提出2~3种实现方案,比较并确定主电 路结构和控制方案; 2.设计主电路原理图和触发电路的原理框图; 3.参数计算,选择主电路元件参数; 4.利用PSPICE、PSIM或MATLAB等进行电路仿真优化; 5.典型工况下的谐波分析与功率因数计算; 6.撰写课程设计报告。 四、参考文献 1.王兆安,《电力电子技术》,机械工业出版社; 2.陈国呈译,《电力电子电路》,日本电气学会编,科学出 版社。

设计任务书2 永磁直流伺服电机调速系统的设计√ 一、设计任务 设计一个永磁直流伺服电机的调速控制系统,通过电位器可以调节电机的转速和转向。电机为反电势负载,在恒转矩的稳态情况下,电机转速基本与电枢电压成正比,电机的转向与电枢电压的极性有关。电机的电枢绕组可视为反电势与电枢电阻及电感的串联。 二、设计条件与指标 1.单相交流电源,额定电压220V; 2.电机:额定功率500W,额定电压220V dc,额定转速 1000rpm,Ra=2,La=10mH; 3.电机速度调节范围(10~100)%; 4.尽量减小电机的电磁转矩脉动; 三、设计要求 1.分析题目要求,提出2~3种实现方案,比较确定主电路 结构和控制方案; 2.设计主电路原理图、触发电路的原理框图,并设置必要 的保护电路; 3.参数计算,选择主电路元件参数分析主电路工作原理; 4.利用PSPICE、PSIM或MATLAB等进行电路仿真优化; 5.撰写课程设计报告。 四、参考文献 1.王兆安,《电力电子技术》,机械工业出版社; 2.陈国呈译,《电力电子电路》,日本电气学会编,科学出 版社;

电力电子技术课程设计报告

电力电子课程设计报告题目三相桥式全控整流电路设计 学院:电子与电气工程学院 年级专业:2015级电气工程及其自动化 姓名: 学号: 指导教师:高婷婷,林建华 成绩:

摘要 整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要同时也是应用得最为广泛的电路,不仅用于一般工业,也广泛应用于交通运输、电力系统、通信系统,能源系统及其他领域,因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义,这不仅是电力电子电路理论学习的重要一环,而且对工程实践的实际应用具有预测和指导作用,因此调试三相桥式可控整流电路的相关参数并对不同性质负载的工作情况进行对比分析与研究具有一定的现实意义。 关键词:电力电子,三相,整流

目录 1 设计的目的和意义………………………………………1 2 设计任务与要求 (1) 3 设计方案 (1) ?3.1三相全控整流电路设计 (1) 3.1.1三相全控整流电路图原理分析 (2) ?3.1.2整流变压器的设计 (2) ?3.1.3晶闸管的选择 (3) 3.2 保护电路的设计 (4) 3.2.1变压器二次侧过压保护 (4) ?3.2.2 晶闸管的过压保护………………………………………………4 3.2.3 晶闸管的过流保护………………………………………………5 3.3 触发电路的选择设计 (5) 4 实验调试与分析 (6) 4.1三相桥式全控整流电路的仿真模型 (6)

4.2仿真结果及其分析……………………………………………7 5 设计总结 (8) 6 参考文献 (9)

1 设计的目的和意义 本课程设计属于《电力电子技术》课程的延续,通过设计实践,进一步学习掌握《电力电子技术》,更进一步的掌握和了解他三相桥式全控整流电路。通过设计基本技能的训练,培养学生具备一定的工程实践能力。通过反复调试、训练、便于学生掌握规范系统的电子电力方面的知识,同时也提高了学生的动手能力。 2 设计任务与要求 三相桥式全控整流电路要求输入交流电压2150,10,0.5U V R L H ==Ω=为阻 感性负载。 1.写出三相桥式全控整流电路阻感性负载的移相范围,并计算出直流电压的变化范围 2.计算α=60°时,负载两端电压和电流,晶闸管平均电流和有效电流。 3.画出α=60°时,负载两端 d U 和晶闸管两端 1 VT U 波形。 4.分析纯电阻负载和大电感负载以及加续流二极管电路的区别。 5.晶闸管的型号选择。 3 设计方案 3.1三相全控整流电路设计

电力电子课程设计模板

电气工程学院 电力电子课程设计 设计题目:MOSFET降压斩波电路设计专业班级:电气0907 学号:09291210 姓名:李岳 同组人:刘遥(09291212 ) 指导教师: 设计时间:2012年6月25日-29日 设计地点:电气学院实验中心

电力电子课程设计成绩评定表 指导教师签字: 年月日

电力电子课程设计任务书 学生姓名:李岳,刘遥专业班级电气0907 指导教师: 一、课程设计题目: MOSFET降压斩波电路设计(纯电阻负载) 设计条件:1、输入直流电压:U d=100V 2、输出功率:300W 3、开关频率5KHz 4、占空比10%~90% 5、输出电压脉率:小于10% 二、课程设计要求 1. 根据具体设计课题的技术指标和给定条件,能独立而正确地进行方案论证和电路设计,要求概念清楚、方案合理、方法正确、步骤完整; 2. 查阅有关参考资料和手册,并能正确选择有关元器件和参数,对设计方案进行仿真; 3. 完成预习报告,报告中要有设计方案,还要有仿真结果; 4. 进实验室进行电路调试,边调试边修正方案; 5. 撰写课程设计报告——画出主电路、控制电路原理图,说明主电路的工作原理、选择元器件参数,说明控制电路的工作原理、绘出主电路典型波形(比较实际波形与理论波形),绘出触发信号(驱动信号)波形,说明调试过程中遇到的问题和解决问题的方法。 三、进度安排

2.执行要求 电力电子课程设计共6个选题,每组不得超过2人,要求学生在教师的指导下,独力完成所设计的系统主电路、控制电路等详细的设计(包括计算和器件选型)。严禁抄袭,严禁两篇设计报告雷同,甚至完全一样。 四、课程设计参考资料 [1]王兆安,黄俊.电力电子技术(第四版).北京:机械工业出版社,2001 [2]王文郁.电力电子技术应用电路.北京:机械工业出版社,2001 [3]李宏.电力电子设备用器件与集成电路应用指南.北京:机械工业出版社,2001 [4] 石玉、栗书贤、王文郁.电力电子技术题例与电路设计指导. 北京:机械工业出版社,1999 [5] 赵同贺等.新型开关电源典型电路设计与应用.北京:机械工业出版社,2010 摘要 关键词:整流、无源逆变、晶闸管

电力电子课程设计

电力电子应用课程设计 课题:50W三绕组复位正激变换器设计 班级电气学号 姓名 专业电气工程及其自动化 系别电气工程系 指导教师 淮阴工学院 电气工程系 2015年5月

一、设计目的 通过本课题的分析设计,可以加深学生对间接的直流变流电路基本环节的认识和理解,并且对隔离的DC/DC电路的优缺点有一定的认识。要求学生掌握单端正激变换器的脉冲变压器工作特性,了解其复位方式,掌握三绕组复位的基本原理,并学会分析该电路的各种工作模态,及开关管、整流二极管的电压电流参数设计和选取,掌握脉冲变压器的设计和基本的绕制方法,熟悉变换器中直流滤波电感的计算和绕制,建立硬件电路并进行开关调试。 需要熟悉基于集成PWM芯片的DCDC变换器的控制方法,并学会计算PWM控制电路的关键参数。输入:36~75Vdc,输出:10Vdc/5A 二、设计任务 1、分析三绕组复位正激变换器工作原理,深入分析功率电路中各点的电压 波形和各支路的电流波形; 2、根据输入输出的参数指标,计算功率电路中半导体器件电压电流等级, 并给出所选器件的型号,设计变换器的脉冲变压器、输出滤波电感及滤波电容。 3、给出控制电路的设计方案,能够输出频率和占空比可调的脉冲源。 4、应用protel软件作出线路图,建立硬件电路并调试。 三、总体设计 3.1 开关电源的发展 开关电源被誉为高效节能电源,代表着稳压电源的发展方向,现已成为稳压电源的主流产品。 开关电源分为DC/DC和AC/DC两大类。前者输出质量较高的直流电,后者输出质量较高的交流电。开关电源的核心是电力电子变换器。按转换电能的种类,可分为直流-直流变换器(DC/DC变换器),是将一种直流电能转换成另一种或多种直流电能的变换器;逆变器,是将直流电能转换成另一种或多种直流电能的变换器;整流器是将交流电转换成直流电的电能变换器和交交变频器四种。 开关电源的高频化是电源技术发展的创新技术,高频化带来的效益是使开关电源装置空前的小型化,并使开关电源进入更广泛的领域,特别是在高新技术领

电力电子课程设计-sg3525脉宽调制高频开关稳压电源

第1章概述................................................................................................................ - 2 - 第2章系统总体方案 .................................................................................................... - 4 - 2.1高频开关稳压电源的基本原理 (4) 2.2高频开关稳压电源总方案 (4) 2.3高频开关稳压电源的组成电路及功能 (5) 2.3.1 主电路.............................................................................................................. - 5 - 2.3.2 控制电路.......................................................................................................... - 6 - 2.3.3 保护电路.......................................................................................................... - 7 - 2.3.4 驱动电路.......................................................................................................... - 7 -第3章主电路设计........................................................................................................ - 8 - 3.1主电路形式选择 (8) 3.2高频变压器的参数 (8) 3.2.1原副边电压比n .............................................................................................. - 8 - 3.2.2磁芯的选取及变压器的结构........................................................................... - 8 - 3.2.3 变压器初、次级匝数.................................................................................... - 9 - 3.2.4 确定绕组的导线线径和导线股数 ................................................................ - 9 -3.3开关管的选择 (10) 第4章控制电路设计................................................................................................... - 11 - 4.1主电路 (11) 4.2控制电路的设计 (12) 4.2.1SG3525结构和功能介绍 ................................................................................ - 12 - 4.2.2 控制电路的设计............................................................................................ - 13 -4.3驱动电路的设计.. (14) 第5章系统性能测试与结果 ...................................................................................... - 16 - 5.1负载调整率测试 (16) 5.2电压调整率测试 (16) 5.3效率测试 (17) 5.4输出纹波电压及噪音测试 (17) 第6章心得体会............................................................................................................ - 18 -附录:总电路图............................................................................................................ - 19 -参考文献.......................................................................................................................... - 19 -电气与信息工程系课程设计评分表 ...................................................... 错误!未定义书签。

电力电子技术课程设计报告

电力电子技术课程设计 报告书 专业班级:16电气2班 姓名:王浩淞 学号:2016330301054 指导教师:雷美珍

目录 1、webench电路设计 1.1设计任务要求 输入电压为(8V-10V),输出电压为5V,负载电流为1A 1.2设计方案分析 图1.3.1主电路原理图 图1.3.2元器件参数 图1.3.3额定负载时工作值

图1.3.4输出电流和系统效率间的关系 如图1.3.4所示,在输出电流相同的情况下,输入电压越小,系统的稳态效率越高,因此提高效率的最直接方式就是降低系统的输入电压,其次在输入电压相同的情况下,我们可以调节输出电压的大小,使系统效率达到最大,例如当输入电压为9.0V时,根据图像输出电流为0.40A的时候效率最高。第二种方法是改变元器件的参数,通过使用DCR(直流电阻)小的电感元件来实现输出纹波电压降低。 1.3主芯片介绍 TPS561201和TPS561208采用SOT-23封装,是一款简单易用的1A同步降压转换器。这些器件经过优化,可以在最少的外部元件数量下工作,并且还经过优化以实现低待机电流。这些开关模式电源(SMPS)器件采用D-CAP2模式控制,可提供快速瞬态响应,并支持低等效串联电阻(ESR)输出电容,如特种聚合物和超低ESR陶瓷电容,无需外部补偿元件。TPS561201以脉冲跳跃模式工作,在轻负载操作期间保持高效率。TPS561201和TPS561208采用6引脚1.6×2.9(mm)SOT(DDC)封装,工作在-40°C至125°C的结温范围内。 1.4电气仿真结果分析

图1.4.1启动仿真图1.4.2稳态仿真 图1.4.3暂态仿真图1.4.4 负载暂态仿真 二、基于电力系统工具箱的电力电子电路仿真 2.1 设计要求和方案分析 本课程设计主要应用了MATLAB软件及其组件之一Simulink,进行系统的设计与仿真系统主要包括:Boost升压斩波主电路部分、PWM控制部分和负载。Boost升压斩波主电路部分拖动带反电动势的电阻,模拟显示中的一般负载,若实际负载中没有反电动势,只需令其为零即可。负载为主电路部分提供脉冲信号,控制全控器件IGBT的导通和关断,实现整个系统的运行。在Simulink中完成各个功能模块的绘制后,即可进行仿真和调试,用Simulink 提供的示波器观察波形,进行相应的电压和电流等的计算,最后进行总结,完成整个Boost 变换器的研究与设计。 2.2 simulink仿真模型分析 电路设计好后主电路中的电感电容值已确定,此时只要调节触发波形的占空比即可调节Boost Chopper输出电压。电路设计好后主电路中的电感电容值已确定,此时只要调节触发波形的占空比即可调节Boost Chopper输出电压。占空比越大,Boost Chopper的输出电压值

直流PWM驱动电源设计(DOC)

南京工程学院 课程设计说明书 成绩题目直流电动机脉宽调速系统设计课程名称电力电子技术 院(系、部、中心)电力工程学院 专业建筑电气与智能化 班级建筑电气091 学生姓名陈曦 学号206091034 设计时间2011.12.12~12.24 设计地点电力工程实践中心8-319 指导教师陈刚廖德利 2011 年12 月南京

1.课程设计应达到的目的 电源和驱)驱动电源及控制用小功率开关电源。其目的是通过对实际电力电子装置的设计、制作和调试,深化和拓展课程所学知识,提高工程实践能力。动是电力电子技术的两大主要应用领域。课程设计的主要任务是设训一和实现一个直流电动机的脉宽调速(直流PWM) 2.课程设计题目及要求 设计题目:直流PWM驱动电源的设计 设计要求:课程设计的主要任务是设计一个直流电动机的脉宽调速(直流PWM)驱动电源。DC-DC变换器采用H桥形式,控制方式为单极性。 被控直流永磁电动机参数:额定电压20V,额定电流1A,额定转速2000rpm。驱动系统的调速范围:大于1:100,电机能够可逆运行。驱动系统应具有软启动功能,软启动时间约为2s。 主要设计要求如下: 1.阅读相关资料,设计主电路和控制电路,用PROTEL绘制的主电路和控制电路的原 理图。 2.采购器件,装焊控制电路板。 3.在实验室进行装置调试。 4.设计成果验收。 5.整理设计文件,撰写设计说明书。 6.设计的成果应包括:用PROTEL绘制的主电路和控制电路的原理图,电路设计过程的 详细说明书及焊装和调试完毕的控制电路板。

3.课程设计任务及工作量的要求〔包括课程设计计算说明书、图纸、实物样品等要求〕课程设计任务 1)主电路的设计,器件的选型。包括含整流变压器在内的整流电路设计和H桥可逆斩波电路的设计(要求采用IPM作为DC/DC变换的主电路,型号为PS21564)。 2)PWM控制电路的设计(指以SG3525为核心的脉宽调制电路和用门电路实现的脉冲分配电路)。 3)IPM接口电路设计(包括上下桥臂元件的开通延迟,及上桥臂驱动电源的自举电路)。 4)DC15V 控制电源的设计(采用LM2575系列开关稳压集成电路,直接从主电路的直流母线电压经稳压获得)。 2人组成1个设计小组,通过合理的分工和协作共同完成上述设计任务。设计的成果应包括:用PROTEL绘制的主电路和控制电路的原理图,电路设计过程的详细说明书及焊装和调试通过的控制电路板。 4.主要参考文献 1)秦继荣编著,现代直流伺服控制技术及其系统设计。 2)电力电子实验台(直流脉宽调速部分)使用说明书。 3)IPM 模块PS21564 使用说明书及参考资料。 4)SG3525 使用说明书及参考资料。 5)LM2575 使用说明书及参考资料。 6)74LS04,74LS00 说明书。 7)二极管IN4148,IN5819 说明书 8)主电路原理图。 9)DIP- IPM 内部功能图 10)SG3525 内部功能图 11)LM2575 内部功能图 12)74LS04,74LS00 内部功能图

相关主题