搜档网
当前位置:搜档网 › 中国用基因编辑技术治疗肺癌 属世界首例

中国用基因编辑技术治疗肺癌 属世界首例

中国用基因编辑技术治疗肺癌 属世界首例
中国用基因编辑技术治疗肺癌 属世界首例

中国用基因编辑技术治疗肺癌属世界首例

2016年10月28日,成都华西医院一名严重肺癌患者被注入基因改良型细胞。中国科学家在人体内利用革命性的CRISPR-Cas9基因编辑技术,在全世界尚属首例。

英国《自然》周刊报道称,以四川大学的卢铀为首的科研小组从该患者体内取出了免疫细胞,然后利用CRISPR-Cas9技术对免疫细胞进行编辑。这项技术可破坏一种在正常情况下检测免疫细胞以启动免疫反应能力的基因,进而防止该免疫细胞攻击健康细胞。改良后的免疫细胞经过繁殖被重新注入患者的血液。理想情况是,免疫细胞会在患者血液里对癌细胞进行导向追踪并将其消灭。

CRISPR的意思是“成簇的、规律间隔的短回文重复序列”,即脱氧核糖核酸序列的固定模式,可进行编辑。Cas9是一种改良型蛋白质,注入人体后可对脱氧核糖核酸产生影响,就像一把可裁剪基因的剪刀。这项技术依据的是一项10年前的发现,即某些菌细胞可确定入侵病毒并切断它们的脱氧核糖核酸。

CRISPR-Cas9在此基础上进行了技术改良,由此可对基因进行编辑,进而可消除有害疾病,甚至还可创造人畜混合器官,以弥补移植器官数量的不足。

据西班牙《国家报》网站11月16日报道,中国启动了全球首个CRISPR基因编辑技术人类临床试验。利用CRISPR技术可以对生物的DNA序列进行编辑和修改。

据报道,中国四川大学华西医院肿瘤科主任卢铀的团队利用CRISPR技术对患者的免疫细胞进行基因编辑,使免疫细胞中负责编码PD-1蛋白的基因失去活性。这种蛋白能调节细胞的免疫反应,而癌细胞利用这一特点在人体内进行扩散。10月28日,这名患者接受了第一次基因编辑细胞人体注射,以期在PD-1蛋白不发挥作用的情况下,基因编辑细胞能杀灭癌细胞,治好患者的肺癌。试验的初步结果将在6个月后知晓。

报道称,但对于这种疗法的安全性和可能产生的副作用还存在一些疑问。因为目前还不知道,基因编辑细胞除了攻击癌细胞外,是否还会攻击健康细胞。卢铀表示,试验的第一阶段进展顺利,将会对患者进行第二次注射,但为了替患者保密,他拒绝透露更多细节。整个试验共有10人参加,其余9人也是肺癌患者,在接受放疗或化疗后,他们的情况并未改善。

基因疗法,中国已走在世界最前沿

在CRISPR-Cas9技术被发明之前,许多研究人员已经看见了基因编辑在治疗各类疾病中不可限量的前景。

然而,随着CRISPR-Cas9技术的引入,这种更为简单、高效、准确的基因编辑技术将使基因疗法进入临床阶段的时间大大提前。

“类似当年的美苏太空竞赛,只不过这次是中国和美国在生物医疗领域的争夺。这种竞争之所以重要,是因为良性竞争会不断提升技术和终端产品的可靠性”,卡尔·朱恩教授表示。

卡尔·朱恩是美国肿瘤细胞免疫疗法的先驱者,同时也是一个重大基因疗法科研计划的科学顾问,该计划希望通过CRISPR技术来标记患者细胞中的三种基因,并达到治疗多种癌症的最终目的。卡尔·朱恩希望,美国的研究团队最早能在2017年初开始进行试验性治疗。

无疑,中美两国在基因治疗领域已经走在了世界前列,而中国已经完成了首例人体测试,至少在技术的实际应用方面,已将美国甩在身后。

无法避免的尴尬:伦理与道德

然而,编辑人类基因无疑极具争议。甚至在英国,编辑人类基因是被禁止的。

一项在中国进行的对不能成活的人类胚胎展开的研究,在全球学术界曾引起了广泛关注,后因研究人员发现在临床环境下使用这种技术面临“严重障碍”而被叫停。

此外,在2015年3月,一个研究小组在《Nature》杂志发表公开信,提出“严重担忧”编辑人类基因“种系”产生的道德和安全影响。

基因组编辑技术的应用

基因组编辑技术的应用 基因编辑技术是指在基因组水平上对目的基因序列甚至是单个核苷酸进行替换、切除,增加或插入外源DNA序列的基因工程技术,经典的基因组编辑技术主要依赖于同源重组及干细胞全能性来完成对个体特定基因的改造。因为其在生物医学和工农业生产中发挥着重要作用,所以相关的早期开创性工作被授予2007 年诺贝尔生理医学奖。但是经典的方法存在效率低、技术要求高和成本高等缺点,严重制约了相关的研究和工农业生产。但是当2013年CRISPR-Cas9系统的诞生,使基因定位、精准修改变得更加容易,CRISPR文库的应用也让基础研究中大规模的基因组编辑和筛选成为现实。 基因定位和精准修改意味着该技术可以人为控制基因表达,目前CRISPR-Cas9基因编辑技术可被广泛地应用于动物模型构建、遗传疾病治疗、农业育种等方面。 动物模型构建 CRISPR-Cas9 系统作为最新一代基因编辑技术,能够简便高效地实现基因组精确修饰,是制备哺乳动物疾病模型的重要工具。目前科学家利用CRISPR-Cas9 技术在动物模型,如小鼠、大鼠、猪和猴等研制方面做出一系列重要工作。如科学家们将CRISPR-Cas9 系统导入小鼠受精卵,成功获得了有特定基因突变的小鼠模型,并获得近乎100% 的基因靶向突变效率,极大地降低了基因编辑小鼠模型制备的难度和成本,有望被广泛应用。 遗传疾病治疗及药物靶点筛选 作为一种简便高效的基因编辑技术,CRISPR-Cas9 技术自问世以来就被认为具有治疗遗传疾病的巨大潜力。科学家们选择小鼠白内障遗传疾病模型进行研究。对携带显性突变引发晶状体混浊的Crygc 基因进行定点修正。发现有1/3 的新生小鼠白内障症状被治愈,并通过生殖细胞将修复的Crygc基因传递到下一代,证明白内障遗传疾病得到了根治。CRISPR-Cas9技术更大的一项突破是CRISPR文库在药物靶点筛选中的应用。有科学家通过构建全基因组CRISPR文库,使全基因组中18000个基因形成缺失突变,结合相关的药物筛选手段最终对细胞进行筛选,最终对筛选存活的细胞进行NGS测序,即可推断出药物靶点相关基因。 农业育种 对于农业来说,基因编辑技术的兴起为培育新品种带来了更多的可能性。对于一些农作物来说,抗旱、抗虫、抗病等特性不再是遥不可及的梦想;对于另外一些作物,基因编辑技术能够使它们更好地适应消费者的需求。科学家利用CRISPR技术对双孢菇(一种常见的食用菇)进行了基因组编辑,培育出一种不会变褐的蘑菇。这样的蘑菇更宜于消费者储存,因此可以减少因蘑菇变色而带来的浪费。2016年4月,这种蘑菇成为了美国第一个被批准上市的基因编辑农产品。 CRISPR-Cas9作为一种新型的基因编辑技术,可以在不引入外源基因的情况下进行基因编辑,同时又能够精准的进行并在各个领域取得了一系列的成果,具有十分广阔的应用前景。 苏州泓迅科技利用独创的“GPS”(Genotype,Phenotype,Synotype)平台,提供基于CRISPR-Cas9 sgRNA文库的一站式基因功能筛选服务。

基因编辑技术的方法、原理及应用

Hans Journal of Biomedicine 生物医学, 2015, 5, 32-41 Published Online July 2015 in Hans. https://www.sodocs.net/doc/d415215264.html,/journal/hjbm https://www.sodocs.net/doc/d415215264.html,/10.12677/hjbm.2015.53005 Methods, Principles and Application of Gene Editing Yuchang Zhu1, Xiaojiang Zheng1, Yibing Hu2* 1School of Biological Science and Technology, Hubei University for Nationalities, Enshi Hubei 2College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing Jiangsu Email: *huyb@https://www.sodocs.net/doc/d415215264.html, Received: Jul. 1st, 2015; accepted: Jul. 24th, 2015; published: Jul. 27th, 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.sodocs.net/doc/d415215264.html,/licenses/by/4.0/ Abstract Fast development of gene editing technologies provides more powerful tools for gene function analysis. Now researchers can easily manipulate targeted gene with the Zinc Finger Nuclease (FZN), Transcription Activation Like Effector Nuclease (TALEN) and Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins (CRISPR) technologies emerged in the last dec-ade. These technologies revolutionized gene functional analysis and medical treatment. In this re-view, several typical gene editing technologies were listed, and their principles, characteristics and application were discussed. Keywords Gene Editing, Methods, Principles, Application 基因编辑技术的方法、原理及应用 朱玉昌1,郑小江1,胡一兵2* 1湖北民族学院生物科学与技术学院,湖北恩施 2南京农业大学资源与环境科学学院,江苏南京 Email: *huyb@https://www.sodocs.net/doc/d415215264.html, 收稿日期:2015年7月1日;录用日期:2015年7月24日;发布日期:2015年7月27日 *通讯作者。

基因编辑技术简介

基因编辑技术学习总结 CRISPR(Clustered regularly interspaced short palindromic repeats)是在细菌中发现的适应性免疫反应系统,能有效抵抗噬菌体等对细菌造成的损伤。这项机制被应用于基因编辑,是当前生物学的研究热点。 一、基因编辑技术的发展 基因编辑技术的发展可追溯到1968年I型限制性内切酶的发现,它可以识别DNA并随即剪切DNA,但由于不具有特异性而不能得到应用;1970年后具有识别特异性的Ⅱ型限制性内切酶被发现;1981年一种Ⅱ型限制性内切酶,FokI 在黄杆菌中被分离出来,成为了基因研究的重要工具。 FokI不同于一般的Ⅱ限制性内切酶(识别和剪切利用同一结构域,因而难以在保证剪切活性的条件下改变识别域),FokI的含有两个相对独立的结构域,N端为识别域,C端为剪切域;这种特性使得FokI可以通过对识别域的改造对DNA进行定点切割。在这种理论的基础上,发展出了ZFN——锌指核酸酶,TALEN ——转录激活样效应蛋白核酸酶;两种技术都是通过使能够识别DNA序列的蛋白与FokI相连实现基因的特异性切割,其不同在于锌指结构域通过约30个氨基酸对DNA三联体进行识别,而转录激活效应蛋白则是通过34个氨基酸组成的识别单体对不同核苷酸进行识别,因而TALEN的识别效率显著高于ZFN。然而它们都是利用利用蛋白进行DNA识别,并使用相同的剪切蛋白-FokI形成二聚体进行DNA剪切。 CRISPR的不同之处在于它利用RNA进行DNA识别,其识别效率优势显而易见;此外CRISPR技术不需要对识别域和限制性内切酶剪切域进行连接,因而设计简单,编辑高效。 CRISPR技术起源于1987年日本在细菌DNA中发现“重复-居间(spacer)-重复序列”,2002年命名为成簇规律性间隔短回文重复(Clustered Regularly Interspaced Short Palindromic Repeats)并预测改基因序列与细菌获得性免疫有关,2007年其免疫功能得到证实,并最终于2012年成功运用于基因编辑。 蛋白质、RNA介导的DNA编辑技术都已取得成功。2014年,单链DNA引导的具有核酸内切酶活性的TtAgo蛋白在嗜热菌中被发现。这种DNA指导核酸内切酶是否可以应用于基因编辑技术,韩春雨团队发表文章,利用NgAgo蛋白实现了格DNA引导的基因组编辑,但其实验结果目前依然存在争议。

基因编辑技术

生物学研究最具影响力技术:“基因编辑技术”大盘点 2014年10月29日,Nature杂志上发布了名为”Promoterless gene targeting without nucleases ameliorates haemophilia B in mice”的研究论文,据悉,该文章发布了一种超越CRISPR 的基因组编辑新技术,而CRISPR技术在今年被《Nature Methods》评为在过去十年中对生物学研究影响最深的十大技术之一。 新方法不需要内切酶在特异位点剪切DNA,也不需要使用启动子,大大降低了新基因自身插入到基因组中随机位置而引起癌症的机会。该技术使用一种常用的病毒——改良的腺相关病毒(AAV)。改良的病毒载体中,所有的病毒基因被删除,只保留了治疗基因。再利用同源重组,将目标基因插入,达到基因编辑的目的。 在了解这项新技术有点之后,有必要了解什么是基因编辑技术及基因编辑的三大利器:ZFN(锌指核酸酶)、TALEN(转录激活样效应因子核酸酶)和CRISPR/Cas9(成簇规律间隔短回文重复技术)。 基因编辑是近年来发展起来的可以对基因组完成精确修饰的一种技术,可完成基因定点InDel突变、敲入、多位点同时突变和小片段的删失等,可在基因组水平上进行精确的基因编辑。在科研领域,该技术可以快速构建模式动物,节约大量科研时间和经费;在农业领域,该技术可以人为改造基因序列,使之符合人们的要求,如改良水稻等粮食作物;在医辽领域,基因编辑技术可以更加准确、深入地了解疾病发病机理和探究基因功能,可以改造人的基因,达到基因治疗的目的等。因此,基因组编辑具有极其广泛的发展前景和应用价值。 ZFN、TALEN和CRISPR/Cas9是三大基因编辑技术,基因编辑技术本质上均是利用非同源末端链接途径(NHEJ)修复和同源重组(HR)修复,联合特异性DNA的靶向识别及核酸内切酶完成的DNA序列改变。因此,这三种编辑工具的共同点是:含有靶点DNA序列的识别区域及DNA剪切功能区域,其中ZFN技术具有锌指结构域能够识别靶点DNA,而TALEN的DNA识别区域是重复可变双残基的重复,DNA剪切区域都是一种名为Fokl的核酸内切酶结构域。CRISPR的DNA识别区域是crRNA或向导RNA,Cas9蛋白负责DNA的剪切。当DNA 结合域识别靶点DNA序列后,核酸内切酶或Cas9蛋白将DNA剪切,靶DNA双链断裂,再启动DNA损伤修复机制,实现基因敲除、插入等。 基因编辑技术优缺点: 1)ZFN 的基因打靶效率能够达到30%左右,已经可以做到针对某些特定的序列来设计

浅谈基因编辑技术在农作物领域中的应用与问题探究

现代农业研究 近年来,农作物转基因技术得到了快速发展,将基因编辑技术应用在农作物育种上,能得到多个新的生物品种,尤其在玉米、大豆、棉花等农作物上有着较好应用。转基因技术的应用,一定程度推动了农业领域发展,但是还存在一定安全问题,要想充分利用作物转基因技术,还要注重基因编辑农作物的管理和检测,以便能发挥基因编辑技术在研发新品种上的作用,尽可能提高农作物营养价值。 1基因编辑技术在农作物领域的应用 1.1ZFN 技术 ZFN 主要负责识别和结合特定的核苷酸序列,将ZFN 技术应用到作物育种中,可对植物基因进行重新编辑。锌指核酸酶由锌脂蛋白和核酸酶结构域组成,其中核酸酶结构域对切割点不具有识别特异性,只有在二聚体情况下可使其具备酶活性。因此,需要对任一靶位点设置一对ZFN,以便形成核酸酶二聚体,从而进行DNA 链的切割。有研究学者采用该技术,替换掉烟草中乙酰乳酸酶基因的三个核苷酸点,进而得到抗除草剂的作物[1]。另外,将ZFN 技术应用在玉米作物 中,能合成磷酸酶基因,使得玉米具有抗除草剂性能,同时还能减少玉米中的肌醇六磷酸含量,提高了作物营养品质。尽管当前ZFN 技术在多种植物中取得较好运用,但是由于锌指单元对切割点识别性不高,因此在不同基因改造上的识别差异较大,限制了该技术的广泛使用。 1.2TALEN 技术 该技术是一种基于核苷酸的编辑技术,是由核酸内切酶和DNA 结构域共同组成的,其中DNA 结构域主要是由多个氨基酸序列构成的,重复序列能识别相应的碱基。TALEN 技术运用原理为:结合靶位点两端的序列设置一对TALEN,与识别位点结合后,两个核酸内切酶结合起到形成二聚体,在切割DNA 链后可完成基因编辑。有学者将该技术运用到水稻中,破坏了细菌性病原菌效应蛋白在作物基因组上的位点,进而提高了水稻抗百叶枯病。另外,在这一技术作用下,还能破坏水稻甜菜碱乙醛脱氢酶结合位点,能起到提高水稻品质的作用。而将该转基因技术运用到小麦育种中,能得到抗性较强的小麦,相对于传统育种技术来讲有 浅谈基因编辑技术在农作物领域中的 应用与问题探究 (威海海洋职业学院 264300) 【摘要】随着ZFN 、CPISPR/Cas9等基因编辑技术的发展和运用,大量基因编辑作物生产出来,这种背景下,基因编辑作物的检测及安全成为重点研究问题。本文主要围绕基因编辑技术在农作物领域的应用、针对基因编辑农作物的安全评价监管、基因编辑农作物的检测等方面展开讨论,具体分析了基因编辑技术在农业领域的应用现状,并以保障农作物食用安全为主,加强基因编辑作物有关问题的研究,促进农业领域良好发展。【关键词】基因编辑技术;农作物领域;应用分析 邹丹丹 Discussion on the Application and the Problem of the Gene Editing Technology in the Field of Crop Zou Dandan [Abstract]With the development and application of gene editing technology such as ZFN,CPISPR/Cas9,a large number of gene editing crops have been produced.Under this background,the detection and safe?ty of gene editing crops has become a key research issue.In this paper,the application of gene editing technology in agriculture was analyzed in detail,and the main purpose was to ensure the food safety of crops,to strengthen the research on related problems of gene editing crops,and to promote the good de?velopment of agricultural field. [Keywords]gene editing technology;crop field;application analysis (Weihai Marine V ocational College 264300) 农业经济

基因编辑技术简介

基因编辑技术简介-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

基因编辑技术学习总结 CRISPR(Clustered regularly interspaced short palindromic repeats)是在细菌中发现的适应性免疫反应系统,能有效抵抗噬菌体等对细菌造成的损伤。这项机制被应用于基因编辑,是当前生物学的研究热点。 一、基因编辑技术的发展 基因编辑技术的发展可追溯到1968年I型限制性内切酶的发现,它可以识别DNA并随即剪切DNA,但由于不具有特异性而不能得到应用;1970年后具有识别特异性的Ⅱ型限制性内切酶被发现;1981年一种Ⅱ型限制性内切酶,FokI 在黄杆菌中被分离出来,成为了基因研究的重要工具。 FokI不同于一般的Ⅱ限制性内切酶(识别和剪切利用同一结构域,因而难以在保证剪切活性的条件下改变识别域),FokI的含有两个相对独立的结构域,N端为识别域,C端为剪切域;这种特性使得FokI可以通过对识别域的改造对DNA进行定点切割。在这种理论的基础上,发展出了ZFN——锌指核酸酶,TALEN——转录激活样效应蛋白核酸酶;两种技术都是通过使能够识别DNA 序列的蛋白与FokI相连实现基因的特异性切割,其不同在于锌指结构域通过约30个氨基酸对DNA三联体进行识别,而转录激活效应蛋白则是通过34个氨基酸组成的识别单体对不同核苷酸进行识别,因而TALEN的识别效率显著高于ZFN。然而它们都是利用利用蛋白进行DNA识别,并使用相同的剪切蛋白-FokI 形成二聚体进行DNA剪切。 CRISPR的不同之处在于它利用RNA进行DNA识别,其识别效率优势显而易见;此外CRISPR技术不需要对识别域和限制性内切酶剪切域进行连接,因而设计简单,编辑高效。 CRISPR技术起源于1987年日本在细菌DNA中发现“重复-居间(spacer)-重复序列”,2002年命名为成簇规律性间隔短回文重复(Clustered Regularly Interspaced Short Palindromic Repeats)并预测改基因序列与细菌获得性免疫有关,2007年其免疫功能得到证实,并最终于2012年成功运用于基因编辑。 蛋白质、RNA介导的DNA编辑技术都已取得成功。2014年,单链DNA引导的具有核酸内切酶活性的TtAgo蛋白在嗜热菌中被发现。这种DNA指导核酸内

一口气告诉你,基因编辑技术的“前世今生”

一口气告诉你,基因编辑技术的“前世今生” (作者:吴剑锋,厦门大学生命科学学院博士,科普中国微平台原创首发)DNA是绝大部分生物的遗传信息的储存介质,由腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)、胞嘧啶(C)四种核苷酸组成,并且严格遵守A-T,C-G的碱基互补配对原则,DNA链上这四种核苷酸的排列信息就是生物体的主要遗传信息。基因是控制生物性状的基本遗传单位,即一段携带特定遗传信息的DNA序列,主要通过翻译出对 应的效用蛋白发挥功能。图1. DNA的结构示意图(图 片来自网络)基因异常往往导致各种疾病的发生:如在超过50%的人类肿瘤中都能检测到编码p53蛋白的基因的 突变(丧失活性);Rag1等基因的突变会导致重症联合免疫缺陷,患儿终生不能接触外界空气,只能终生生活在隔绝容器内(图2)。图2. 终生生活在隔离容器内的美国男孩大卫·维特(图片来自网络)什么是基因编辑技术? 基因编辑技术是指特异性改变目标基因序列的技术。目前主要的基因编辑技术都是基于如下原理发展而来的:在细胞内利用外源切割复合体特异性识别并切割目的基因序列,在目的基因序列上制造断裂端,这种断裂端随即会被细胞内部的DNA损伤修复系统修复,重新连接起来。在此修复过程中,当有修复模板存在时,细胞会以修复模板为标准进行修复,

从而实现对基因序列的特异性改变,即基因编辑(图3)。图3 基因编辑技术的基本原理示意图要实现基因编辑,外源切割复合体必须满足两个条件:① 切割复合体必须可以特异性地识别和结合至目的基因DNA序列上,这是各种基因编辑技术的主要差异所在,也是发展基因编辑技术的最大困难所在;② 切割复合体必须具有切割DNA,制造断裂端的功能;基因编辑技术的简要发展历史 自1953年沃森和克里克两位科学家提出DNA的双螺旋结构以来,人们一直都在积极探索着高效便利的基因编辑技术:上世纪80年代,科学家在小鼠胚胎干细胞中通过基因打靶技术实现了基因编辑(2007年诺贝尔生理医学奖),但此技术在其余细胞内效率极低,应用受到了极大的限制;上世纪90年代,基于细胞内不同锌指蛋白可特异性识别DNA 上3联碱基的特征以及核酸酶FokI二聚化后可以切割DNA 的特点,人们通过锌指蛋白偶联Fokl的策略逐渐发展出了一种新的基因编辑技术--锌指蛋白核酸酶技术(Zinc Finger Nucleases, ZFNs)。但此技术专利被公司垄断,且锌指蛋白数量有限,可以识别的DNA序列数量有限,其应用也受到了很大的限制。随后,基于改造后的植物病原菌中黄单胞菌属的TAL蛋白可以特异性识别DNA中一个碱基的特性,人们又发展出了新的基因组编辑技术--转录激活样因子核酸酶技术(Transcription activator-like effector nucleases,

基因组编辑三大技术

基因组编辑三大技术:CRISPR、TALEN和ZFN[创新技巧] 摘要: 最近出现的新工具让研究人员能够在几乎任何物种中实现精确的修饰,有着核苷酸水平的精确度,也有着令人难以置信的速度。大部分是在特定的位置引入双链DNA断裂,然后由细胞进行修复。区别在于如何引入断裂,以及新序列靶定的难易程度。 在过去,如果你想在模式生物中进行复杂的基因组修饰,你几乎只能选择小鼠。 首先,你要设计一个打靶载体,将其引入小鼠胚胎干细胞,并将这些经过修饰的细胞注射到小鼠囊胚。接着是孕育、出生、筛选,等待所需的幼崽成长到性成熟,交配和杂交,之后是更多孕育、更多筛选,一直下去。 复杂的项目也许需要一年或更长时间才能完成。它几乎只对小鼠起作用。原因还不是很清楚,也许小鼠胚胎干细胞有着特别活跃的同源重组系统。大鼠和人类则不是这样。 不过好消息是,最近出现的新工具让研究人员能够在几乎任何物种中实现精确的修饰,有着核苷酸水平的精确度,也有着令人难以置信的速度。大部分是在特定的位置引入双链DNA 断裂,然后由细胞进行修复。区别在于如何引入断裂,以及新序列靶定的难易程度。 锌指核酸酶(ZFN) 第一个使用定制DNA核酸内切酶的基因组编辑策略就是锌指核酸酶(zinc-finger nucleases,简称ZFN)。 锌指蛋白是转录因子;每个指模块识别3-4个碱基的序列,将这些模块混合搭配,研究人员或多或少能靶定他们希望的任何序列。Sigma-Aldrich公司将ZFN技术商业化,推出CompoZr ZFN试剂平台。 ZFN是异源二聚体,其中每个亚基含有一个锌指结构域和一个FokI核酸内切酶结构域。FokI 结构域必须二聚化才有活性,确保必须存在两个相邻的DNA结合事件才能实现双链断裂,从而增加了目标特异性。 切割事件使得大部分基因组编辑技术得以实现。在双链断裂后,细胞试图修复它。最简单的方法是非同源末端接合(NHEJ),其中细胞基本上磨平断裂DNA的两端,再将其彼此拉近,这往往产生移码。另一种方法是同源定向修复(HDR)。细胞试图利用另一条染色体上对应的DNA序列作为模板来修复断裂。通过提供自己的模板,用户可促使系统在不经意间插入所需的序列。 ZFN技术由Sangamo生物科学公司所拥有,被用来开发治疗产品。不过,对于科研方面的应用,Sangamo则授权给了Sigma-Aldrich。

基因编辑技术

基因编辑技术一、概念 基因编辑是近年来发展起来的可以对基因组完成精确修饰的一种技术,可完成基因定点InDel突变、敲入、多位点同时突变和小片段的删失等,可在基因组水平上进行精确的基因编辑。 二、应用 1.在科研领域,该技术可以快速构建模式动物,节约大量科研时间和经费; 2.在农业领域,该技术可以人为改造基因序列,使之符合人们的要求,如 改良水稻等粮食作物; 3.在医疗领域,基因编辑技术可以更加准确、深入地了解疾病发病机理和 探究基因功能,可以改造人的基因,达到基因治疗的目的等。 三、作用机理 基因编辑技术本质上均是利用非同源末端链接途径(NHEJ)修复和同源重组(HR)修复,联合特异性DNA的靶向识别及核酸内切酶完成的DNA序列改变。 注: 非同源末端连接(Non-homologous End Joining-NHEJ)是真核生物细胞在不依赖DNA同源性的情况下,而为了避免DNA或染色体断裂(Breaks)的滞留,避免因此造成的DNA降解或对生命力的影响,强行将两个DNA断端彼此连接在一起的一种特殊的DNA双链断裂修复机制。 同源重组(HR)修复即双链DNA中的一条链发生损伤,在DNA进行复制时,由于该损伤部位不能成为模板,不能合成互补的DNA链,所以产生缺口,而从

原来DNA的对应部位切出相应的部分将缺口填满,从而产生完整无损的子代DNA的这种修复现象。 四、类别 ZFN、TALEN、CRISPR/Cas9是三大基因编辑技术,这三种编辑工具的共同点是:含有靶点DNA序列的识别区域及DNA剪切功能区域。 1.ZFN技术具有锌指结构域能够识别靶点DNA 2.TALEN的DNA识别区域是重复可变双残基的重复,DNA剪切区域都是一 种名为Fokl的核酸内切酶结构域 3.CRISPR的DNA识别区域是crRNA或向导RNA,Cas9蛋白负责DNA的剪 切 四、传统技术的优缺点 1.ZFN 的基因打靶效率能够达到30%左右,已经可以做到针对某些特定的 序列来设计ZFN实现靶基因的修饰,但也有其发展的局限性,ZFN 的识别结构域中存在上下文依赖效应,使得ZFN设计和筛选效率大大降低,所以目前尚无法实现对任意一段序列均可设计出满足要求的ZFN,也无法实现在每一个基因或其他功能性染色体区段都能够顺利找到适合的ZFN作用位点,并且在已经成功运用的ZFN的报道中,大多数研究者并不公布其ZF 序列。所以,在ZFN的筛选和设计方面还存在较大技术困难。另外,由于ZFN的脱靶切割会导致细胞毒性,使得其在基因治疗领域的应用出现了一定的局限性。 2.相比ZFN技术,TALEN 使用了TALE 分子代替ZF 作为人工核酸 酶的识别结构域,极好地解决了ZF 对于DNA 序列识别特异性低

基因编辑技术最新进展

基因编辑技术最新进展 人体内已命名的基因共有25000多条,目前已知一部分基因(3000)的突变会引起各类疾病。对于此类疾病的治疗,最本质的手段是通过一些方法将突变后的遗传物质矫正回原来的状态。这类方法被称为遗传疗法(genetic therapies)。目前最广泛的遗传疗法手段为:1. 以病毒载体感染方式引导的源基因导入;2. 以RNA干扰方式引导的目的基因表达下调。这些手段在治疗严重复合型免疫缺陷疾病(SCID)以及Wiskott-Aldrich综合征方面获得了成功。尽管如此,RNAi 技术在应用的广泛性上还存在局限。 基因编辑技术(genome editing technologies)是针对DNA本身进行的操作手段。最近应用型基因编辑领域的"鼻祖",美国麻省理工学院张锋教授等人发表在《Nature Medicine》杂志上的一篇综述详细介绍了这些技术的原理以及在临床上的应用前景。 基因编辑技术的基本原理

归巢酶,ZFN,TALEN以及CRISPR/cas9四种核酸内切酶均能够特异性地识别与切割特定的DNA序列,引起DNA双链断裂(DSB)。根据其识别方式的不同可以分为:蛋白质与DNA的识别与切割,包括归巢酶,ZFN,TALEN; RNA与DNA的识别与蛋白质介导的切割,即CRISPR/cas9。在特异性方面,归巢酶具有一个较大的DNA识别结构域,此结构同时负责DNA的切割;ZFN与TALEN是由多个酶亚基组成的复合体,分别具有特异性识别DNA的能力与 DNA内切活性。在应用方面,归巢酶及ZFN需要通过人工突变的方式构造切割不同DNA序列的工程酶,LALEN则需要复杂的分子克隆达到此目的。与之不同,在CRISPR/cas9系统中,可以通过简单的sgRNA的变化达到切割不同的基因片段的目的。切割完成后,目的位点会出现双链断裂(DSB)的结果并引起生物体的主动修复。NHDJ修复以另外一条未被切割的DNA链为模板,从而保证修复结果的准确。在反复不断地断裂-修复过程中,容易在切割位点造成插入或缺失突变,这样就达到了造成基因紊乱的目的。另外,研究人员利用HDR的修复机制可以人为制造想要得到的突变结果,从而达到基因修复的效果。 基因编辑疗法简介 基因编辑在疾病治疗方面的应用模式主要为:矫正/沉默有害突变,插入保护性突变,加入治疗性基因以及敲除病毒DNA。对于突变引起的有害基因的活化,可以通过简单的沉默或敲除的方式达到治疗的目的,如亨廷顿氏舞蹈症(一种显性突变引起的家族性遗传病),但是对于突变引起的正常基因的失活,则需要通过HDR的方式对目的序列进行编辑,使其恢复到原有的健康状态,如泰萨氏病(一种隐性基因突变引起的遗传性疾病)。 基因编辑的效率 基因编辑的效率受到编辑方式,细胞类型,位点序列等多个因素的影响。总体上来讲,NHEJ要比HDR效率更高。对于我们更关心的HDR方式,主要受到4个因

基因编辑技术进展

基因编辑技术最新进展-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

基因编辑技术最新进展 人体内已命名的基因共有25000多条,目前已知一部分基因(3000)的突变会引起各类疾病。对于此类疾病的治疗,最本质的手段是通过一些方法将突变后的遗传物质矫正回原来的状态。这类方法被称为遗传疗法(genetic therapies)。目前最广泛的遗传疗法手段为:1. 以病毒载体感染方式引导的源基因导入;2. 以RNA干扰方式引导的目的基因表达下调。这些手段在治疗严重复合型免疫缺陷疾病(SCID)以及Wiskott-Aldrich综合征方面获得了成功。尽管如此,RNAi技术在应用的广泛性上还存在局限。 基因编辑技术(genome editing technologies)是针对DNA本身进行的操作手段。最近应用型基因编辑领域的"鼻祖",美国麻省理工学院张锋教授等人发表在《Nature Medicine》杂志上的一篇综述详细介绍了这些技术的原理以及在临床上的应用前景。

基因编辑技术的基本原理 归巢酶,ZFN,TALEN以及CRISPR/cas9四种核酸内切酶均能够特异性地识别与切割特定的DNA序列,引起DNA双链断裂(DSB)。根据其识别方式的不同可以分为:蛋白质与DNA的识别与切割,包括归巢酶,ZFN,TALEN;RNA与DNA的识别与蛋白质介导的切割,即CRISPR/cas9。在特异性方面,归巢酶具有一个较大的DNA识别结构域,此结构同时负责DNA的切割;ZFN 与TALEN是由多个酶亚基组成的复合体,分别具有特异性识别DNA的能力与DNA内切活性。在应用方面,归巢酶及ZFN需要通过人工突变的方式构造切割不同DNA序列的工程酶,LALEN则需要复杂的分子克隆达到此目的。与之不同,在CRISPR/cas9系统中,可以通过简单的sgRNA的变化达到切割不同的基因片段的目的。切割完成后,目的位点会出现双链断裂(DSB)的结果并引起生物体的主动修复。NHDJ修复以另外一条未被切割的DNA链为模板,从而保证修复结果的准确。在反复不断地断裂-修复过程中,容易在切割位点造成插入或缺失突变,这样就达到了造成基因紊乱的目的。另外,研究人员利用HDR的修复机制可以人为制造想要得到的突变结果,从而达到基因修复的效果。 基因编辑疗法简介

《“基因编辑”可能的前景和问题》阅读练习及答案

阅读下面的文字,完成下列小题。 (材料一) 在重构孩子基因一事上,个体父母的自由抉择究竟会带来什么样 的危害?根据经济学理论,只有当个人选择导致“负外部性”时——也就是说,当危害带来的代价由完全没有参与交易的第三方来承担时,社会危害才会形成集成式影响,举个例子,一家公司可能通过向当地的河流倾倒有毒废料而获益,但它会影响到附近社区成员的利益,类似的效果已经在Bt转基因玉米上体现出来:它能够制造毒素杀死一 种欧洲当地的害虫玉米螟,然而,它也会因此误杀帝王蝶。这里需要 考虑的问题是,是否会出现这样的情况,即由生物技术方面的个人选择带来负外部性,因而导致整个社会受累? ——摘编自福山《我们为什么担忧“基因编辑”》(材料二) 这种类似的基因“军备竞赛”会对下面一类人产生特定的负担, 这些人,由于宗教或其他原因,不愿对孩子进行基因改造;如果周围 的人都在这么做,对他们而言想要坚持放弃的决定就会愈加艰难,因为担心会阻挡孩子的前程,尽管人们在担忧未曾意想的结局和不可预见的代价,人们心中所隐藏的深层的对于生物技术的忧虑却一点儿也 不是功利主义的。终极意义上,毋宁说人们担心的是,生物技术会让 人类丧失人性——正是这种根本的特质不因世事斗转星移,支撑我们成为我们、决定我们未来走向何处。更糟糕的是,生物技术改变了人性,但我们却丝毫没有意识到我们失去了多么有价值的东西。

——材料来源同上(材料三) ——《中国公众对基因编辑技术的认知与态度研究报告》(材料四) 我们以遗传技术再造自己,是为了活得更久、更健康,超过我们 与生俱来的DNA容许的寿限。首先我们会重新安排基因来减少疾病,培养替换器官,并普遍迟滞高龄带来的众多折磨。这就会把我们带往21世纪20年代晚期,那时我们就能创造出分子尺度的纳米机器,编程运用来弥补我们的自然演化局限,投入应付DNA始终无力处理的工作。 一旦这些进展到位,我们就不只会延缓衰老,还能逆转其进程, 逐一处理每颗分子来清理、重建我们的身体。我们还会把这些机器,安顿在我们脑中现有的数十亿神经元当中,借助它们来强化我们的智慧,我们的记忆力会得以改良,我们会发令创造出崭新的虚拟经验,把人类的想象力提升到我们现有未强化的脑部连想都无法想的水平。一段(相当短暂的)时间之后,我们就会借助逆向工程,改造人脑创

基因组编辑技术的研究进展

基因组编辑技术的研究进展 院所:药物所姓名:周国霖学号:B2015008032 摘要:基因组编辑技术是对基因组进行精确定点改造的一项新技术,同时也是研究基因生物功能的一个有力工具。该技术与传统的以同源重组为基础的基因打靶技术相比,即可以实现对基因定点敲除和外源基因定点整合,同时又具有构建时间短、花费成本低、应用范围广等优点。经过数年的发展,目前主要有锌指核酸酶、转录激活子样效应因子核酸酶和规律性重复短回文序列簇与Cas9蛋白三种新型的基因组编辑技术。本文主要综述了这三种技术的结构原理、构建方法以及最新的应用进展。 关键词:基因组编辑;锌指核酸酶;转录激活子样效应因子核酸酶;规律性重复短回文序列簇 1.背景简介 随着生物技术的发展,传统的基因打靶技术以远不能满足科学家们对工作效率的追求。人工核酸内切酶(engineered endonuclease,EEN)技术的兴起,为基因编辑提供了可行性。现在应用最为广泛的基因编辑技术主要是指锌指核酸酶(zinc finger nuclease,ZFN)、类转录激活因子效应物核酸酶(transcription activator 1ike effector nuclease,TALEN)和规律性间隔的短回文序列重复簇(Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated Proteins, CRISPR)技术[1]。其中的CRISPR/Cas9技术获得了2015年的科学技术突破奖。这三种技术的共同工作原理都是根据特异性的人工设计在基因组的特定位置造成DNA双键断(Double Strand Breaking, DSB),细胞会通过DNA同源重组或者非同源末端连接机制修复双链断裂。在同源序列(外源引入或同源染色体)存在的情况下,外源DNA片段可借此插入断裂序列中,对原来的基因进行敲除或将外源基因插入基因组中而形成所谓的基因敲入,在没有同源序列的情况下,细胞趋向于利用非同源的末端连接进行DNA的修复,由于没有模板可以利用,这种连接容易导致碱基的缺失、增加或改变从而引起突变[2]。下面我们分别详细的介绍以下这三种技术的原理及构建方法。 2.锌指核酸酶(Zinc Finger Nuclease, ZFN) 人工核酸酶ZFN是第一代基因编辑技术。其核心设计思想是将2个有特定功能的结构域,即特异性识别模块和功能模块融合,形成具有特定功能的蛋白。ZFN由锌指蛋白(zinc finger protein,ZFP)和FokI核酸内切酶组成[3]。其中,由锌指蛋白ZFP作为特异性识别模块。锌指(zinc finger,ZF)是一种广泛存在于真核生物中的蛋白基序(motif),锌指蛋白基元的种类及排列方式决定了其DNA序列识别的特异性。ZFP结构域由一系列Cys2/His2锌指蛋白串联组成,每个ZFP大约含30个氨基酸残基,在空间结构上,锌指结构从N端到C端由两个反向的β平行结构和一个α螺旋组成。α螺旋的1、3、6位氨基酸残基分别特异性的结合其识别DNA 分子中三个连续的碱基,其α螺旋的1、3、6 位上氨基酸残基是不同的,因此将不同的ZFP与不同的DNA序列的结合[4]。FokI核酸内切酶是II型的核酸内切酶的一种,其识别序列和切割序列相距9个核苷酸,并且切割和识别功能分别由酶蛋

相关主题