搜档网
当前位置:搜档网 › 运动估计算法MATLAB课程设计

运动估计算法MATLAB课程设计

运动估计算法MATLAB课程设计
运动估计算法MATLAB课程设计

课程设计任务书

学生姓名:专业班级:

指导教师:工作单位:

题目: 运动估计算法

初始条件:

MATLAB软件平台

要求完成的主要任务:

1.设计任务

设计视频压缩系统中的运动估计算法:全搜索法(FS: Full Search)和三步法(TSS: Three Step Search),比较二种方法的搜索点和每帧的峰值信噪比(PSNR:peak signal to noise ratio)

2.设计要求

编制算法代码;对视频进行运动估计;计算PSNR

时间安排:

答辩时间2013年1月24日。

指导教师签名:年月日

系主任签名:年月日

摘要 (1)

1运动估计算法概念 (2)

1.1 运功估计算法基本思想 (2)

1.2 运动估计算法实验原理 (2)

2 设计原理和方法 (3)

2.1 三步法 (3)

2.2 新三步法 (3)

2.3 全搜索法 (4)

2.4 峰值信噪比 (5)

3 运动估计算法的MATLAB编程 (6)

3.1全搜索法 (6)

3.2三步法 (9)

3.3全搜索法指标 (11)

3.4三步法指标 (11)

3.4仿真结果分析 (11)

4 小结与体会 (11)

参考文献 (11)

附录 (12)

运动估计的基本思想是尽可能准确地获得序列图像帧间的运动位移,即运动

矢量。因为运动估计越准确,预测补偿的图像质量越高,补偿的残差就越小,补偿编码所需位数越少,需要传输的比特率就越小。利用得到的运动矢量在帧间进行运动补偿。补偿残差经过变换、量化、编码后与运动矢量一起经过熵编码,然后以比特流形式发送出去。

在视频编码和处理系统中,运动估计和运动补偿技术对降低视频序列时间冗余度、提高编码效率起着非常关键的作用。运动估计的准确程度将直接决定视频

编码器的编码效率。

关键词:运动估计、运动补偿技术、位移(运动)矢量

Abstract

The basic idea is that the motion estimation as accurate as possible the image sequence interframe motion displacement, i.e. the motion vector. Motion estimation more accurate prediction compensation, the higher the image quality is compensated residuals is smaller, less compensation coding bits required, the smaller the transmission bit rate. Performing motion compensation using the motion vector obtained in the interframe. Compensation residuals through transformation, quantization, entropy-coded together with the motion vector is encoded, and then sent out in the form of a bit stream.

In video coding and processing system, the motion estimation and motion compensation to reduce the temporal redundancy of video sequence to improve the coding efficiency plays a crucial role. The degree of accuracy of the motion estimation will directly determine the encoding efficiency of the video encoder. Keywords:Motion estimation Motion compensation techniques The vector of displacement (movement)

多媒体信息处理

1运动估计算法概念

视频原始图像中存在着大量的信息冗余,如时间冗余、空间冗余、信息熵冗余、谱间冗余、几何结构冗余、视觉冗余和知识冗余等等。运动估计是视频压缩编码中的核心技术之一,采用运动估计和运动补偿技术可以消除视频信号的时间冗余以提高编码效率。如何提高运动估计的效率,使运动估计算法的搜索过程更健壮、更快速、更高效成为目前研究的热点。

运动估计的基本思想是尽可能准确地获得序列图像帧间的运动位移,即运动矢量。因为运动估计越准确,预测补偿的图像质量越高,补偿的残差就越小,补偿编码所需位数越少,需要传输的比特率就越小。利用得到的运动矢量在帧间进行运动补偿。补偿残差经过变换、量化、编码后与运动矢量一起经过熵编码,然后以比特流形式发送出去。

运动估计算法多种多样,大体上可以把它们分成四类:块匹配法、递归估计法、贝叶斯估计法和光流法。其中块匹配运动估计算法因其具有算法简单、便于VLSI实现等优点得到广泛应用。所以本文将重点介绍块匹配运动估计算法,并对各种块匹配算法在计算速度和估计精度上进行简单比较。

1.1 运功估计算法基本思想

运动估计的基本思想是尽可能准确地获得序列图像帧间的运动位移,即运动矢量。运动估计算法的目标是效率和准确性。由于在成象的场景中一般有多个物体作不同的运动,如果直接按照不同类型的运动将图像分割成复杂的区域是比较困难的。最直接和不受约束的方法是在每个像素都指定运动矢量,这就是所谓基于像素表示法。这种表示法是对任何类型图像都是适用的,但是它需要估计大量的未知量,并且它的解时常在物理上是不正确,除非在估计过程中施加适当的物理约束。这在具体实现时是不可能的,通常采用基于块的物体运动表示法。因为运动估计越准确,预测补偿的图像质量越高,补偿的残差就越小,补偿编码所需位数越少,需要传输的比特率就越小。

1.2 运动估计算法实验原理

在帧间预测编码中,由于活动图像邻近帧中的景物存在着一定的相关性。因

此,可将活动图像分成若干块或宏块,并设法搜索出每个块或宏块在邻近帧图像中的位置,并得出两者之间的空间位置的相对偏移量,得到的相对偏移量就是通常所指的运动矢量,得到运动矢量的过程被称为运动估计。

运动矢量和经过运动匹配后得到的预测误差共同发送到解码端,在解码端按照运动矢量指明的位置,从已经解码的邻近参考帧图像中找到相应的块或宏块,和预测误差相加后就得到了块或宏块在当前帧中的位置。

运动估计的准确程度往往用补偿图像与原图像比较的PSNR 来衡量表示。

2 设计原理和方法

2.1 三步法

三步法是应用得相当广泛的一种次优的运动估计搜索算法它的搜索区间一般为[-7,7] 即在候选区中与编码块相同坐标位置处为原点,将参考块在其上下左右距离为7的范围内按照一定规律移动移到一个位置就做匹配计算它总共进行了三步搜索在下一次搜索时步长减半以前一步搜索得到的最优点为中心。下图为三步法的搜索示意图。

算法的中心思想是,采用一种由粗到细的搜索模式,从原点开始,按一定步长取周围8个点构成每次搜索的点群,然后进行匹配计算,利用上一步搜索得到的最小块误差MBD 点作为当前搜索的中心位置,每做一步,搜索的步长减1

步搜索算法搜索窗选取(-7,+7),最多只需要做25个位置的匹配计算,相对于全搜索来比,大大减少了匹配运算的复杂度,而且数据读取比较规则。

2.2 新三步法

TSS 假定运动矢量分布特点是在搜索窗口中均匀分布, 但事实证明运动矢量是偏置中心的,Renxiang Li 等人在TSS 的基础上提出了一种增强运动矢量中心偏置搜索和减小补偿误差的新三步法。

NTSS 是对TSS 的一个改进,对运动量比较小的视频序列如可视电话序列有比较好的性能。对于绝大多数的视频序列,运动矢量的分布都是在中心位置上的概率最大,随着与中心位置的距离的增大,概率会急剧地下降,这也就是前面所说的运动矢量的中心偏移特性。运动量比较小的视频序列的这一特性会更加明显。

NTSS 算法在最好的情况下只需要做17个点的匹配,在最坏的情况下需要做33个点的匹配,由于运动矢量中心偏置在现实视频序列中是普遍存在的,在通常情况下,NTSS

算法需要做33点匹配的概率比较小,因此,在低速率视频应用中,如视频电话或视频会议中,NTSS 算法的优点可以得到较好的发挥。

2.3 全搜索法

全搜索法(Full Search Method, FS )也称为穷尽搜索法,是对(M +2dx )×(N +2dy )搜索范围内所有可能的候选位置计算MAD (i,j)值,从中找出最小MAD ,其对应偏移量即为所求运动矢量。此算法虽计算量大,但最简单、可靠,找到的必为全局最优点。

FS 算法描述如下:从原点出发,按顺时针螺旋方向由近及远,在逐个像素处计算MAD 值,直到遍历搜索范围内听有的点,然后在计算的所有点的MAD 中找到最小值,该点所在位置即对应最佳运动矢量。

但是正因为它是穷尽搜索因此会产生巨大的计算量如[ 7, 7]的搜索区间每个宏块16*16 需计算225个MAD 值,这就直接制约了编码的实时实现。

快速算法

本质上是一种穷尽搜索法其计算量仍是相当巨大的。

全搜索算法是简单也是效果最好的一种匹配算法,通过的全搜索匹配得到的结果是全局最优的,但由于计算量很大,我们在编解码中往往不采用这种方法,而只把他作为与其他算法的一种比较。

图2-1程序流程图

2.4 峰值信噪比

峰值信噪比(经常缩写为PSNR)是一个表示信号最大可能功率和影响它的表示精度的破坏性噪声功率的比值的工程术语。由于许多信号都有非常宽的动态范围,峰值信噪比常用对数分贝单位来表示。PSNR是“Peak Signal to Noise Ratio”的缩写。peak的中文意思是顶点。而ratio的意思是比率或比列的。整个意思就是到达噪音比率的顶点信号,psnr是一般是用于最大值信号和背景噪音之间的一个工程项目。通常在经过影像压缩之后,输出的影像通常都会有某种程度与原始影像不一样。为了衡量经过处理后的影像品质,我们通常会参考PSNR 值来认定某个处理程序够不够令人满意。

PSNR计算公式如下:

Peak 就是指8 bits 表示法的最大值255。MSE 指Mean Square Error(均方误差,各值相差的n次方和的平均值的n次平方根(这几个字应该没有)),I(角标n)指原始影像第n个pixel 值,P(角标n)指经处理后的影像第n个pixel 值。PSNR 的单位为dB。所以PSNR值越大,就代表失真越少。

PSNR 是最普遍,最广泛使用的评鉴画质的客观量测法,不过许多实验结果都显示,PSNR 的分数无法和人眼看到的视觉品质完全一致,有可能PSNR 较高者看起来反而比PSNR 较低者差。这是因为人眼的视觉对于误差的敏感度并不是绝对的,其感知结果会受到许多因素的影响而产生变化(例如:人眼对空间频率较低的对比差异敏感度较高,人眼对亮度对比差异的敏感度较色度高,人眼对一个区域的感知结果会受到其周围邻近区域的影响)。

3 运动估计算法的MATLAB编程

3.1全搜索法

图3-1-1 the first frame 图3-1-2 the second frame

图3-1-3 帧间差值图3-1-4 DFD

图3-1-5 恢复后的第二帧图像

图3-1-6 第一帧图像的运动矢量图

图3-1-7 第二帧图像的运动矢量图

3.2三步法

图3-2-1 the first frame 图3-2-2 the second frame

图3-2-3 帧间差值图3-2-4 DFD

图3-2-5 恢复后的第二帧图像

图3-2-6 第一帧图像的运动矢量图

图3-2-7 第二帧图像的运动矢量图

3.3全搜索法指标

全搜索算法:

耗时长为Elapsed time is 1.053320 seconds.

3.4三步法指标

三步法:

耗时长为Elapsed time is 0.881349 seconds.

3.4仿真结果分析

根据峰值信噪比可知全搜索算法的效果比三步法的效果要好;但全搜索所消耗的时间要比三步法所消耗的时间长,其运行较慢,因为全搜索算法的搜索点数要比三步法的搜索点数多很多。

4 小结与体会

通过本次对全搜索块匹配算法课程设计,让我更深刻的理解了多媒体信息的获取、搜索和保存的基本方法。基于块的运动估计,是先将视频图像分成一个个规则的图像块,然后对每个图像块估计运动矢量。基于块的运动估计和运动补偿已经广泛应用于各种视频压缩编码标准。因此,本次课程设计是非常有作用的,让我们清醒的认识到自己还有好大的差距,它让我了解了多媒体处理的基本原理。课程设计中会遇到很多很多的困难,但在同学的帮助和自己思考下最终还是没有解决问题。所以,本次课程设计我个人的收获不大,但是让我知道自己还在图像编程方面有很多欠缺的地方,不仅对均方误差(MSE)、绝对值误差(MAD)更深的理解,并且采用全搜索块匹配方法得到所有宏块的运动矢量,把c语言的知识又重新的过了一遍,同时还理解了些多媒体信息处理的基本原理。

参考文献

[1]罗军辉. MATLAB7.0在图像处理中的应用. 机械出版社.2005

[2]王家文. MATLAB7.0编程基础.机械出版社.2005

[3]钟麟. MATLAB仿真技术与应用教程.国防工业出版社.2004

[4]冈萨雷斯. 数字图像处理(MATLAB版).电子工业出版社.2005

附录

FS:

clear all;

I1=imread('claire1.bmp'); %read the first frame

I2=imread('claire2.bmp'); %read the second frame

dm=7;

%?给图像扩边,每个边都扩大dm大小%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% |-----|-------------------------------|------|

% | B | C | D |

% |-----|-------------------------------|------|

% | | | |

% | | | |

% | E | A | F | ----> 图像

% | | | |

% | | | |

% | | | |

% |-----|-------------------------------|------|

% | G | H | I |

% |-----|-------------------------------|------| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

I1=double(I1);

I2=double(I2);

[rownum colnum] = size(I1);

II=zeros(rownum+2*dm,colnum+2*dm);

II(dm+1:dm+rownum,dm+1:dm+colnum)=I1;

for i=1:dm

II(i,dm+1:dm+colnum)=II(dm+1,dm+1:dm+colnum);

II(rownum+dm+i,dm+1:dm+colnum)=II(dm+rownum,dm+1:dm+colnum);

end

for j=1:dm

II(1:rownum+2*dm,j)=II(1:rownum+2*dm,dm+1);

II(1:rownum+2*dm,colnum+dm+j)=II(1:rownum+2*dm,dm+colnum);

end

%下面进行全搜索算法

blocksize=16;

rowblocks =rownum/blocksize;

colblocks =colnum/blocksize;

A=99999999999999999999; %为了找到最小的均方误差,A用于设定一个很大的初值

Eij=0;

xrecord=ones(16,16); %xrecord,yrecord用于存放匹配快的块号,即运动矢量yrecord=ones(16,16);

diff=zeros(256,256); %这幅图的大小为256*256

tic

for x=0:(rowblocks-1) %x表示行中第几个子块

row=x*blocksize;

for y=0:(colblocks-1) %y表示列中第几个子块

col=y*blocksize;

% tempx=x*blocksize+1:(x+1)*blocksize;

% tempy=y*blocksize+1:(y+1)*blocksize;

for p=-dm:dm

for q=-dm:dm %(p,q)表示x,y对应子块在前一帧所的搜索位置

Eij=0;

Eij=sum(sum((I2(row+1:row+blocksize,col+1:col+blocksize)-II(row+dm+p+1:row+dm+p+blocks ize,col+dm+q+1:col+dm+q+blocksize)).^2))/(blocksize^2);

if Eij

A=Eij;

xrecord(x+1,y+1)=p;

yrecord(x+1,y+1)=q;

end

end

end

A=999999999999999999;

for mx=1:blocksize

for ny=1:blocksize

diff(row+mx,col+ny)=I2(row+mx,col+ny)-II(row+mx+dm+xrecord(x+1,y+1),col+ny+dm+yrecor

d(x+1,y+1));

end

end

end

end

toc

figure,imshow(I1,[]);

title('the first frame');

figure,imshow(I2,[]);

title('the second frame');

IIII=I2-I1;

figure,imshow(IIII,[]);

title(‘帧间差值');

figure,imshow(diff,[]);

title('DFD');

%title('利用全搜索算法匹配后的帧间差');

for x=0:(rowblocks-1) %

row=x*blocksize;

for y=0:(colblocks-1) %

col=y*blocksize;

III(row+1:row+blocksize,col+1:col+blocksize)=II(row+dm+xrecord(x+1,y+1)+1:row+dm+xrecor d(x+1,y+1)+blocksize,col+dm+yrecord(x+1,y+1)+1:col+dm+yrecord(x+1,y+1)+blocksize)+diff(r ow+1:row+blocksize,col+1:col+blocksize);

end

end

%III=I1+abs(diff);

figure,imshow(III,[]);

title('???′oóμ?μú?t??í???');

ERR=diff;

% figure,imshow(ERR,[]);

% title('DFD');

numberarray=0:1:255;

for m=1:255

numberarray(m+1)=0;

end;

zeronumber=0;

for n=1:rownum

for m=1:colnum

dif=abs(ERR(m,n));

if(dif==0)

temp=zeronumber;

zeronumber=temp+1;

else

numberarray(dif)=numberarray(dif)+1;

end;

end;

end;

figure;plot(0,zeronumber,'k*');hold on;plot(numberarray,'r*'),title('DFD distribution');hold off;

ERR1=zeros(16,16);

for i=0:15

for j=0:15

ERR1(i+1,j+1)=round(sum(sum(ERR(i*blocksize+1:i*blocksize+blocksize,j*blocksize+1:j*block size+blocksize)))/(blocksize*blocksize));

end

end

numberarray=0:1:255;

for m=1:255

numberarray(m+1)=0;

end;

zeronumber=0;

for n=1:16

for m=1:16

dif=abs(ERR1(m,n));

if(dif==0)

temp=zeronumber;

zeronumber=temp+1;

else

numberarray(dif)=numberarray(dif)+1;

end;

end;

end;

figure;plot(0,zeronumber,'k*');hold on;plot(numberarray,'r*'),title('DFD(block average) distribution');hold off;

%figure;mesh(diff);figure;contour(diff,15);

figure;

for i=1:16

for j=1:16

quiver(i,j,xrecord(i,j)/16,yrecord(i,j)/16); hold on;

end

end

grid on;

figure;quiver(1:16,1:16,yrecord,xrecord);

grid on;

S_3SS:clear all;

I1=imread('claire1.bmp'); %read the first frame

I2=imread('claire2.bmp'); %read the second frame

dm=7;

I1=double(I1);

I2=double(I2);

[rownum colnum] = size(I1);

II=zeros(rownum+2*dm,colnum+2*dm);

II(dm+1:dm+rownum,dm+1:dm+colnum)=I1;

for i=1:dm

II(i,dm+1:dm+colnum)=II(dm+1,dm+1:dm+colnum);

II(rownum+dm+i,dm+1:dm+colnum)=II(dm+rownum,dm+1:dm+colnum); end

for j=1:dm

II(1:rownum+2*dm,j)=II(1:rownum+2*dm,dm+1);

II(1:rownum+2*dm,colnum+dm+j)=II(1:rownum+2*dm,dm+colnum); end

¨

blocksize=16;

rowblocks =rownum/blocksize;

colblocks =colnum/blocksize;

A=99999999999999999999; % Eij=0;

xrecord=ones(16,16); % yrecord=ones(16,16);

diff=zeros(256,256); % tic

for x=0:(rowblocks-1) %

row=x*blocksize;

for y=0:(colblocks-1) %

col=y*blocksize;

% tempx=x*blocksize+1:(x+1)*blocksize;

% tempy=y*blocksize+1:(y+1)*blocksize;

for p1=-4:4:4 %μúò?2?

for q1=-4:4:4 %

Eij=0;

Eij=sum(sum((I2(row+1:row+blocksize,col+1:col+blocksize)-II(row+dm+p1+1:row+dm+p1+blo cksize,col+dm+q1+1:col+dm+q1+blocksize)).^2))/(blocksize^2);

if Eij

A=Eij;

xrecord(x+1,y+1)=p1;

yrecord(x+1,y+1)=q1;

end

end

end

p1=xrecord(x+1,y+1);

q1=yrecord(x+1,y+1);

for p2=p1-2:2:p1+2 %μú?t2?

for q2=q1-2:2:q1+2

if p2~=p1 | q2~=q1

Eij=0;

Eij=sum(sum((I2(row+1:row+blocksize,col+1:col+blocksize)-II(row+dm+p2+1:row+dm+p2+blo cksize,col+dm+q2+1:col+dm+q2+blocksize)).^2))/(blocksize^2);

if Eij

A=Eij;

xrecord(x+1,y+1)=p2;

yrecord(x+1,y+1)=q2;

end

end

end

end

p2=xrecord(x+1,y+1);

q2=yrecord(x+1,y+1);

for p3=p2-1:1:p2+1 %μúèy2?

for q3=q2-1:1:q2+1

if p3~=p2 | q3~=q2

Eij=0;

Eij=sum(sum((I2(row+1:row+blocksize,col+1:col+blocksize)-II(row+dm+p3+1:row+dm+p3+blo cksize,col+dm+q3+1:col+dm+q3+blocksize)).^2))/(blocksize^2);

if Eij

A=Eij;

xrecord(x+1,y+1)=p3;

yrecord(x+1,y+1)=q3;

end

end

end

end

A=999999999999999999;

for mx=1:blocksize

for ny=1:blocksize

diff(row+mx,col+ny)=I2(row+mx,col+ny)-II(row+mx+dm+xrecord(x+1,y+1),col+ny+dm+yrecor d(x+1,y+1));

end

end

end

end

toc

figure,imshow(I1,[]);

title('the first frame');

figure,imshow(I2,[]);

title('the second frame');

IIII=I2-I1;

figure,imshow(IIII,[]);

title('????2??μ');

figure,imshow(diff,[]);

title('DFD');

for x=0:(rowblocks-1)

row=x*blocksize;

for y=0:(colblocks-1)

col=y*blocksize;

III(row+1:row+blocksize,col+1:col+blocksize)=II(row+dm+xrecord(x+1,y+1)+1:row+dm+xrecor d(x+1,y+1)+blocksize,col+dm+yrecord(x+1,y+1)+1:col+dm+yrecord(x+1,y+1)+blocksize)+diff(r ow+1:row+blocksize,col+1:col+blocksize);

end

end

figure,imshow(III,[]);

title('恢复后的第二帧图像')

ERR=diff;

matlab课程设计题目

课题一: 连续时间信号和系统时域分析及MATLAB实现 课题要求: 深入研究连续时间信号和系统时域分析的理论知识。利用MATLAB强大的图形处理功能、符号运算功能以及数值计算功能,实现连续时间信号和系统时域分析的仿真波形。 课题内容: 一、用MATLAB实现常用连续时间信号的时域波形(通过改变参数,分析其时域特性)。 1、单位阶跃信号, 2、单位冲激信号, 3、正弦信号, 4、实指数信号, 5、虚指数信号, 6、复指数信号。 二、用MATLAB实现信号的时域运算 1、相加, 2、相乘, 3、数乘, 4、微分, 5、积分 三、用MATLAB实现信号的时域变换(参数变化,分析波形变化) 1、反转, 2、使移(超时,延时), 3、展缩, 4、倒相, 5、综合变化 四、用MATLAB实现信号简单的时域分解 1、信号的交直流分解, 2、信号的奇偶分解 五、用MATLAB实现连续时间系统的卷积积分的仿真波形 给出几个典型例子,对每个例子,要求画出对应波形。 六、用MATLAB实现连续时间系统的冲激响应、阶跃响应的仿真波形。 给出几个典型例子,四种调用格式。 七、利用MATLAB实现连续时间系统对正弦信号、实指数信号的零状态响应的仿真波形。 给出几个典型例子,要求可以改变激励的参数,分析波形的变化。 课题二: 离散时间信号和系统时域分析及MATLAB实现。 课题要求: 深入研究离散时间信号和系统时域分析的理论知识。利用MATLAB强大的图

形处理功能、符号运算功能以及数值计算功能,实现离散时间信号和系统时域分析的仿真波形。 课题内容: 一、用MATLAB绘制常用信号的时域波形(通过改变参数分析其时域特性) 1、单位序列, 2、单位阶跃序列, 3、正弦序列, 4、离散时间实指数序列, 5、离散时间虚指数序列, 6、离散时间复指数序列。 二、用MATLAB实现信号的时域运算 1、相加, 2、相乘, 3、数乘。 三、用MATLAB实现信号的时域变换(参数变化,分析波形的变化) 1、反转, 2、时移(超时,延时), 3、展缩, 4、倒相。 四、用MATLAB实现离散时间系统卷积和仿真波形 给出几个典型例子,对每个例子要求画出e(k),h(k),e(i),h(i),h(-i),Rzs(k)波形。 五、用MATLAB实现离散时间系统的单位响应,阶跃响应的仿真波形 给出几个典型例子,四中调用格式。 六、用MATLAB实现离散时间系统对实指数序列信号的零状态响应的仿真波形 给出几个典型例子,要求可以改变激励的参数,分析波形的变化。 课题三: 连续时间信号傅里叶级数分析及MATLAB实现。 课题要求: 深入研究连续时间信号傅里叶级数分析的理论知识,利用MATLAB强大的图形处理功能,符号运算功能以及数值计算功能,实现连续时间周期信号频域分析的仿真波形。 课题内容: 一、用MATLAB实现周期信号的傅里叶级数分解与综合 以周期矩形波信号为例,绘出包含不同谐波次数的合成波形,观察合成波形与原矩形 波形之间的关系及吉布斯现象。

MATLAB课程设计报告

华东交通大学MATLAB程序设计报告书 课题名称:基于MATLAB的粒子群优化算法的实现 姓名: 学号:20160280800014 专业:控制科学与工程 2016年 11月 20日

基于MATLAB的粒子群优化算法的实现 一、课程选题目的 本次课程设计的课题为《基于MATLAB的粒子群优化算法的实现》,主要为学会运用MATLAB对实际算法编程,加深对粒子群优化算法的理解,并为今后熟练使用MA TLAB进行系统的分析仿真和设计奠定基础。数值计算分析可以帮助更深入地理解理论知识,并为将来使用MA TLAB进行各领域数值分析分析和实际应用打下基础。 此次课程主要是为了进一步熟悉对MATLAB软件的使用,以及学会利用MA TLAB对数值运算这种实际问题进行处理,将理论应用于实际,加深对它的理解。 二、粒子群优化算法原理 优化是科学研究、工程技术和经济管理等领域的重要研究工具。它所研究的问题是讨论在众多的方案中寻找最优方案。例如,工程设计中怎样选择设计参数,使设计方案既满足设计要求又能降低成本;资源分配中,怎样分配有限资源,使分配方案既能满足各方面的基本要求,又能获得好的经济效益。在人类活动的各个领域中,诸如此类,不胜枚举。优化这一技术,正是为这些问题的解决,提供理论基础和求解方法,它是一门应用广泛、实用性很强的科学。近十余年来,粒子群优化算法作为群体智能算法的一个重要分支得到了广泛深入的研究,在路径规划等许多领域都有应用。 2.1 粒子群优化算法的起源 粒子群优化(PSO)算法是由Kennedy和Eberhart于1995年用计算机模拟鸟群觅食这一简单的社会行为时,受到启发,简化之后而提出的。 设想这样一个场景:一群鸟随机的分布在一个区域中,在这个区域里只有一块食物。所有的鸟都不知道食物在哪里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢。最简单有效的方法就是追寻自己视野中目前离食物最近的鸟。如果把食物当作最优点,而把鸟离食物的距离当作函数的适应度,那么鸟寻觅食物的过程就可以当作一个函数寻优的过程。鱼群和鸟群的社会行为一直引起科学家的兴趣。他们以特殊的方式移动、同步,不会相互碰撞,整体行为看上去非常优美。生物学家CargiReynolds提出了一个非常有影响的鸟群聚集模型。在他的模拟模型boids中,每一个个体遵循:避免与邻域个体相冲撞、匹配邻域个体的速度、试图飞向感知到的鸟群中心这三条规则形成简单的非集中控制算法驱动鸟群的聚集,在一系列模拟实验中突现出了非常接近现实鸟群聚集行为的现象。该结果显示了在空中回旋的鸟组成轮廓清晰的群体,以及遇到障碍物时鸟群的分裂和再度汇合过程。由此受到启发,经过简化提出了粒子群优化算法。 2.2粒子群优化算法的原理 在粒子群优化算法中,每个优化问题的潜在解都是搜索空间中的一只鸟,称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值,每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。优化开始时先初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个极值来更新自己。第一个极值就是整个种群目前找到的最优解。这个极值是全局极值。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。第二个极值是粒子本身所找到的最优解,称为个体极值。这是因为粒子仅仅通过跟踪全局极值或者局部极值来更新位置,不可能总是获得较好的解。这样在优化过程中,粒子在追随全局极值或局部极值的同时追随个体极值则圆满的解决了这个问题。这就是粒子群优化

《ACM算法与数据结构设计》大作业

《ACM算法与数据结构设计》课程大作业报告 题目:五位以内的对称素数 学生姓名 班级学号 学生学院计算机软件学院 学生专业计算机科学与技术 联系电话 电子邮 指导教师 指导单位计算机学院软件工程系 日期2011.5.24

注意事项 (1)课程大作业从《ACM算法与数据结构设计》课程实验二(2011年4月19日)或实验三(2011年5月10日)中任选一个课题完成。(2)课程大作业内容包括课题名称、课题内容和要求、课题分析、概要设计、详细设计、测试数据及其结果分析、调试过程中的问题、参考资料列表、课程小结等。 (3)课程报告可以打印,也可以手写,但前面两页内容、大作业撰写纲要、课程小结不可遗漏和更换。 (4)课程小结给出ACM程序设计过程的收获、遇到的问题,遇到问题解决问题过程的思考、程序调试能力的思考等,需要手写签字。(5)课程大作业提交时间为2011年5月24日(第14周星期二)晚19:00~20:00,地点:计算中心A机房。

一、课题名称: 五位以内的对称素数 二、课题内容和要求: 题目:判断一个数是否为对称且不大于五位数的素数。 要求:判断输入的一组数据(正整数)是否是五位以内的对称素数,逐个判断并输出“yes”或“no” 三、课题分析: 定义两个函数分别判断数据是否为素数(bool isprime(int n)),是否是对称数(bool issym(int n));在main()函数中利用if()语句来判断该数据是否是五位以内的数。只有同时满足三个条件,才能判断一个数据是五位以内的对称素数,输出“yes”;否则输出“no”。 输入输出方案: 输入: 输入数据含有不多于50个的正整数(0

MATLAB课设报告

课程设计任务书 学生姓名:董航专业班级:电信1006班 指导教师:阙大顺,李景松工作单位:信息工程学院 课程设计名称:Matlab应用课程设计 课程设计题目:Matlab运算与应用设计5 初始条件: 1.Matlab6.5以上版本软件; 2.课程设计辅导资料:“Matlab语言基础及使用入门”、“Matlab及在电子信息课程中的应 用”、线性代数及相关书籍等; 3.先修课程:高等数学、线性代数、电路、Matlab应用实践及信号处理类相关课程等。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1.课程设计内容:根据指导老师给定的7套题目,按规定选择其中1套完成; 2.本课程设计统一技术要求:研读辅导资料对应章节,对选定的设计题目进行理论分析, 针对具体设计部分的原理分析、建模、必要的推导和可行性分析,画出程序设计框图,编写程序代码(含注释),上机调试运行程序,记录实验结果(含计算结果和图表),并对实验结果进行分析和总结。具体设计要求包括: ①初步了解Matlab、熟悉Matlab界面、进行简单操作; ②MATLAB的数值计算:创建矩阵矩阵运算、多项式运算、线性方程组、数值统计; ③基本绘图函数:plot, plot3, mesh, surf等,要求掌握以上绘图函数的用法、简单图形 标注、简单颜色设定等; ④使用文本编辑器编辑m文件,函数调用; ⑤能进行简单的信号处理Matlab编程; ⑥按要求参加课程设计实验演示和答辩等。 3.课程设计说明书按学校“课程设计工作规范”中的“统一书写格式”撰写,具体包括: ①目录; ②与设计题目相关的理论分析、归纳和总结; ③与设计内容相关的原理分析、建模、推导、可行性分析; ④程序设计框图、程序代码(含注释)、程序运行结果和图表、实验结果分析和总结; ⑤课程设计的心得体会(至少500字); ⑥参考文献(不少于5篇); ⑦其它必要内容等。 时间安排:1.5周(分散进行) 参考文献: [1](美)穆尔,高会生,刘童娜,李聪聪.MA TLAB实用教程(第二版) . 电子工业出版社,2010. [2]王正林,刘明.精通MATLAB(升级版) .电子工业出版社,2011. [3]陈杰. MA TLAB宝典(第3版) . 电子工业出版社,2011. [4]刘保柱,苏彦华,张宏林. MATLAB 7.0从入门到精通(修订版) . 人民邮电出版社,2010. 指导教师签名:年月日 系主任(或责任教师)签名:年月日

通信原理课程设计报告(基于Matlab)

2DPSK调制与解调系统的仿真 设计原理 (1) 2DPSK信号原理 1.1 2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。定义为本码元初相与前一码元初相之差,假设: →数字信息“0”; →数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK信号相位:0

或 : 1.2 2DPSK 信号的调制原理 一般来说,2DPSK 信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK 信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0” 时接相位0,当输入数字信息为“1”时接pi 。 图1.2.2 键控法调制原理图 1.3 2DPSK 信号的解调原理 2DPSK 信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。 码变换 相乘 载波 s(t) e o (t)

Matlab课程设计报告

自控系统仿真软件课程设计报告 MATLAB 设计题目:牛顿摆球 姓名: 学号: 院系: 班级:1203 指导教师: 2014年12月20日

一.课程设计目的 1、熟悉课程设计的基本流程; 2、掌握MATLAB语法结构及调试方法; 3、熟悉MATLAB函数调用,熟练二维画图; 4、掌握MATLAB语言在控制方面的运用; 5、学会用MATLAB进行基本仿真; 6、掌握MATLAB编程技巧,提高编程水平。 二.系统分析 1.题目的描述: (1)牛顿摆球原理描述 五个质量相同的球体由吊绳固定,彼此紧密排列。当摆动最右侧的球并在回摆时碰撞紧密排列的另外四个球,最左边的球将被弹出,并仅有最左边的球被弹出。当然此过程也是可逆的,当摆动最左侧的球撞击其它球时,最右侧的球会被弹出。当最右侧的两个球同时摆动并撞击其他球时,最左侧的两个球会被弹出。同理相反方向同样可行,并适用于更多的球。 为了更接近现实,在这里我将考虑重力及空气阻力的影响,摆球将不会永无止境的运动下去,由于外界因素的影响,摆球运动一段时间后将回归静止状态。(2)通过MATLAB动画程序制作软件,实现下述过程 当运行程序时,把最右边的小球拉到一定的高度放下,让其碰撞其余四个小球,仅让最左边的小球被弹出,当最左边小球回摆碰撞其它球时,最右边小球又被弹出,如此循环。由于是非理想条件下,摆球的摆动幅度会随摆动次数的增加越来越小,直到静止。 时间停顿两秒,把右边两小球一起拉到一定高度放下,让其碰撞其余三个球,同样仅让左边两球被弹出,当球回摆再次碰撞时,最右边两球又被同时弹出,如此循环,因为外界因素的影响,最终五个球都会静止下来。 (3)整个实验看似简单,但要在MATLAB上完成这样一个动画过程,还是需要下点功夫,克服困难的。经过自己的努力,终于实现了整个过程,这也是一种不小的收获。 2.设计要求: (1)能够实现有阻尼摆动,即摆幅随摆动次数增加越来越小,直到静止。(2)能够让摆球弧线摆动。 三.系统设计 1.系统设计过程 (1)通过函数axis建立坐标系 (2)在坐标系范围内通过函数line画各个支架 (3)通过函数title添加标题“动量守恒实验”、函数text添加标注“牛顿摆球” (4)通过函数line画出五个球,并设定其初始位置,颜色,大小,线条的擦拭方式

《程序设计与算法综合实践》期末大作业题目及评分标准

2017级《程序设计与算法综合实践》 期末大作业题目及评分标准 有如下情况之一者,为不及格。 (1)未能完成所选题目评分标准的最低要求。 (2)抄袭他人成果。 (3)大作业检查时不带电脑,或电脑没有C语言开发环境。 (4)出勤次数、课堂表现等不符合学校相关教学文件规定等其他情况。 备选题目目录 1.图书购买系统...............................................................................................................- 2 - 2.物流信息管理系统 ....................................................................................................- 3 - 3.PM2.5实时信息管理系统 ............................................................ - 5 - 4.电影评论系统 ............................................................................... - 6 - 5.游戏角色属性分析........................................................................ - 8 - 6.KTV点歌系统 ................................................................................ - 9 - 7.英语词斩系统 ............................................................................. - 11 - 8.校运动会成绩管理系统.............................................................. - 14 - 9.通讯录管理系统 ......................................................................... - 15 - 10.机票购买系统 ............................................................................. - 16 - 11.车辆销售管理系统...................................................................... - 17 - 12.饮品自动贩卖机系统.................................................................. - 18 -

matlab课程设计拟定题目

第一类:单位转换 1.长度单位换算的设计与实现 2.面积单位换算的设计与实现 3.体积单位换算的设计与实现 4.容积单位换算的设计与实现 5.质量单位换算的设计与实现 6.时间单位换算的设计与实现 7.温度单位换算的设计与实现 7.压强单位换算的设计与实现 8.角度单位换算的设计与实现 8.功率单位换算的设计与实现 第二类:曲线绘制 1.直线的自动绘制和相关计算 2.椭圆的自动绘制和相关计算 3.双曲线的自动绘制和相关计算 4.抛物线的自动绘制和相关计算 5.心脏线的自动绘制和相关计算 6.渐开线的自动绘制和相关计算 7.滚圆线的自动绘制和相关计算 8.三叶玫瑰线的自动绘制和相关计算9.四叶玫瑰线的自动绘制和相关计 10.阿基米德螺线的自动绘制和相关计算第三类:曲面绘制 1.球面的自动绘制和相关计算 2.椭球面的自动绘制和相关计算 3.单叶双曲面的自动绘制和相关计算 4.双叶双曲面的自动绘制和相关计算 5.抛物面的自动绘制和相关计算 6.双曲抛物面的自动绘制和相关计算 7.双曲柱面的自动绘制和相关计算 8.椭圆柱面的自动绘制和相关计算 9.抛物柱面的自动绘制和相关计算 10.圆锥面的自动绘制和相关计算 第四类:线性回归 1.男士身高体重相关计算经验公式 2.女士身高体重相关计算经验公式 3.男士胖瘦等级的确定 4.女士胖瘦等级的确定 5.男士身高脚长相关计算经验公式 6.女士身高脚长相关计算经验公式 7.父子身高相关性研究 8.母子身高相关性研究 9.父女身高相关性研究 10.母女身高相关性研究 第五类:学习成绩 1.期末总评自动计算的设计与实现 2.成绩等级自动评定的设计与实现 3.成绩分段自动统计的设计与实现 4.成绩分布折线自动绘制的设计与实现 5.成绩自动统计分析的设计与实现 6.试卷分布自动分析的设计与实现 7.试卷难度自动分析的设计与实现 8.考试成绩名次自动生成的设计与实现

matlab课程设计报告书

《计算机仿真及应用》课程设计报告书 学号:08057102,08057127 班级:自动化081 姓名陈婷,万嘉

目录 一、设计思想 二、设计步骤 三、调试过程 四、结果分析 五、心得体会 六、参考文献

选题一、 考虑如下图所示的电机拖动控制系统模型,该系统有双输入,给定输入)(t R 和负载输入)(t M 。 1、 编制MATLAB 程序推导出该系统的传递函数矩阵。 2、 若常系数增益为:C 1=Ka =Km =1,Kr =3,C2=0.8,Kb =1.5,时间常数T 1=5, T 2=0.5,绘制该系统的根轨迹、求出闭环零极点,分析系统的稳定性。若)(t R 和)(t M 分别为单位阶跃输入,绘制出该系统的阶跃响应图。(要求C 1,Ka ,Km ,Kr ,C2,Kb , T 1,T 2所有参数都是可调的) 一.设计思想 题目分析: 系统为双输入单输出系统,采用分开计算,再叠加。 要求参数均为可调,而matlb 中不能计算未赋值的函数,那么我们可以把参数设置为可输入变量,运行期间根据要求赋值。 设计思路: 使用append 命令连接系统框图。 选择‘参数=input('inputanumber:')’实现参数可调。 采用的方案: 将结构框图每条支路稍作简化,建立各条支路连接关系构造函数,运行得出相应的传递函数。 在得出传递函数的基础上,使用相应的指令求出系统闭环零极点、画出其根轨迹。 通过判断极点是否在左半平面来编程判断其系统是否稳定。 二.设计步骤 (1)将各模块的通路排序编号

(2)使用append命令实现各模块未连接的系统矩阵 (3)指定连接关系 (4)使用connect命令构造整个系统的模型 三.调试过程 出现问题分析及解决办法: 在调试过程出现很多平时不注意且不易寻找的问题,例如输入的逗号和分号在系统运行时不支持中文格式,这时需要将其全部换成英文格式,此类的程序错误需要细心。 在实现参数可调时初始是将其设为常量,再将其赋值进行系统运行,这样参数可调性差,后用‘参数=input('inputanumber:')’实现。 最后是在建立通路连接关系时需要细心。 四.结果分析 源代码: Syms C1 C2 Ka Kr Km Kb T1 T2 C1=input('inputanumber:') C2=input('inputanumber:') Ka=input('inputanumber:') Kr=input('inputanumber:') Km=input('inputanumber:') Kb=input('inputanumber:') T1=input('inputanumber:') T2=input('inputanumber:') G1=tf(C1,[0 1]); G2=tf(Ka*Kr,[0 1]); G3=tf(Km,[T1 1]); G4=tf(1,[T2 1]); G5=tf(1,[1 0]); G6=tf(-C2,1); G7=tf(-Kb,1); G8=tf(-1,1); Sys=append(G1,G2,G3,G4,G5,G6,G7,G8) Q=[1 0 0;2 1 6;3 2 7;4 3 8;5 4 0;6 5 0;7 4 0;8 0 0;]; INPUTS1=1; OUTPUTS=5; Ga=connect(Sys,Q,INPUTS1,OUTPUTS) INPUTS2=8; OUTPUTS=5; Gb=connect(Sys,Q,INPUTS2,OUTPUTS) rlocus(Ga)

软件系统分析与设计大作业

《软件系统分析与设计》 期末大作业 选题名称:游戏平台管理系统设计人:徐文豪刘青海 赖超宇甘智宏 班级:软工143班 南昌大学软件学院 2016.6.1

目录 一、整体描述 (2) 二、需求分析 (3) 三、系统功能概况 (4) 四、类的属性与方法 (5) 五、系统界面界限 (11) 六、设计模型 (13) 七、设计原则 (17) 八、设计模式······················

一、整体描述 随着移动通讯的发展,手机应用也越来越多,其中,游戏应用占据了很大的比重,游戏平台管理系统是整合了大量游戏应用,以及玩家线上交流的平台。 主要受众群:拥有移动端或电脑端的人群。 应用前景:移动互联的发展为游戏平台的发展提供了很大的生存空间,应用前景十分广阔 盈利方式:向平台中游戏的开发商收取一定的费用,游戏玩家向游戏中注入资金时,收取一定比例的游戏收入。 面临的困难:游戏平台前期的推广,提高游戏平台本身对开发商和游戏玩家的吸引力,游戏平台能否适应大部分游戏玩家的要求。 玩家首先要注册账号,然后就可以在上面下载游戏应用,上传自己的游戏资源。同时,根据玩家的活跃程度获取相应积分,用积分可以兑换游戏礼包,也会根据玩家等级在游戏装备上给与相应的优惠和等级奖励。玩家在每一款游戏的评论区都可以交流游戏经验,提出意见和建议,以便游戏及时更新,弥补相应不足。玩家也可以建立游戏工会,不同游戏的玩家都可以加入,分享自己的游戏心得或者转赠游戏装备或积分。

二、需求分析 时间when:游戏厂商:随时;注册用户:随时;管理人员:正常工作时间。 地点Where:游戏厂商,管理人员:工作地点;注册用户:随地 人员who:游戏厂商,管理人员,注册用户, What:游戏厂商:推广游戏,管理人员:扩大服务,盈利;注册人员:玩游戏。 Why:游戏厂商:推广力度不大,效果不好,管理人员:方便管理,注册用户:良好的游戏环境。 性能Performance:系统提供服务的效率,响应时间快,由于是手机端的APP吞吐量不需要太大。 成本Cost:实现系统需要付出的代价,耗费****元 时间Time:2016年6月3日 可靠性Reliability: 需要系统长时间正确运行的能力 安全性Security: 由于该平台会涉及资金的流动,所以需要对信息安全的保护能力。 合规性Compliance: 需要符合各种行业的标准,法律法规,规范。技术性Technology:要求基于安卓平台开发。 兼容性Compatibility:需要与一些支付平台进行兼容能力。还有对游戏的兼容性。

matlab课程设计题目全

Matalab课后作业 学院:电气信息工程及其自动化 班级: 学号: 姓名: 完成日期: 2012年12月23日

1、 matlab 软件主要功能是什么?电气工程及其自动化专业本科生主要用到哪 些工具箱,各有什么功能? 答:(1)主要功能:工业研究与开发; 数学教学,特别是线性代数;数值分析和科学计算方面的教学与研究;电子学、控制理论和物理学等工程和科学学科方面的教学与研究; 经济学、化学和生物学等计算问题的所有其他领域中的教学与研究;符号计算功能;优化工具;数据分析和可视化功能;“活”笔记本功能;工具箱;非线性动态系统建模和仿真功能。 (2)常用工具箱: (a ) MATLAB 主工具箱:扩充matlab 的数值计算、符号运算功能、图形建模仿真功能、文字处理功能以及与硬件实时交互功能。 (b )符号数学工具箱:符号表达式、符号矩阵的创建;符号可变精度求解;因式分解、展开和简化;符号代数方程求解;符号微积分;符号微分方程。 (c ) SIMULINK 仿真工具箱: Simulink 是用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具。对各种时变系统,包括通讯、控制、信号处理、视频处理和图像处理系统,Simulink 提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试。 (d )信号处理工具箱:数字和模拟滤波器设计、应用及仿真;谱分析和估计;FFT 、DCT 等 变换;参数化模型。 (e )控制系统工具箱:连续系统设计和离散系统设计;状态空间和传递函数以及模型转换;时域响应(脉冲响应、阶跃响应、斜坡响应);频域响应(Bode 图、Nyquist 图);根轨迹、极点配置。 2、设y=23e t 4-sin(43t+3 ),要求以0.01秒为间隔,求出y 的151个点,并求出其导数的值和曲线。 程序如下: clc clear x=0:0.01:1.5; y=sqrt(3)/2*exp(-4*x).*sin(4*sqrt(3)*x+pi/3); y1=diff(y); subplot(2,1,1) plot(x,y) subplot(2,1,2) plot(x(1:150),y1) 曲线如下图所示:

matlab音频降噪课程设计报告

matlab音频降噪课程设计报告

燕山大学 医学软件课程设计说明书 题目:基于MATLAB巴特沃斯滤波器的音频去噪的GUI设计 学院(系):电气工程学院 年级专业: 13级生物医学工程 2 班 学号: 130103040041 学生姓名:魏鑫 指导教师:许全盛 1

院(系):电气工程学院基层教学单位:生物医学工程系 学号130103040041 学生 姓名 魏鑫 专业(班 级) 13级生 物医学 工程2 班 设计 题目 基于MATLAB音频去噪的GUI设计设 计 技术参数通带截止频率fp=2700;阻带截止频率fs=3000;采样频率FS=48000; 通带衰减不大于1dB;阻带衰减不小于10dB; 设计要求1.实现用MATLAB导入音频; 2.对音频进行频谱分析; 3.设计滤波器去噪并对含噪信号进行滤 2

波并进行功率谱分析; 4.设计能实现上述功能的GUI; 工作量1.完成音频录入及频谱分析相关程序的编写与调试; 2.设计滤波器去噪; 3.用MATLAB软件做GUI界面的设计; 工作计划11.21-11.24 MATLAB软件中GUIDE 工具箱的使用 11.25-11.29 各处理算法模块的编程实现 11.30-12.1 整体程序联调 12.2 撰写课程设计说明书,答辩 参考资料 1. 陈怀琛吴大正 MATLAB及在电子信息课程中的应用[M] 北京电子工业出版社 2006. 章节2.4; 2. 陈亚勇 MATLAB信号处理详解[M] 北京:人民邮电出版社 2000. 第十 3

章; 3.张康刘雅基于Matlab的巴特沃斯 数字低通滤波器的设计[J] 计算机与现代化 2007年 12期 98-100页 指导 教师签字许全盛 基层教学单 位主任签字 彭勇 目录 一、设计目的意义 (1) 1.1绪论 (1) 1.2设计目的 (1) 1.3意义 (1) 二、设计内容 (2) 2.1 设计原理 (2) 2.2 设计内容 (2) 三、设计过程及结果分析 (3) 3.1 设计步骤 (3) 4

通信工程学院matlab课程设计报告

南京工程学院 课程设计说明书(论文)题目模拟信号的数字化 课程名称Matlab通信仿真设计 院(系、部、中心)通信工程学院 专业电子信息工程(传感网) 班级 学生姓名X X X 学号 2 0 8 1 1 0 7 3 2 设计地点信息楼C 216 指导教师潘子宇

设计起止时间:2014年1月10日至2014年 1 月14日

目录 一、内容摘要 (1) 二、课程设计目的和要求 (2) 三、课程设计任务 (2) 四、课程设计软件介绍 (3) 五、课程设计原理 (4) 六、PCM编码及仿真参数设置 (9) 七、PCM解码及仿真参数设置 (11) 八、PCM串行传输模型及仿真参数设置 (13) 九、课程设计成品图 (14) 十、SCOPE端的最终波形图 (14) 十一、主要参考文献 (15)

十二、总结与体会 (15) 一、内容摘要 MATLAB软件是矩阵实验室的简称,是美国M a t h W or k s公司出品的商业数学软件, 可用于算法开发、数据分析以及数值计算的高级技术计算语言和交互式环境, 广泛用于数字信号分析,系统识别,时序分析与建模, 神经网络、动态仿真等方面有着广泛的应用。主要包括MATLAB和Simulink两大部分。Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。 Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。Simulink可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模,它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率。为了创建动态系统模型,Simulink提供了一个建立模型方块图的图形用户接口(GUI) ,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。 Simulink是用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具。对各种时变系统,包括通讯、控制、信号处理、视频处理和图像处理系统,Simulink提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试。.

算法分析大作业动态规划方法解乘法表问题和汽车加油行驶问题#精选.

算法分析大作业 动态规划方法解 乘法表问题和汽车加油行驶问题目录 1.动态规划解乘法表问题 1.1问题描述------ 1.2算法设计思想------ 1.3设计方法------ 1.4源代码------ 1.5最终结果------ 2.动态规划解汽车加油行驶问题 2.1问题描述------ 2.2算法设计思想------ 2.3设计方法------ 2.4源代码------ 2.5最终结果------ 3.总结

1.动态规划解决乘法表问题 1.1问题描述 定义于字母表∑{a,b,c)上的乘法表如表所示: 依此乘法表,对任一定义于∑上的字符串,适当加括号表达式后得到一个表达式。 例如,对于字符串x=bbbba,它的一个加括号表达式为(b(bb))(ba)。依乘法表,该表达式的值为a。 试设计一个动态规划算法,对任一定义于∑上的字符串x=x1x2…xn,计算有多少种不同的加括号方式,使由x导出的加括号表达式的值为a。 1.2算法设计思想 设常量a,b,c 分别为 1, 2 ,3 。n 为字符串的长度。 设字符串的第 i 到第 j 位乘积为 a 的加括号法有result[i][j][a] 种, 字符串的第 i 到第 j 位乘积为 b 的加括号法有result[i][j][b] 种, 字符串的第 i 到第 j 位乘积为 c 的加括号法有 result[i][j][c] 种。 则原问题的解是:result[i][n][a] 。 设 k 为 i 到 j 中的某一个字符,则对于 k 从 i 到 j :result[i][j][a] += result[i][k][a] * result[k + 1][j][c] + result[i][k][b] * result[k + 1][j][c] + result[i][k][c] * result[k + 1][j][a]; result[i][j][b] += result[i][k][a] * result[k + 1][j][a] + result[i][k][a] * result[k + 1][j][b] + result[i][k][b] * result[k + 1][j][b]; result[i][j][c] += result[i][k][b] * result[k + 1][j][a] + result[i][k][c] * result[k + 1][j][b] + result[i][k][c] * result[k + 1][j][c];

matlab车牌识别课程设计报告(附源代码)

Matlab程序设计任务书 分院(系)信息科学与工程专业 学生姓名学号 设计题目车牌识别系统设计 内容及要求: 车牌定位系统的目的在于正确获取整个图像中车牌的区域,并识别出车牌号。通过设计实现车牌识别系统,能够提高学生 分析问题和解决问题的能力,还能培养一定的科研能力。 1.牌照识别系统应包括车辆检测、图像采集、牌照识别等几 部分。 2.当车辆检测部分检测到车辆到达时,触发图像采集单元,采 集当前的视频图像。 3.牌照识别单元对图像进行处理,定位出牌照位置,再将牌 照中的字符分割出来进行识别,然后组成牌照号码输出。 进度安排: 19周:Matlab环境熟悉与基础知识学习 19周:课程设计选题与题目分析 20周:程序设计编程实现 20周:课程设计验收与答辩 指导教师(签字): 年月日学院院长(签字): 年月日 目录

一.课程设计目的 (3) 二.设计原理 (3) 三.详细设计步骤 (3) 四. 设计结果及分析 (18) 五. 总结 (19) 六. 设计体会 (20) 七. 参考文献 (21) 一、课程设计目的 车牌定位系统的目的在于正确获取整个图像中车牌的区域,并识别出车牌号。通过

设计实现车牌识别系统,能够提高学生分析问题和解决问题的能力,还能培养一定的科研能力。 二、设计原理: 牌照自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些牌照识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。一个完整的牌照识别系统应包括车辆检测、图像采集、牌照识别等几部分。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。牌照识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。 三、详细设计步骤: 1. 提出总体设计方案: 牌照号码、颜色识别 为了进行牌照识别,需要以下几个基本的步骤: a.牌照定位,定位图片中的牌照位置;

对并行算法的介绍和展望——学期大作业

《计算机系统结构》大作业 对并行算法的介绍和展望 专业计算机科学与技术 班级 111 学号 111425020133 姓名完颜杨威 日期 2014年4月17日 河南科技大学国际教育学院

对并行算法的介绍和展望 我们知道,算法是求解问题的方法和步骤。而并行算法就是用多台处理机联合求解问题的方法和步骤,其执行过程是将给定的问题首先分解成若干个尽量相互独立的子问题,然后使用多台计算机同时求解它,从而最终求得原问题的解。并行算法的研究涉及到理论、设计、实现、应用等多个方面,要保持并行算法研究的持续性和完整性,需要建立一套完整的“理论-设计-实现-应用”的学科体系,也就是所谓的并行算法研究的生态环境。其中,并行算法理论是并行算法研究的理论基础,包含并行计算模型和并行计算复杂性等;并行算法的设计与分析是并行算法研究的核心内容;并行算法的实现是并行算法研究的应用基础,包含并行算法实现的硬件平台和软件支撑技术等;并行应用是并行算法研究的发展动力,除了包含传统的科学工程计算应用外,还有新兴的与社会相关的社会服务型计算应用等。 并行算法主要分为数值计算问题的并行算法和非数值计算问题的并行算法。而并行算法的研究主要分为并行计算理论、并行算法的设计与分析、和并行算法的实现三个层次。现在,并行算法之所以受到极大的重视,是为了提高计算速度、提高计算精度,以及满足实时计算需要等。然而,相对于串行计算,并行计算又可以划分成时间并行和空间并行。时间并行即流水线技术,空间并行使用多个处理器执行并发计算,当前研究的主要是空间的并行问题。并行算法是一门还没有发展成熟的学科,虽然人们已经总结出了相当多的经验,但是远远不及串行算法那样丰富。并行算法设计中最常用的的方法是PCAM方法,即划分,通信,组合,映射。首先划分,就是将一个问题平均划分成若干份,并让各个处理器去同时执行;通信阶段,就是要分析执行过程中所要交换的数据和任务的协调情况,而组合则是要求将较小的问题组合到一起以提高性能和减少任务开销,映射则是要将任务分配到每一个处理器上。任何一个并行算法必须在一个科学的计算模型中进行设计。我们知道,任何算法必须有计算模型。任何并行计算模型必须要有为数不多、有明确定义的、可以定量计算的或者可以实际测量的参数,这些参数可以构成相应函数。并行计算模型是算法设计者与体系结构研究者之间的一个桥梁,是并行算法设计和分析的基础。它屏蔽了并行机之间的差异,从并行机中抽取若干个能反映计算特性的可计算或可测量的参数,并按照模型所定义的计算行为构造成本函数,以此进行算法的复杂度分析。 经过多年的发展,我国在并行算法的研究上也取得了显著进展,并行计算的应用已遍布天气预报、石油勘探、航空航天、核能利用、生物工程等领域,理论研究与应用普及均取得了很大发展。随着高性价比可扩展集群并行系统的逐步成熟和应用,大规模电力系统潮流并行计算和分布式仿真成为可能。目前,并行算法在地震数据处理中应用已较为成熟,近年来向更实用的基于PC机群的并行技术发展.然而,在非地震方法中,并行算法应用较少见文献报道,研究尚处于初级研究阶段。在大地电磁的二维和三维正、反演问题上,并行计算技术逐渐得到越来越多关注和重视.随着资源和能源需求的增长,地球物理勘探向深度和广度快速发展,大幅增长的数据量使得高性能并行计算机和高效的并行算法在勘探地球物理学中的发展和应用将占据愈来愈重要的地位。计算机技术在生物医学领域已经广泛应用,实践证明,并行算法在生物医学工程的各个领域中具有广泛的应用价值,能有效提高作业效率。随着电子科学技术的发展,电磁问题变得越来越复杂,为了在有限的计算机资源条件下求解大规模复杂电磁问题,许电磁学家已

数字图像处理 课程设计报告 matlab

欢迎阅读数字图像处理 课程设计报告 姓名: 学号: 班级: .net 设计题目:图像处理 教师:赵哲老师 提交日期: 12月29日

一、设计内容: 主题:《图像处理》 详细说明:对图像进行处理(简单滤镜,模糊,锐化,高斯模糊等),对图像进行处理(上下对称,左右对称,单双色显示,亮暗程度调整等),对图像进行特效处理(反色,实色混合,色彩平衡,浮雕效果,素描效果,雾化效果等), 二、涉及知识内容: 1、二值化 2、各种滤波 3、算法等 三、设计流程图 插入图片 对图片进行处理 二值化处理 重复 输出两幅图 结束 四、实例分析及截图效果: 运行效果截图: 第一步:读取原图,并显示 close all;clear;clc; % 清楚工作窗口clc 清空变量clear 关闭打开的窗口close all I=imread('1.jpg'); % 插入图片1.jpg 赋给I imshow(I);% 输出图I I1=rgb2gray(I);%图片变灰度图 figure%新建窗口

subplot(321);% 3行2列第一幅图 imhist(I1);%输出图片 title('原图直方图');%图片名称 一,图像处理模糊 H=fspecial('motion',40); %% 滤波算子模糊程度40 motion运动 q=imfilter(I,H,'replicate');%imfilter实现线性空间滤波函数,I图经过H滤波处理,replicate反复复制 q1=rgb2gray(q); imhist(q1); title('模糊图直方图'); 二,图像处理锐化 H=fspecial('unsharp');%锐化滤波算子,unsharp不清晰的 qq=imfilter(I,H,'replicate'); qq1=rgb2gray(qq); imhist(qq1); title('锐化图直方图'); 三,图像处理浮雕(来源网络) %浮雕图 l=imread('1.jpg'); f0=rgb2gray(l);%变灰度图 f1=imnoise(f0,'speckle',0.01); %高斯噪声加入密度为0.01的高斯乘性噪声 imnoise噪声污染图像函数 speckle斑点 f1=im2double(f1);%把图像数据类型转换为双精度浮点类型 h3=1/9.*[1 1 1;1 1 1;1 1 1]; %采用h3对图像f2进行卷积滤波 f4=conv2(f1,h3,'same'); %进行sobel滤波 h2=fspecial('sobel'); g3=filter2(h2,f1,'same');%卷积和多项式相乘 same相同的 k=mat2gray(g3);% 实现图像矩阵的归一化操作 四,图像处理素描(来源网络) f=imread('1.jpg'); [VG,A,PPG] = colorgrad(f); ppg = im2uint8(PPG); ppgf = 255 - ppg; [M,N] = size(ppgf);T=200; ppgf1 = zeros(M,N); for ii = 1:M for jj = 1:N if ppgf(ii,jj)

相关主题