搜档网
当前位置:搜档网 › pcm2706

pcm2706

pcm2706
pcm2706

Burr-Brown Audio

FEATURES

APPLICATIONS

DESCRIPTION

PCM2704,PCM2705

PCM2706,PCM2707

https://www.sodocs.net/doc/d015566992.html,.......................................................................................................................................................SLES081F–JUNE2003–REVISED JANUARY2009 STEREO AUDIO DAC WITH USB INTERFACE,

SINGLE-ENDED HEADPHONE OUTPUT AND S/PDIF OUTPUT

–External ROM Interface(PCM2704/6)

?On-Chip USB Interface:–Serial Programming Interface(PCM2705/7)–No Need of Dedicated Device Driver–I2S Interface(Selectable on PCM2706/7)–With Full-Speed Transceivers?Package:

–Fully Compliant With USB1.1Specification–28-Pin SSOP(PCM2704/5)

–Certified by USB-IF–32-Pin TQFP(PCM2706/7)

–Partially Programmable Descriptors

–Adaptive Isochronous Transfer for

?USB Headphones

Playback

?USB Audio Speaker

–Bus-Powered or Self-Powered Operation

?USB CRT/LCD Monitor

?Sampling Rate:32,44.1,48kHz

?USB Audio Interface Box

?On-Chip Clock Generator With Single12-MHz

?USB-Featured Consumer Audio Product Clock Source

?Single Power Supply:

–Bus-Powered:5V,Typical(V BUS)

The PCM2704/5/6/7is TI's single-chip USB stereo –Self-Powered:3.3V,Typical audio DAC with USB-compliant full-speed protocol

?16-Bit Delta-Sigma Stereo DAC controller and S/PDIF.The USB-protocol controller

works with no software code,but USB descriptors –Analog Performance at5V(Bus-Powered),

can be modified in some parts(for example,vendor

3.3V(Self-Powered):

ID/product ID)through the use of an external ROM –THD+N:0.006%R L>10k?,(PCM2704/6),SPI(PCM2705/7),or on request.(1) Self-Powered The PCM2704/5/6/7employs SpAct?architecture,

TI's unique system that recovers the audio clock from –THD+N:0.025%R L=32?

USB packet data.On-chip analog PLLs with SpAct –SNR=98dB

enable playback with low clock jitter.

–Dynamic Range:98dB

–P O=12mW,R L=32?

–Oversampling Digital Filter

–Pass-Band Ripple=±0.04dB

–Stop-Band Attenuation=–50dB

–Single-Ended Voltage Output

–Analog LPF Included

?Multiple Functions:

–Up to Eight Human Interface Device(HID)

Interfaces(Depending on Model and

(1)The modification of the USB descriptor through external ROM

Settings)or SPI must comply with USB-IF guidelines,and the vendor

ID must be your own ID as assigned by the USB-IF.The –Suspend Flag

descriptor also can be modified by changing a mask;contact –S/PDIF Out With SCMS your representative for details.

Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas

Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SpAct is a trademark of Texas Instruments.

System Two,Audio Precision are trademarks of Audio Precision,Inc.

I2S is a trademark of NXP Semiconductors.

RECOMMENDED OPERATING CONDITIONS

PCM2704,PCM2705PCM2706,PCM2707

SLES081F–JUNE 2003–REVISED JANUARY https://www.sodocs.net/doc/d015566992.html,

This integrated circuit can be damaged by ESD.Texas Instruments recommends that all integrated circuits be handled with appropriate precautions.Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure.Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

over operating free-air temperature range unless otherwise noted

(1)

V BUS

–0.3V to 6.5V Supply voltage

V CCP ,V CCL ,V CCR ,V DD –0.3V to 4V Supply voltage differences V CCP ,V CCL ,V CCR ,V DD

±0.1V Ground voltage differences PGND,AGNDL,AGNDR,DGND,ZGND ±0.1V HOST

–0.3V to 6.5V

Digital input voltage

D+,D–,HID0/MS,HID1/MC,HID2/MD,XTI,XTO,DOUT,SSPND,CK,DT,–0.3V to (V DD +0.3)V <4V PSEL,FSEL,TEST,TEST0,TEST1,FUNC0,FUNC1,FUNC2,FUNC3V COM –0.3V to (V CCP +0.3)V <4V Analog input voltage

V OUT R –0.3V to (V CCR +0.3)V <4V V OUT L

–0.3V to (V CCL +0.3)V <4V

Input current (any pins except supplies)±10mA Ambient temperature under bias –40°C to 125°C Storage temperature –55°C to 150°C

Junction temperature 150°C Lead temperature (soldering)

260°C,5s Package temperature (IR reflow,peak)260°C

(1)

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.These are stress ratings only,and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

over operating free-air temperature range

MIN

NOM

MAX UNIT V BUS

4.355

5.25Supply voltage V

V CCP ,V CCL ,V CCR ,V DD

3

3.3

3.6

Digital input logic level TTL compatible

Digital input clock frequency 11.994

1212.006

MHz Analog output load resistance 16

32

?Analog output load capacitance 100pF Digital output load capacitance 20pF Operating free-air temperature,T A

–2585C

2Submit Documentation Feedback Copyright ?2003–2009,Texas Instruments Incorporated

ELECTRICAL CHARACTERISTICS PCM2704,PCM2705 PCM2706,PCM2707

https://www.sodocs.net/doc/d015566992.html,.......................................................................................................................................................SLES081F–JUNE2003–REVISED JANUARY2009

all specifications at T A=25°C,V BUS=5V,f S=44.1kHz,f IN=1kHz,16-bit data(unless otherwise noted)

PCM2704DB,PCM2705DB,

PCM2706PJT,PCM2707PJT

PARAMETER TEST CONDITIONS UNIT

MIN TYP MAX

DIGITAL INPUT/OUTPUT

Host interface Apply USB revision1.1,full-speed

Audio data format USB isochronous data format

INPUT LOGIC

V IH2 3.3

V IL–0.30.8 Input logic level Vdc

V IH(1)2 5.5

V IL(1)–0.30.8

I IH(2)V IN=3.3V±10

I IL(2)V IN=0V±10

Input logic currentμA

I IH V IN=3.3V65100

I IL V IN=0V±10

OUTPUT LOGIC

V OH(3)I OH=–2mA 2.8

V OL(3)I OL=2mA0.3 Output logic level Vdc

V OH I OH=–2mA 2.4

V OL I OL=2mA0.4

CLOCK FREQUENCY

Input clock frequency,XTI11.9941212.006MHz

f s Samplin

g frequency32,44.1,48kHz DAC CHARACTERISTICS

Resolution16Bits

Audio data channel1,2Channel DC ACCURACY

Gain mismatch,channel-to-channel±2±8%of FSR Gain error±2±8%of FSR Bipolar zero error±3±6%of FSR DYNAMIC PERFORMANCE(4)

R L>10k?,self-powered,

0.006%0.01%

V OUT=0dB

Line(5)

Total harmonic R L>10k?,bus-powered,

THD+N0.012%0.02% distortion+noise V OUT=0dB

R L=32?,self-/

Headphone0.025%

bus-powered,V OUT=0dB

THD+N Total harmonic distortion+noise V OUT=–60dB2%

Dynamic range EIAJ,A-weighted9098dB

S/N Signal-to-noise ratio EIAJ,A-weighted9098dB Channel separation6070dB

(1)HOST

(2)D+,D–,HOST,TEST,TEST0,TEST1,DT,PSEL,FSEL,XTI

(3)FUNC0,FUNC1,FUNC2

(4)f IN=1kHz,using the System Two?Cascade audio measurement system by Audio Precision?in the RMS mode with a20-kHz LPF

and400-Hz HPF.

(5)THD+N performance varies slightly,depending on the effective output load,including dummy load R7,R8in Figure32

Copyright?2003–2009,Texas Instruments Incorporated Submit Documentation Feedback3

PCM2704,PCM2705

PCM2706,PCM2707

SLES081F–JUNE2003–REVISED https://www.sodocs.net/doc/d015566992.html, ELECTRICAL CHARACTERISTICS(continued)

all specifications at T A=25°C,V BUS=5V,f S=44.1kHz,f IN=1kHz,16-bit data(unless otherwise noted)

PCM2704DB,PCM2705DB,

PCM2706PJT,PCM2707PJT

PARAMETER TEST CONDITIONS UNIT

MIN TYP MAX

ANALOG OUTPUT

Output voltage0.55V CCL,0.55V CCR Vp-p

Center voltage0.5V CCP V

Line AC coupling10k?Load impedance

Headphone AC coupling1632?

–3dB140kHz LPF frequency response

f=20kHz–0.1dB DIGITAL FILTER PERFORMANCE

Pass band0.454f s Hz

Stop band0.546f s Hz

Pass-band ripple±0.04dB

Stop-band attenuation–50dB

Delay time20/f s s POWER SUPPLY REQUIREMENTS

V BUS Bus-powered 4.355 5.25 Voltage range Vdc

V CCP,V CCL,V CCR,

Self-powered3 3.3 3.6

V DD

Line DAC operation2330

mA Supply current Headphone DAC operation R L=32?)3546

Line/headphone Suspend mode(6)150190μA

Line DAC operation76108

mW Power dissipation

Headphone DAC operation R L=32?)116166 (self-powered)

Line/headphone Suspend mode(6)495684μW

Line DAC operation115158

mW Power dissipation

Headphone DAC operation R L=32?)175242 (bus-powered)

Line/headphone Suspend mode(6)750998μW

Internal power-supply V CCP,V CCL,V CCR,

Bus-powered 3.2 3.35 3.5Vdc voltage(7)V DD

TEMPERATURE RANGE

Operating temperature–2585°C

28-pin SSOP

100

(PCM2704/5)

θJA Thermal resistance°C/W

32-pin TQFP

80

(PCM2706/7)

(6)Under USB suspend state.

(7)V DD,V CCP,V CCL,V CCR.These pins work as output pins of internal power supply for bus-powered operation.

4Submit Documentation Feedback Copyright?2003–2009,Texas Instruments Incorporated

PIN ASSIGNMENTS

XTO CK DT PSEL DOUT DGND V DD D–D+V BUS ZGND AGNDL V CCL V OUT L

PCM2704/PCM2705DB PACKAGE

(TOP VIEW)

PCM2706/PCM2707PJT PACKAGE (TOP VIEW)

V V OUT V OUT V V B U S

+–D D

G N D U N C 1U N C 2O U T

P G N V C C H O S F U N C F U N C H I D 0/M H I D 1/M H I D 2/M P0020-01

PCM2704,PCM2705PCM2706,PCM2707

https://www.sodocs.net/doc/d015566992.html, .......................................................................................................................................................SLES081F–JUNE 2003–REVISED JANUARY 2009

Copyright ?2003–2009,Texas Instruments Incorporated Submit Documentation Feedback 5

PCM2704,PCM2705

PCM2706,PCM2707

SLES081F–JUNE2003–REVISED https://www.sodocs.net/doc/d015566992.html,

Terminal Functions(PCM2704DB/PCM2705DB)

TERMINAL

I/O DESCRIPTION

NAME NO.

AGNDL12—Analog ground for headphone amplifier of L-channel

AGNDR17—Analog ground for headphone amplifier of R-channel

CK2O Clock output for external ROM(PCM2704).Must be left open(PCM2705).

D+9I/O USB differential input/output plus(1)

D–8I/O USB differential input/output minus(1)

DGND6—Digital ground

DOUT5O S/PDIF output

DT3I/O Data input/output for external ROM(PCM2704).Must be left open with pullup resistor(PCM2705).(1)

HID0/MS22I HID key state input(mute),active HIGH(PCM2704).MS input(PCM2705).(2)

HID1/MC23I HID key state input(volume up),active HIGH(PCM2704).MC input(PCM2705).(2)

HID2/MD24I HID key state input(volume down),active HIGH(PCM2704).MD input(PCM2705).(2)

HOST21I Host detection during self-powered operation(connect to V BUS).Max power select during bus-powered

operation(LOW:100mA,HIGH:500mA).(3)

PGND19—Analog ground for DAC,OSC,and PLL

PSEL4I Power source select(LOW:self-power,HIGH:bus-power)(1)

SSPND27O Suspend flag,active LOW(LOW:suspend,HIGH:operational)

TEST026I Test pin.Must be set HIGH(1)

TEST125I Test pin.Must be set HIGH(1)

V BUS10—Connect to USB power(V BUS)for bus-powered operation.Connect to V DD for self-powered operation.

V CCL13—Analog power supply for headphone amplifier of L-channel(4)

V CCP20—Analog power supply for DAC,OSC,and PLL(4)

V CCR16—Analog power supply for headphone amplifier of R-channel(4)

V COM18—Common voltage for DAC(V CCP/2).Connect decoupling capacitor to PGND.

V DD7—Digital power supply(4)

V OUT L14O DAC analog output for L-channel

V OUT R15O DAC analog output for R-channel

XTI28I Crystal oscillator input(1)

XTO1O Crystal oscillator output

ZGND11—Ground for internal regulator

(1)LV-TTL level

(2)LV-TTL level with internal pulldown

(3)LV-TTL level,5-V tolerant

(4)Connect decoupling capacitor to GND.Supply3.3V for self-powered applications.

6Submit Documentation Feedback Copyright?2003–2009,Texas Instruments Incorporated

PCM2704,PCM2705

PCM2706,PCM2707 https://www.sodocs.net/doc/d015566992.html,.......................................................................................................................................................SLES081F–JUNE2003–REVISED JANUARY2009

Terminal Functions(PCM2706PJT/PCM2707PJT)

TERMINAL

I/O DESCRIPTION

NAME NO.

AGNDL26—Analog ground for headphone amplifier of L-channel

AGNDR31—Analog ground for headphone amplifier of R-channel

CK14O Clock output for external ROM(PCM2706).Must be left open(PCM2707).

D+23I/O USB differential input/output plus(1)

D–22I/O USB differential input/output minus(1)

DGND20—Digital ground

DOUT17O S/PDIF output/I2S?data output

DT15I/O Data input/output for external ROM(PCM2706).Must be left open with pullup resistor(PCM2707).(1)

FSEL9I Function select(LOW:I2S DATA output,HIGH:S/PDIF output)(1)

FUNC05I/O HID key state input(next track),active HIGH(FSEL=1).I2S LR clock output(FSEL=0).(2)

FUNC119I/O HID key state input(previous track),active HIGH(FSEL=1).I2S bit clock output(FSEL=0).(2)

FUNC218I/O HID key state input(stop),active HIGH(FSEL=1).I2S system clock output(FSEL=0).(2)

FUNC34I HID key state input(play/pause),active HIGH(FSEL=1).I2S data input(FSEL=0).(2)

HID0/MS6I HID key state input(mute),active HIGH(PCM2706).MS input(PCM2707)(2)

HID1/MC7I HID key state input(volume up),active HIGH(PCM2706).MC input(PCM2707)(2)

HID2/MD8I HID key state input(volume down),active HIGH(PCM2706).MD input(PCM2707)(2)

HOST3I Host detection during self-powered operation(connect to V BUS).Max power select during bus-powered

operation.(LOW:100mA,HIGH:500mA).(3)

PGND1—Analog ground for DAC,OSC,and PLL

PSEL16I Power source select(LOW:self-power,HIGH:bus-power)(1)

SSPND11O Suspend flag,active LOW(LOW:suspend,HIGH:operational)

TEST10I Test pin.Must be set HIGH(1)

V BUS24—Connect to USB power(V BUS)for bus-powered operation.Connect to V DD for self-powered operation.

V CCL27—Analog power supply for headphone amplifier of L-channel(4)

V CCP2—Analog power supply for DAC,OSC,and PLL(4)

V CCR30—Analog power supply for headphone amplifier of R-channel(4)

V COM32—Common voltage for DAC(V CCP/2).Connect decoupling capacitor to PGND.

V DD21—Digital power supply(4)

V OUT L28O DAC analog output for L-channel

V OUT R29O DAC analog output for R-channel

XTI12I Crystal oscillator input(1)

XTO13O Crystal oscillator output

ZGND25—Ground for internal regulator

(1)LV-TTL level

(2)LV-TTL level with internal pulldown

(3)LV-TTL level,5-V tolerant

(4)Connect decoupling capacitor to GND.Supply3.3V for self-powered applications.

Copyright?2003–2009,Texas Instruments Incorporated Submit Documentation Feedback7

SSPND

V V V V ZGND

DGND

AGNDR

AGNDL

PGND

V COM V OUT L

XTI XTO

12 MHz V BUS

D+D–

DT HOST

HID0/MS HID1/MC HID2/MD

CK V OUT R

DOUT PSEL TEST0TEST1

B0054-01

PCM2704,PCM2705PCM2706,PCM2707

SLES081F–JUNE 2003–REVISED JANUARY https://www.sodocs.net/doc/d015566992.html,

BLOCK DIAGRAM (PCM2704DB/PCM2705DB)

(1)Applies to PCM2704DB (2)

Applies to PCM2705DB

8Submit Documentation Feedback Copyright ?2003–2009,Texas Instruments Incorporated

SSPND

V

V V V ZGND

DGND

AGNDR

AGNDL

PGND

V COM V OUT L

XTI XTO

12 MHz V BUS

D+D–

DT HOST

HID0/MS HID1/MC HID2/MD

CK V OUT R

FUNC1DOUT

FUNC3

PSEL TEST

FUNC2FUNC0FSEL B0055-01

PCM2704,PCM2705PCM2706,PCM2707

https://www.sodocs.net/doc/d015566992.html, .......................................................................................................................................................SLES081F–JUNE 2003–REVISED JANUARY 2009

BLOCK DIAGRAM (PCM2706PJT/PCM2707PJT)

(1)Applies to PCM2706PJT (2)

Applies to PCM2707PJT

Copyright ?2003–2009,Texas Instruments Incorporated Submit Documentation Feedback 9

TYPICAL PERFORMANCE CURVES OF INTERNAL FILTER

DAC Digital Interpolation Filter Frequency Response

f – Frequency [× f S ]

?140

?120

?100?80?60?40?2000

1

2

3

4

A m p l i t u d e – d

B

G001

f – Frequency [× f S ]

?0.05

?0.04

?0.03

?0.02?0.010.000.010.020.030.040.050.0

0.10.20.30.40.5

A m p l i t u d e – d

B

G002

DAC Analog Low-Pass Filter Frequency Response

?2.0?1.5?1.0?0.50.0

f – Frequency – kHz

A m p l i t u d e – d B

0.01

1

10

100

0.1

G003

?80

?60

?40

?20

f – Frequency – kHz

A m p l i t u d e – d B

1

100

1k

10k

10

G004

PCM2704,PCM2705PCM2706,PCM2707

SLES081F–JUNE 2003–REVISED JANUARY https://www.sodocs.net/doc/d015566992.html,

All specifications at T A =25°C,V BUS =5V,f S =44.1kHz,f IN =1kHz,16-bit data (unless otherwise noted).

AMPLITUDE

AMPLITUDE

vs

vs

FREQUENCY

FREQUENCY

Figure 1.Frequency Response Figure 2.Pass-Band Ripple

AMPLITUDE

AMPLITUDE

vs

vs

FREQUENCY

FREQUENCY

Figure 3.Pass-Band Characteristics Figure 4.Stop-Band Characteristics

10Submit Documentation Feedback Copyright ?2003–2009,Texas Instruments Incorporated

TYPICAL PERFORMANCE CURVES

0.00

0.01

0.02

0.03

0.04

0.05?50

?250255075100

T A – Free-Air Temperature – °C T H D +N – T o t a l H a r m o n i c D i s t o r t i o n + N o i s e – %

G005

0.00

0.01

0.02

0.03

0.04

0.05

?50

?250255075100

T A – Free-Air Temperature – °C

T H D +N – T o t a l H a r m o n i c D i s t o r

t i o n + N o i s e – %

G006

0.00

0.01

0.02

0.03

0.04

0.054.0

4.5

5.0 5.5

V CC – Supply Voltage – V T H D +N – T o t a l H a r m o n i c

D i s t o r t i o n + N o i s e – %

G007

0.00

0.01

0.02

0.03

0.04

0.053.0

3.1 3.2 3.3 3.4 3.5 3.6

V CC – Supply Voltage – V

T H D +N – T o t a l H a

r m o n i c D i s t o r t i o n + N o i s e – %

G008

PCM2704,PCM2705PCM2706,PCM2707

https://www.sodocs.net/doc/d015566992.html, .......................................................................................................................................................SLES081F–JUNE 2003–REVISED JANUARY 2009

All specifications at T A =25°C,V BUS =5V,f S =44.1kHz,f IN =1kHz,16-bit data (unless otherwise noted).

TOTAL HARMONIC DISTORTION +NOISE

TOTAL HARMONIC DISTORTION +NOISE

vs

vs

FREE-AIR TEMPERATURE

FREE-AIR TEMPERATURE

Figure 5.

Figure 6.

TOTAL HARMONIC DISTORTION +NOISE

TOTAL HARMONIC DISTORTION +NOISE

vs

vs

SUPPLY VOLTAGE

SUPPLY VOLTAGE

Figure 7.Figure 8.

Copyright ?2003–2009,Texas Instruments Incorporated Submit Documentation Feedback 11

0.00

0.01

0.02

0.03

0.04

0.0530

35

40

45

50

f S – Samplin

g Frequency – kHz T H D +N – T o t a l H a r m o n i c D i s t o r t i o n + N o i s e – %

G009

0.00

0.01

0.02

0.03

0.04

0.05

30

35

40

45

50

f S – Samplin

g Frequency – kHz

T H D +N – T o t a l H a r m o n i c D i s t o r t i o n + N o i s e

– %

G010

9597

99

101

103

105

?50

?250255075100

T A – Free-Air Temperature – °C D y n a m i c R a n g e a n d S N R – d

B

G011

9597

99

101

103

105

?50

?250255075100

T A – Free-Air Temperature – °C

D y n a m i c R a n g e a n d S N R –

d B

G012

PCM2704,PCM2705PCM2706,PCM2707

SLES081F–JUNE 2003–REVISED JANUARY https://www.sodocs.net/doc/d015566992.html,

TYPICAL PERFORMANCE CURVES (continued)

All specifications at T A =25°C,V BUS =5V,f S =44.1kHz,f IN =1kHz,16-bit data (unless otherwise noted).

TOTAL HARMONIC DISTORTION +NOISE

TOTAL HARMONIC DISTORTION +NOISE

vs

vs

SAMPLING FREQUENCY

SAMPLING FREQUENCY

Figure 9.

Figure 10.

DYNAMIC RANGE and SNR

DYNAMIC RANGE and SNR

vs

vs

FREE-AIR TEMPERATURE

FREE-AIR TEMPERATURE

Figure 11.Figure 12.

12Submit Documentation Feedback Copyright ?2003–2009,Texas Instruments Incorporated

V CC – Supply Voltage – V D y n a m i c R a n g e a n d S N R – d B

9597

99

101

103

105

4.0

4.5

5.0 5.5

G013

V CC – Supply Voltage – V

3.0

3.1 3.2 3.3 3.4 3.5 3.6

G014

959799

101

103

105

30

35

40

45

50

f S – Samplin

g Frequency – kHz D y n a m i c R a n g e a n d S N R – d B

G015

9597

99

101

103105

30

35

40

45

50

f S – Samplin

g Frequency – kHz

D y n a m i c R a n g e a n d S N R – d B

G016

PCM2704,PCM2705PCM2706,PCM2707

https://www.sodocs.net/doc/d015566992.html, .......................................................................................................................................................SLES081F–JUNE 2003–REVISED JANUARY 2009

TYPICAL PERFORMANCE CURVES (continued)

All specifications at T A =25°C,V BUS =5V,f S =44.1kHz,f IN =1kHz,16-bit data (unless otherwise noted).

DYNAMIC RANGE and SNR

DYNAMIC RANGE and SNR

vs

vs

SUPPLY VOLTAGE

SUPPLY VOLTAGE

Figure 13.

Figure 14.

DYNAMIC RANGE and SNR

DYNAMIC RANGE and SNR

vs

vs

SAMPLING FREQUENCY

SAMPLING FREQUENCY

Figure 15.Figure 16.

Copyright ?2003–2009,Texas Instruments Incorporated Submit Documentation Feedback 13

050100150200

4.0

4.5

5.0 5.5

V BUS – Supply Voltage – V S u s p e n d C u r r e n t – μ

A

G017

050

100

150200

?50

?250255075100

T A – Free-Air Temperature – °C

S u s p e n d C u r r e n t – μ

A

G018

f – Frequency – kHz

00

5

10

15

20

A m p l i t u d e – d B

G019

f – Frequency – kHz

00

20

40

60

80

100

120

A m p l i t u d e – d B

G020

PCM2704,PCM2705PCM2706,PCM2707

SLES081F–JUNE 2003–REVISED JANUARY https://www.sodocs.net/doc/d015566992.html,

TYPICAL PERFORMANCE CURVES (continued)

All specifications at T A =25°C,V BUS =5V,f S =44.1kHz,f IN =1kHz,16-bit data (unless otherwise noted).

SUSPEND CURRENT

SUSPEND CURRENT

vs

vs

SUPPLY VOLTAGE

FREE-AIR TEMPERATURE

Figure 17.Figure 18.AMPLITUDE

AMPLITUDE

vs

vs

FREQUENCY

FREQUENCY

Figure 19.Output Spectrum (–60dB,N =8192)Figure 20.Output Spectrum (–60dB,N =8192)

14Submit Documentation Feedback Copyright ?2003–2009,Texas Instruments Incorporated

DETAILED DESCRIPTION Clock and Reset

Operation Mode Selection

Power Configuration Select/Host Detection

Function Select(PCM2706/7)PCM2704,PCM2705 PCM2706,PCM2707

https://www.sodocs.net/doc/d015566992.html,.......................................................................................................................................................SLES081F–JUNE2003–REVISED JANUARY2009 For both USB and audio functions,the PCM2704/5/6/7requires a12-MHz(±500ppm)clock,which can be generated by the built-in oscillator using a12-MHz crystal resonator.The12-MHz crystal resonator must be connected to XTI(pin28for PCM2704/5,pin12for PCM2706/7)and XTO(pin1for PCM2704/5,pin13for PCM2706/7)with one large(1-M?)resistor and two small capacitors,the capacitance of which depends on the specified load capacitance of the crystal resonator.An external clock can be supplied from XTI(pin28for PCM2704/5,pin12for PCM2706/7).If an external clock is supplied,XTO(pin1for PCM2704/5,pin13for PCM2706/7)must be left open.Because no clock disabling pin is provided,it is not recommended to use the external clock supply.(pin27for PCM2704/5,pin11for PCM2706/7)is unable to use clock disabling. The PCM2704/5/6/7has an internal power-on reset circuit,and it works automatically when V DD(pin7for PCM2704/5,pin21for PCM2706/7)exceeds2V typical(1.6V–2.4V),which is equivalent to V BUS(pin10for PCM2704/5,pin24for PCM2706/7)exceeding3V typical for bus-powered applications.Approximately700μs is required until internal reset release.

The PCM2704/5/6/7has the following mode-select pins.

PSEL(pin4for PCM2704/5,pin16for PCM2706/7)is dedicated to selecting the power source.This selection affects the configuration descriptor.While in bus-powered operation,maximum power consumption from V BUS is determined by HOST(pin21for PCM2704/5,pin3for PCM2706/7).For self-powered operation,HOST must be connected to V BUS of the USB bus with a pulldown resistor to detect attach and detach.(To avoid excessive suspend current,the pulldown should be a high-value resistor.)

Table1.Power Configuration Select

PSEL DESCRIPTION

0Self-powered

1Bus-powered

HOST DESCRIPTION

0Detached from USB(self-powered)/100mA(bus-powered)

1Attached to USB(self-powered)/500mA(bus-powered)

FSEL(pin9)determines the function of FUNC0–FUNC3(pins4,5,18,and19)and DOUT(pin17).When the I2S interface is required,FSEL must be set to LOW.Otherwise,FSEL must be set to HIGH.

Table2.Function Select

FSEL DOUT FUNC0FUNC1FUNC2FUNC3

0Data out(I2S)LRCK(I2S)BCK(I2S)SYSCK(I2S)Data in(I2S) 1S/PDIF data Next track(HID)(1)Previous track(HID)(1)Stop(HID)(1)Play/pause(HID)(1) (1)Valid on the PCM2706;no function assigned on the PCM2707.

Copyright?2003–2009,Texas Instruments Incorporated Submit Documentation Feedback15

USB Interface

PCM2704,PCM2705PCM2706,PCM2707

SLES081F–JUNE 2003–REVISED JANUARY https://www.sodocs.net/doc/d015566992.html,

Control data and audio data are transferred to the PCM2704/5/6/7via D+(pin 9for PCM2704/5,pin 23for PCM2706/7)and D–(pin 8for PCM2704/5,pin 22for PCM2706/7).D+should be pulled up with a 1.5-k ?(±5%)resistor.To avoid back voltage in self-powered operation,the device must not provide power to the pullup resistor on D+while V BUS of the USB port is inactive.

All data to/from the PCM2704/5/6/7are transferred at full speed.The following information is provided in the device descriptor.Some parts of the device descriptor can be modified through external ROM (PCM2704/6),SPI (PCM2705/7),or internal mask ROM on request.

Table 3.Device Descriptor

DEVICE DESCRIPTOR DESCRIPTION

USB revision 1.1compliant

Device class 0x00(device defined interface level)Device subclass 0x00(not specified)Device protocol

0x00(not specified)Max packet size for endpoint 08bytes

Vendor ID 0x08BB (default value,can be modified)

0x2704/0x2705/0x2706/0x2707(These values correspond to the model number,and the value can be Product ID

modified.)Device release number 1.0(0x0100)Number of configurations 1

Vendor strings Burr-Brown from TI (default value,can be modified)Product strings USB Audio DAC (default value,can be modified)Serial number

Not supported

The following information is contained in the configuration descriptor.Some parts of the configuration descriptor can be modified through external ROM (PCM2704/6),SPI (PCM2705/7),or internal mask ROM on request.

Table 4.Configuration Descriptor

CONFIGURATION DESCRIPTOR DESCRIPTION

Interface Three interfaces

0x80or 0xC0(bus-powered or self-powered,depending on PSEL;no remote wake up.This value can Power attribute be modified.)

0x0A,0x32or 0xFA (20mA for self-powered,100mA or 500mA for bus-powered,depending on Max power

PSEL and HOST.This value can be modified.)

The following information is contained in the string descriptor.Some parts of the string descriptor can be modified through external ROM (PCM2704/6),SPI (PCM2705/7),or internal mask ROM on request.

Table 5.String Descriptor

STRING DESCRIPTOR DESCRIPTION

#00x0409

#1Burr-Brown from TI (default value,can be modified)#2

USB Audio DAC (default value,can be modified)

16Submit Documentation Feedback Copyright ?2003–2009,Texas Instruments Incorporated

Device Configuration

Analog Out

M0024-01

Interface #0(Default/Control Interface)

PCM2704,PCM2705PCM2706,PCM2707

https://www.sodocs.net/doc/d015566992.html, .......................................................................................................................................................SLES081F–JUNE 2003–REVISED JANUARY 2009

Figure 21illustrates the USB audio function topology.The PCM2704/5/6/7has three interfaces.Each interface is some alternative settings.

Figure https://www.sodocs.net/doc/d015566992.html,B Audio Function Topology

Interface #0is the control interface.Setting #0is the only possible setting for interface #0.Setting #0describes the standard audio control interface.Audio control interface consists of a terminal.The PCM2704/5/6/7has three terminals:

?Input terminal (IT #1)for isochronous-out stream ?Output terminal (OT #2)for audio analog output ?Feature unit (FU #3)for DAC digital attenuator

Input terminal #1is defined as a USB stream (terminal type 0x0101).Input terminal #1can accept two-channel audio streams constructed of left and right channels.Output terminal #2is defined as a speaker (terminal type 0x0301).Feature unit #3supports the following sound control features:?Volume control ?Mute control

The built-in digital volume controller can be manipulated by an audio-class-specific request from 0dB to –64dB in steps of 1dB.Changes are made by incrementing or decrementing one step (1dB)for every 1/f S time interval,until the volume level reaches the requested value.Each channel can be set to a separate value.The master volume control is not supported.A request to the master volume is stalled and ignored.The built-in digital mute controller can be manipulated by an audio-class-specific request.A master mute control request is acceptable.A mute control request to an individual channel is stalled and ignored.The digital volume control does not affect the S/PDIF and I 2S outputs (PCM2706/7).

Copyright ?2003–2009,Texas Instruments Incorporated Submit Documentation Feedback 17

Interface #1(Isochronous-Out Interface)

Interface #2(HID Interface)

Endpoints

PCM2704,PCM2705PCM2706,PCM2707

SLES081F–JUNE 2003–REVISED JANUARY https://www.sodocs.net/doc/d015566992.html,

Interface #1is for the audio-streaming data-out interface.Interface #1has the following three alternative settings.Alternative setting #0is the zero-bandwidth setting.All other alternative settings are operational settings.

ALTERNATIVE TRANSFER SAMPLING RATE

DATA FORMAT

SETTING

MODE

(kHz)

00Zero bandwidth 0116-bit Stereo 2s complement (PCM)Adaptive 32,44.1,4802

16-bit

Mono

2s complement (PCM)

Adaptive

32,44.1,48

Interface #2is the interrupt-data-in interface.Interface #2comprises the HID consumer control device.Alternative setting #0is the only possible setting for interface #2.

On the HID device descriptor,eight HID items are reported as follows for any model,in any configuration.Basic HID Operation

Interface #2can report the following three key statuses for any model.These statuses can be set by the HID0–HID2pins (PCM2704/6)or the SPI port (PCM2705/7).?Mute (0xE2)

?Volume up (0xE9)?Volume down (0xEA)

Extended HID Operation (PCM2705/6/7)

By using the FUNC0–FUNC3pins (PCM2706)or the SPI port (PCM2705/7),the following additional conditions can be reported to the host.?Play/Pause (0xCD)?Stop (0xB7)?Previous (0xB6)?Next (0xB5)

Auxiliary HID Status Report (PCM2705/7)

One additional HID status can be reported to the host though the SPI port.This status flag is defined by SPI command or external ROM.This definition must be described as on the report descriptor with a three-byte usage ID.AL A/V Capture (0x0193)is assigned as the default for this status flag.The PCM2704/5/6/7has three endpoints:?Control endpoint (EP #0)

?Isochronous-out audio data-stream endpoint (EP #2)?HID endpoint (EP #5)

The control endpoint is a default endpoint.The control endpoint is used to control all functions of the PCM2704/5/6/7by standard USB request and USB audio-class-specific request from the host.The isochronous-out audio data-stream endpoint is an audio sink endpoint that receives the PCM audio data.The isochronous-out audio data-stream endpoint accepts the adaptive transfer mode.The HID endpoint is an interrupt-in endpoint.The HID endpoint reports HID status every 10ms.

The HID endpoint is defined as a consumer-control device.The HID function is designed as an independent endpoint from the isochronous-out endpoint.This means that the effect of HID operation depends on host software.Typically,the HID function is used to control the primary audio-out device.

18Submit Documentation Feedback Copyright ?2003–2009,Texas Instruments Incorporated

DAC

Digital Audio Interface—S/PDIF Output

Channel Status Information

Copyright Management

Digital Audio Interface—I 2S Interface Output (PCM2706/7)

LRCK SYSCK (256 f )

S BCK (64 f )

S

DOUT DIN

T0009-04

PCM2704,PCM2705PCM2706,PCM2707

https://www.sodocs.net/doc/d015566992.html, .......................................................................................................................................................SLES081F–JUNE 2003–REVISED JANUARY 2009

The PCM2704/5/6/7has a DAC that uses an oversampling technique with 128-f S second-order multibit noise shaping.This technique provides extremely low quantization noise in the audio band,and the built-in analog low-pass filter removes the high-frequency components of the noise-shaping signal.DAC outputs through the headphone amplifier V OUT L and V OUT R can provide 12mW at 32?,as well as 1.8V PP into a 10-k ?load.

The PCM2704/5/6/7employs S/PDIF output.Isochronous-out data from the host are encoded to S/PDIF output DOUT,as well as to DAC analog outputs V OUT L and V OUT R.Interface format and timing follow the IEC-60958standard.Monaural data are converted to the stereo format at the same data rate.S/PDIF output is not supported in the I 2S I/F enable mode.The implementation of this feature is optional.Note that it is your responsibility to determin whether to implement this feature in your product or not.The channel status information is fixed as consumer application,PCM mode,copyright,and digital/digital converter.All other bits are fixed as 0s,except for the sample frequency,which is set automatically according to the data received through the USB.Digital audio data output always is encoded as original with SCMS control.Only one generation of digital duplication is allowed.

The PCM2706and PCM2707can support the I 2S interface,which is enabled by FSEL (pin 9).In the I 2S interface enabled mode,pins 4,18,19,5,and 17are assigned as DIN,SYSCK,BCK,LRCK,and DOUT,respectively.They provide digital output/input data in the 16-bit I 2S format,which also is accepted by the internal DAC.I 2S interface format and timing are shown in Figure 22Figure 23,and Figure 24.

Figure 22.Audio Data Interface Format

Copyright ?2003–2009,Texas Instruments Incorporated Submit Documentation Feedback 19

DOUT (Output)50% of V DD 50% of V DD 50% of V DD

LRCK (Output)

BCK (Output)

DIN (Input)50% of V DD

T0010-05 SYSCK

(Output)

LRCK

(Output)

BCK

(Output)

t

T0196-01

PCM2704,PCM2705

PCM2706,PCM2707

SLES081F–JUNE2003–REVISED https://www.sodocs.net/doc/d015566992.html,

SYMBOL PARAMETER MIN MAX UNIT t(BCY)BCK pulse cycle time300ns t(BCH)BCK pulse duration,HIGH100ns t(BCL)BCK pulse duration,LOW100ns t(BL)LRCK delay time from BCK falling edge–2040ns t(BD)DOUT delay time from BCK falling edge–2040ns t(LD)DOUT delay time from LRCK edge–2040ns t(DS)DIN setup time20ns t(DH)DIN hold time20ns NOTE:Load capacitance of LRCK,BCK,and DOUT is20pF.

Figure23.Audio Interface Timing

SYMBOL PARAMETER MIN MAX UNIT

t(SLL),t(SLH)LRCK delay time from SYSCK rising edge–510ns

t(SBL),t(SBH)BCK delay time from SYSCK rising edge–510ns NOTE:Load capacitance is20pF.

Figure24.Audio Clock Timing

20Submit Documentation Feedback Copyright?2003–2009,Texas Instruments Incorporated

FA507A细纱机控制线路的改造

FA507A细纱机控制线路的改造实践 本公司使用的40台FA507A细纱机(上海二纺机股份有限公司1995年3月设计生产),是1995年10月投产使用的,在生产过程中,曾多次发生下列故障: 一、JBK-350控制变压器烧毁。 经观察和分析,造成JBK-350控制变压器烧毁的原因主要在H1指示灯电源控制线上无设计保险,而H1指示灯在灯泡发生烧毁,一旦取下灯泡无及时补上的情况下,指示灯底座内的舌簧容易弹起造成24伏电源长时间短路,烧毁了控制变压器。另外,灯泡在安装和拆卸过程中因舌簧较长易造成火、零线的短路,烧毁了控制变压器。 改进方法:在线路X1:52处加装2安培的瓷保险,杜绝了此故障的发生,经多年试用,效果良好。 二、牵引电磁铁断电后衔铁不能自动复位。 经观察和测试分析,造成此故障的原因主要为: 1、电磁铁衔铁(型号:MQ1-5101,额定吸力:15牛顿,额定行程:20毫米,吸引线圈电压:交流220伏)表面渗入机油,造成上下衔铁吸合时的自然粘合现象。 2、在可编程控制器(以下称A1)输出继电器处于常开状况下,电磁铁线圈(以下称Y1)内仍存有剩磁,衔铁不易凭借自身重力自然复位。 3、机械调节不灵,造成衔铁卡死。

改进方法: 1、针对电磁铁衔铁表面渗入机油现象,采用控制油泵加油次数和加油量,尽可能避免机油渗入电磁铁衔铁表面。 2、在YI断电的情况下(AI的29输出继电器常开状况下),因控制线路设计原因,控制变压器的交流220伏电压的一端仍流经电磁铁线圈内,造成其线圈内的电源分离不彻底,线圈内仍有一定量的剩磁存在,衔铁不易复位。为了消除此现象,我公司采用改进线路的方法,在AI的29处和线路X1:39之间,加装一中间继电器(以下称ZJ1),由原来AI的输出继电器直接控制电磁铁线圈Y1,改为控制ZJ1线圈的电源通断,而由ZJ1常开触电控制Y1的电源通断(如下图),彻底将Y1在断电情况下与电源分离。通过以上改进,解决了电磁铁在断电情况下仍有剩磁的状况,从而,做到了FA507A 细纱机电磁铁使用正常。 3、机械调节不灵,造成衔铁卡死现象,本公司通过加大机械调节力度和检查考核力度,避免此现象的发生。 经过近八年的实践运行证明效果明显,既减少了设备故障,又保证了40台细纱机三自动的正常运行。 沙涯富宏纺织有限公司 2008年8月15日

FA506型细纱机

FA506型细纱机上配套使用了AJQ-1型精纺机吹吸清洁器。该吹吸风清洁器是循环往复式工作,用车头、车尾上面的行程开关6CK、7CK控制清洁器的停开,用时间继电器3SJ控制其间歇时间,用10J、12J、13J三只继电器控制清洁器在落纱前停在车头的位置,吹吸风清洁器对减轻运转工人劳动强度、保持机台清洁、稳定产品质量起到了良好效果。但在实际使用过程中,存在着许多不足和故障隐患:(1)时间继电器3SJ时间调整过短时,容易使清洁器间歇时间过短而自动恢复运行,造成清洁器滤棉网上的废棉不易被吸尽,从而造成管道堵塞,使清洁器的风量减小,增大了吹吸电机的负荷;(2)行走和吹吸电机在设计时功率过小,因长时间往复运行,容易过负荷烧坏;(3)原控制电路使用的是中间继电器,这种继电器价格比较便宜,但密封性不好,用在主回路时易使触点内附飞花而使电机缺相运行、烧坏电机,用在控制电路时易使清洁器在工作时经常因接触不良而出现故障,同时,在分断电流时因孤光易引燃飞花而产生电气火警;(4)其配套使用的行走和吹吸电机均是铝合金外壳,虽然重量轻,但不易保养,损坏后不易修复,使维修保养不能得到保证。 以上种种原因使我公司104台吹吸风清洁器在使用几年后全部停用,造成设备大量闲置和浪费。针对以上存在的问题,我们根据实际情况,在不影响使用效果和整体结构的前提下,对原吹吸风装置的控制电路进行了改进。主要改进有:(1)改原循环往复式工作为单程工作,在控制线路中保留3SJ时间继电器,使吹

吸风清洁器运行到车头时能自动延时回到起始位置车尾处,省略10J、12J、13J三只中间继电器,减少中间环节,以降低故障率,并节约改造成本(见图1);(2)改造后的清洁器由挡车工在巡回过程中根据需要手动控制开关,可以避开落纱时间;(3)增加了清洁器在车尾处的停止时间,有利于废棉被彻底吸净,避免外吸管堵塞,彻底消除因管道堵塞负荷过重烧坏电机的缺陷和吹吸风量小的不足;(4)把控制行走和吹吸的中间继电器改为密封性好,故障损坏率少的CJX2型交流接触器,可以避免因缺相而烧坏的情况,同时减少电气火灾隐患。 改造后的吹吸风清洁器最大限度地使用了原设备的配置,减少了浪费,又节约了改造费用,每台改造仅需材料费200元左右。 改造后清洁器风量、风压稳定,大大降低了故障率和停台率,降低了配件的损耗,并且降低了整机能耗。先期改造的26台吹吸风清洁器经过一年多的运行,效果良好。

细纱机A513型电气控制系统改造 盘龙

细纱机A513型电气控制系统改造盘龙 发表时间:2017-11-29T09:35:15.477Z 来源:《电力设备》2017年第21期作者:盘龙 [导读] 摘要:为了改善和提高A513型细纱机纺纱工艺要求、实现钢领板三自动落纱的可靠性、稳定性、安全性,减少落纱过程中行程开关、电磁铁等元件的损坏,寻求新的变频器调节频率控制电机速度来取代传统的风机直接启动方式(南宁锦虹棉纺织有责任公司广西南宁 530000) 摘要:为了改善和提高A513型细纱机纺纱工艺要求、实现钢领板三自动落纱的可靠性、稳定性、安全性,减少落纱过程中行程开关、电磁铁等元件的损坏,寻求新的变频器调节频率控制电机速度来取代传统的风机直接启动方式,满足细纱车间纺纱品种多样化的工艺要求,为这一课题而采用施耐德变频器自动调节控制负压风机在线实时控制和传动,同时为解决细纱A513型三自动落纱过程安全可靠性,加装传感器和微型继电器等元件,改造原电气控制线路,完成了整个落纱的自动化,避免人工手动落纱繁琐步骤,以确保了A513型细纱机运行的稳定、落纱的安全可靠。 关键词:变频器;传感器;三自动;负压调节;落纱 1 导言 A513型细纱机在全国纺织企业中仍占一定比例,设备虽有一定年份,但其机械刚性完好,材质过硬,价格低廉;随着国内纺织技术市场发展和纺织品种多样化,单一的品种质量难以满足当前市场需求,为此,必需对该机型进行改造,开发生产适应市场对路的新品种,提高产品的质量档次,满足下游客户的需求,我公司为了赢得产品在市场上的主导权,积极寻求各式各样的小品种试纺,其中紧密纺品种最受当下市场青睐。因此必需再原有基础上加装负压紧密纺装置,加改电气控制线路,同时为了满足生产工艺要求,彻底地解决三自动落纱过程存在一系列诸多问题,必须改造原有的三自动电气控制系统,以满足细纱生产的要求。 2改造前A513型细纱机存在的问题 (1)纺纱品种单一,难以适应市场上的需求,电气设备急需改造,以满足纺纱品种多样化。长期以来,国内A513型设备传动结构简单,所纺纱线单一,难以适应当下市场需求,针对于纺织行业新常态下,要寻求到满足市场需求的新思路,必需在原有设备基础上加于改造。在A513型细纱机上加装负压紧密纺,满足赛络纺工艺的要求,也可加装竹节装置,做多样化竹节工艺纱线,甚至可改造加装缎彩纱驱动伺服装置,满足不同色纱的需求。 (2)三自动落纱失灵,无法落纱,落纱后纱尾过长,甚至烧坏电器元件。原A315型细纱机是常规继电器控制线路,延续至今未做大的改动,机台故障率较高,电气维修花费时间长,机械调节也难于把握准确性,电气控制线路较复杂,落纱过程中都是有触点接触,开关稍有接触不良或被氧化,都导致落纱过程无法进行下去,各撞块对各行程开关的相对位置,必须校装正确,生产过程经常出现满纱时“三自动”行程开关和电磁阀动作失灵,造成不能正常落纱,甚至电磁铁长时间通电发热烧坏,给正常生产带来影响 3电气控制改造设计 3.1满足纺纱工艺多样化,负压紧密纺变频器装置的设计 为了节省成本,保留部分原常规继电器控制,充分利用原有的中间继电器和交流接触器相关触点,改进控制线路,同时加装1台4KW 施耐德变频器拖动紧密纺风机,1个传感器采集风压大小反馈信号给变频器实时PID调节,2个接触器用来接通清花电机和刮花电机主回电路,而1个时间继电器和1个计数器则控制清刮花动作时间和次数,1个直流微型继电器与变频器的控制端子回路形成原控制线路的回路保护和变频器报警保护。其电气控制原理图,如下图(1) A513型电气控制原理图图(1) 该部分电气控制原理如下:变频器、电机等电器元件正常时接通电源后,直流微型继电器触点接通原A513型控制回路,启动准备就绪。当按下原启动按钮,原来风机接触器得电,原风机启动运行,同时启动信号给到施耐德变频器,把变频器相关参数设置好后,随即拖动紧密纺风机启动运行。根据负压风道传感器采集模拟信号,对比变频器参数设定数值后,在线实时PID控制变频器频率大小,进而控制负压数值,以满足纺纱的工艺要求;根据现场需要,调节设置好清刮花电机的工作时间,以求节能效果。 3.2三自动落纱部分电气改造设计 在A513型细纱机原有机构,保留蜗轮轴上左凸轮行程开关1CK1、1CK2、1CK3,去掉在成型右凸轮轴上装有行程开关2CK1、2CK2、2CK3,3DT限位电磁铁,见图(2);而撑爪电磁铁1DT早已经不用,2DT制动电磁铁保留但可以不用。加改用3个交流传感器代替原先3个凸轮行程开关,由3个交流微型继电器和改进原控制线路,得以控制实现三自动落纱整个自动过程

紧密纺集落细纱机方案

紧密纺长车细纱机控制系统方案 施耐德电气 纺织和服装行业市场部 石彦丽 2012.5 文档包括以下内容 1.细纱机简介 2.细纱机控制系统要求 3.施耐德电气控制系统方案 4.可视化能源管理单元简介 5.主要元件清单

1.细纱机简介 细纱机是环锭纺纱工艺中的最后一道工序,其任务是将粗纱的纱条进行牵伸和加捻形成细纱,并卷绕到纱管上。长车细纱机大多为1008锭的配置,最多的也可达到1200锭。集体落纱的长车细纱机需要有自动落纱的人字臂结构,当纱管满纱后,自动落下满纱管,换上空管。 卷绕成型质量是细纱机管纱的重要质量指标,成型的质量直接影响到后道络筒工序的退绕过程,对络筒机的生产效率有很大的影响。目前大部分细纱机仍采用机械凸轮成型,在管纱的各个卷绕阶段通过固定的凸轮外形,调整刚领板的速度和升降位置,使之卷绕成标准的管纱。 随着纺纱技术的发展,良好的成型和灵活地工艺调整方法越来越成为细纱机的重要发展方向,高性能的细纱机均采用电子凸轮取代机械凸轮箱,使成型的过程更灵活可控,也使管纱的质量上升到新的高度。 2. 细纱机控制要求 2.1 长车细纱机的设计要求 该细纱机设计锭数为1008或1200锭,锭子采用一个主轴电机集中传动,电机功率为45kw,紧密纺风机采用变频驱动,电机功率为11kw。 刚领板部分要求实现电子凸轮成型,成型曲线中各部分参数可以通过人机界面设定,刚领板采用伺服驱动,要求系统掉电时实现位置的记忆,保证下次上电时仍从当前位置卷绕。 长车细纱机采用集体落纱,落纱部分采用人字臂机构,其驱动来自于伺服电机,要求伺服位置定位精确,参数调整灵活。

主电机和刚领板电机要求共直流母线连接,最好能实现掉电受控停车。 HMI采用触摸屏,10”彩色。触摸屏编程口和通讯口独立,通过串口与PLC通讯,部分高端机型需要有以太网。 3.施耐德电气长车控制系统方案 3.1 高性能控制系统方案:运动控制器集中控制方案 3.1.1 方案框图如下 3.1.2 方案一说明 整体方案采用运动控制器,通过CANopen总线控制集落伺服电机、主轴和紧密纺变频器。 主轴编码器脉冲输入到运动控制器LXM058的主轴脉冲接口,运动控制器内置电子凸轮曲线,通过Motionbus总线控制刚领板伺服,实现电子成型。 锭子变频器和刚领板伺服驱动器实现共直流母线连接,当系统失电时,通过CANopen 总线检测到电压降低后启动主变频母线电压保持功能,通过主电机能量回馈实现两电机同步停车,保证系统失电时不断纱,减少重新启动时的工作量。 注: 上述掉电停车需要根据主轴传动部分的机械承受力确定停车时间,测试回馈能量能够保持母线电压的最长时间,效果待测试。

FA506型细纱机电气说明书(二)

FA506型细纱机电气说明书(二) 下图是一般工艺曲线的普通标准和说明: 工艺曲线简介: 1.对于一落纱而言,一般分为三个阶段:小纱阶段(约占总长度约15%),中纱阶段(约占总长度的80%)和大纱阶段(约占总长度约5%),因此提高中纱阶段的纺纱速度就能明显提高纺纱产量。 2.对于一落纱的断头率的分布一般是:小纱阶段(70%),中纱阶段(10%)和大纱阶段(20%),所以适当减少小纱和大纱阶段的运行速度能有效改善断头率。 3.提高产量同时减少断头率是使用智能变频的主要目的和最终目的;而相对于普通的未使用智能变频的纺机而言,为了考虑到小纱阶段(尤其是管底成型阶段)和大纱阶段的断头率因素,所以设备的工艺理论速度留有较大的余量,而智能变频能通过不同工艺对纺纱过程中的各个阶段进行准确控制,从而让设备的功能完全发挥出来,最终达到增产的目的。下面主要介绍一下图示中各个阶段的数据和原理。 图示详细说明: L:10% 表示此时整落纱长度的10% V:95% 表示在整长度的10%左右速度应该达到95%的工艺理论速度。 1.小纱阶段是产生断头的主要时期,在设计曲线时一般分为3个部分: 1.伸头阶段:一般长度为40m左右为宜(一般为2分钟运行的长度),速度则是理论速度的70%左右,这个阶段重要模拟的就是未使用智能变频之前的低速运行阶段。 2.管底成型阶段:伸头完成以后到总长度的10%一般就是落纱的管底成型阶段,调整此阶段的速度使其运行速度为理论速度的90%-95%,在完成此阶段以后应确保速度达到理论速度的95%。 3.向中纱过渡阶段:慢慢提速,确保在离开小纱阶段时达到工艺理论速度进入中纱阶段。 2.中纱阶段主要就是提速的过程,一般可以大体分为3大块: 1.加速阶段:慢慢提速,在此阶段可以分为两个速度段:如上图中的(L:25% V:105% 和L:40% V:>=108.5%)。

纺织设备电气控制整理

1、什么是传感器?传感器主要应用于纺织生产的哪些方面?列举一些常见纺织传感器 传感器是感受规定的被测量件并按照一定的规律转换成可用信号的器件或装置通常由敏感元件组成 传感器主要应用于纺织机械和纺织仪器。纺织传感器:粗纱机,精梳机,细纱机,并条机2、根据工作原理,接近开关可分为哪几类?参数指标有哪些?试分别简述各参数指标含义。根据工作原理,接近开关可分为电容式,电感式,霍尔式等 参数指标:动作距离,释放距离,回差距离 动作距离:接近开关的动作距离指被检测物按一定的方式移动,当接近开关动作所测得的从基准位置,(接近开关的感应表面)到检测面的空间距离 释放距离:被检测体移开接近开关时,接近开关复位时所测得的从基准位置到检测面的空间距离 回差距离:动作距离与释放距离的差值尺寸参数:接近开关的直径大小 响应频率:一秒时间间隔内,允许接近开关的循环次数 3、简述光电开关的工作原理与分类 工作原理:由发光二极管发出特定频率,光体晶体负责接收,当光路上有被测物时,光电开关工作。 光电开关的光线发射与接受部分可分为对射式和反射式两大类 4、什么是角编码器?它分为哪两类?主要指标是什么?举出纺织常用两个以上例子 定义:角编码器又称为码盘,是一种旋转式位置传感器,它的转轴通常与被测旋转轴连接,随被测轴一起转动。 分类:绝对式编码器、增量式编码器例子:机织用织机、针织用横机 主要指标:分辨力、分辨率 1、星三角启动电路和三角星启动电路各有什么特点?举出其纺织上的典型应用,并说明原 因 星到三角:按下【启动】按钮SB73,星形接触器KM77得电自锁,KM77常闭触头联锁三角形接触器KM78断开,时间继电器KT72通电延时,电源接触器KM79通电自锁。主电路中主触头KM77、KM79闭合,主电动机星形启动。星形启动可以使电动机的启动转距不致过大,经纱运行平稳,减少经纱断头。启动一定时间后,KT72延时断开的常闭触点断开,接触器KM77失电解除自锁,三角形接触器KM78通电,主电动机接入三角形正常运行。三角到星启动:按下【双手操作和运行】按钮,MSN、MSD线圈得电,MSM、MSD辅助触头断开,主触头MSM、MSD闭合,主电动机三角形启动。启动后主控板内部程序延时控制,使MSD失电(MSD常闭触头闭合),MSS得电,主触头闭合,电动机星形运转。 典型使用:星到三角:本宁格整经机的控制电路三角到星:ZAX—E型喷气织机控制电路2、用接触器设计控制电机启动、电动、停止电路,画出电器原理图 KM

细纱机竹节纱改造工艺原理及竹节纱装置

细纱机竹节纱改造工艺原理及竹节纱装置 一、概述 竹节纱特征是具有粗细分布不均匀的外观,是花式纱中种类最多的一种,有粗细节状竹节纱、疙瘩状竹节纱、短纤维竹节纱、长丝竹节纱等。竹节纱可用于轻薄的夏季织物和厚重的冬季织物。可用于衣着织物,也可用于装饰织物,花型突出,风格别致,立体感强。 纱线忽细忽粗,有一节叠出的称竹节。竹节纱的公称号数一般以基纱号数冠名,如C 14.5tex竹节纱是指竹节间距为正常纱的号数,而竹节处的号数要大。实际生产中在前罗拉变速纺竹节时,一般先设定好基纱的高速值和捻度值纺出正常的基纱号数后再设定低速值等竹节参数来生产竹节纱。 二、竹节纱生产原理 1、目前竹节纱常见的生产方式是前罗拉恒速,控制中、后罗拉超喂,形成与基纱有变化的粗节;一般细纱机中后罗拉的转速相对前罗拉来说要低得多,所以更容易控制,避免了因改变前罗拉转速而影响产量、捻度;且中后罗拉转速较低,变速时对机械本身的冲击磨损也小。无锡普莱特公司的ZNZ智能型数字式竹节纱生产装置便是这种类型,采用前罗拉跟随测速,并用伺服电动机控制中后罗拉,这种装置灵敏度高,适宜制作较精密的竹节纱。 具体竹节纱改造工艺:是将细纱机车头传动部分齿轮,前罗拉与中后罗拉衔接齿轮脱离,同时更换传动轴,加入厂家设计的104T齿轮,另一头安装51T齿轮,联接进口伺服电机同步轮。 这样使得前罗拉独立运转,中后罗拉则由伺服电机带动做变速运转。需要纺竹节纱时,通过外部触摸屏对话,输入要纺竹节纱的节长、间距及粗度,智能电脑自动完成运算。按照原来开车顺序便可轻松纺制竹节纱。 当需要纺制普通纱时,无需还原机械。只需在电脑输入“纺制正常纱”伺服电机即可按照指令,匀速运转。平纱支数也可通过电脑修改,不需要变化齿轮。更方便了工艺上单。 2、竹节纱纱样分析和设计 对纺纱厂来说,如何准确测量竹节纱的三大参数:竹节长短、粗细和间距是竹节纱设计的关键环节。分析好竹节样布的主要条件:所选布样要足够大,要能看出整个竹节循环、竹节密度和织物风格;称纱线质量的电子天平精度要达到0.001 g以上。根据竹节纱布样需要测量和分析出的工艺参数主要有竹节粗度、竹节基纱细度、平均细度、竹节细度、竹节节距、竹节长度、捻度等,同时还要根据细度设计牵伸倍数和传动比、卷绕螺距、钢领、钢丝圈卷绕工艺参数等。 3、竹节纱经济效益 竹节纱技术适应高附加值织物的需求,且在生产过程中还能减少用棉等级,可为纺织企业带来可观的经济效益。竹节纱装置在各种细纱机上改造方便,纺竹节纱时,将轻重牙齿脱开,换上长轴用带轮带动中后罗拉,从而通过电脑程序控制中后罗拉的速度,达到按要求生产各种规格的竹节纱,无竹节定单时又可以纺常规纱。

相关主题