搜档网
当前位置:搜档网 › 第一节 荧光灯基本原理上课讲义

第一节 荧光灯基本原理上课讲义

第一节 荧光灯基本原理上课讲义
第一节 荧光灯基本原理上课讲义

第一节荧光灯基本原理

一、荧光灯中的低压气体放电

荧光灯是一种低汞蒸气压放电灯。它把电能转变为可见光的过程可以分为二个阶段。

首先是通过低压汞蒸气放电,在气体放电中消耗的电能转变为人眼看不见的紫外辐射和少量可见光,其中约占65%的电能转化为波长185nm、254nm和365nm等紫外线,3%的电能直接转化为波长405nm、436nm、546nm和577nm等可见光,其余部分大多数以热量的形式消耗。

其次是管内产生的紫外线辐射到玻璃管壁上涂的荧光粉材料,荧光材料再把紫外线转换为可见光。因此,我们可以说荧光灯的发光是包含着汞蒸气低压放电和激发荧光材料发光二个物理过程。

(一)低压气体放电建立

当一个足够高的电场加在充有气体的玻璃管二端电极上,气体就能被击穿而导电,这一原始电离现场是由宇宙射线或自然放射所产生的电子和离子对形成的,但这种电离形成的电流是十分微弱的。当外电场使电子加速而离子可以看作是相对静止的,这时一部分电子可能获得足够的能量从而电离气体原子。

汞蒸气是荧光灯放电中的工作气体,汞原子中的电子分别处在原子核外的一系列电子壳层中,当汞原子和动能(又称电子温度)很大的电子相碰撞,汞原子从电子吸收能量并被激发。电子会跃迁到所吸收的能量相当的激发能级上去,如果吸收的能量超过原子核对其的引力时,电子就将和原子脱离关系成为自由电子,剩下这种带正电的粒子就称为正离子。我们把原子离介成自由电子和正离子的过程称为电离。

当电子在电场中加速,电子的功能达到足以产生电离的能量时,就会产生再一次电离,原来一个电子变成二个电子,二个电子继续在电场作用下向前移动,当它们再次积起足以产生电离的能量时,就会发生一次新的电离过程,现在二个电子就会变成四个、八个,同时就产生相同数量的正离子。这种现象就是电子雪崩。电子移向阳极,正离子向阴极移动。正离子在运动途中也有可能发生少量电离,但由于这种电离概率仅是千分之几,因此在通常情况下离子的电离作用可以忽略不计。

通过上述分析,我们知道在荧光灯管两端电极上加上一定电压,由于管子内原始电离的存在,气体中就会有微弱电流通过,电子和带正电的离子就会向二极移动,原始电离维持的放电是一种非持续放电,即原始电离消失,放电立即停止。电子在移动中又会与汞蒸气碰撞,不断产生新的电离现象,形成电子雪崩。

在雪崩放电过程中,正离子打在阴极上,使阴极产生二次电子,这样阴极发射电子就能获得再生。

这时即使除去原始电离,放电照样能够维持下去,这种放电就称为自持放电。一旦达到自持放电状态。

气体的电离是很强烈的,与此同时在放电空间又会产生大量激发,从而辐射出一定的放电光谱。

(二)低汞气压放电光谱

汞原子在高速电子的撞击下,除产生电离,还有有许多汞的电子没脱离原子,而是跃迁到和所获得的能量相对应的较高能级上去,这种能级发生变化的过程称为激发。激发要吸收的能量,正好是跃迁前后两个能级的能量差。通常采用电子伏特(eV)作为能量单位,也称为激发电位。

汞原子能级很多,为了便于简单叙说,现将汞原子能级简化成如图12-3-1。

当汞原子61S0基态能级上的电子吸收4.86eV能量,被激发到63P1激发态能级,随后自发跃迁回到基态61S0,同时将激发能量以254nm的紫外光辐射出来;又如61P1激发态能级跃迁回到基态61S0就会产生185nm紫外光。当61S0基态能级上的电子吸收例如

4.66eV,被激发到63P0亚稳态能级,它不会跃迁回基态,而是待再吸收能量达更高能级,然后跃迁回亚稳态或激发态,发出相应辐射光;63P3 也是亚稳态能级。63D、73S亦有下标区分的能级,图中简化了;另外还有诸如73P等能级,作用较小,不一一列出。

63P1是最低激发态,需要能量最少,所以从基态激发到此级的电子最多。与63P1能级差不多的63P0、63P2亚稳态级,从基态激发到此两能级的电子亦不少,当它们再被激发到高能级,回到63P1能级的几率很大;据理论计算,63P1能级上电子约有三分之二由亚稳态转移而来。

在最佳激发条件下,约有60%的电能可转化为254 nm辐射。转换率可用ηUV254表示,简记为ηUV。激发条件恶化,ηUV下降。

(三)辉光放电和弧光放电

从图12-3-2中可以看到,在二电极间加上电压,放电管内就会有电流通过。图中OA段,电压由低逐渐升高,电流也随之升高。外加电压继续升高,电流会出现一个急剧增加的过渡区AB段,这时气体被击穿,这个电压称为击穿电压。

气体被击穿以后,从非持续放电进入自持放电,图中BC段称为辉光放电。辉光放电的电位降落绝大部分都是集中在OA、B、C三个区域,因此这三个区域总称为阴极位降区,降落的电位称为阴极位降,一般阴极位降在几十伏到几百伏。

经过DE区以后放电就转化为弧光放电。弧光放电是具有热电子发射,发射密度高特点。发射密度每平方厘米可达几到几十安培电流,甚至数百安培以上。达如此高发射密度时,就不需要很高的电离密度就能产生维持放电所需要的电离,并能够保持足够的阴极发射温度。因此,弧光放电的阴极位降是很低的,通常与电离电位相接近。

弧光放电特点是随着电流的增加放电电压随之降低,如图12-3-2中EF段,这种现象被称为负阻特性或负伏安特性。具有负伏安特性的器件不能直接与电源连接,否则放电一旦形成,放电电压立即下降,放电电压下降又促使电流迅速增加,电流的增加又促使放电电压进一步下降……,这样直至灯管或外线路烧坏。为了抑制这种电流无限增涨的情况发生,就应该在弧光放电回路中接一个称为镇流器的限流器件,例如电感、电容或电阻等元件。

在气体放电中,弧光放电的几乎全区域均为正柱区,即具有发光均匀,电位梯度小和发光效率高等特点。荧光灯就是利用这些特点制成具有自己特色的电光源。

(四)荧光灯的放电过渡

上节介绍的放电是在理想的直流电源下进行的,而荧光灯通常是在交流状态下工作。在交流放电中,两个电极是按放电同期交替作为阳极和阴极参加放电。

在直流电源下,弧光放电回路中的镇流器只能是电阻。交流电源时镇流器可用电抗性元件,功耗大大减少。

荧光灯的启亮过程与前面所述的气体放电的启动过程并不完全相同,荧光灯启亮时首先是通电预热灯丝阴极,当灯丝温度达到900℃左右时,涂在灯丝阴极上的电子粉开始发射电子。同时对灯丝加热的电流在灯丝二端产生十几伏的电位降,这一电位降使灯丝二端形成小电弧如图12-3-3所示A点→B点,会出现一种白色光辉。

当图12-3-3中启动器簧片断开时,灯丝加热电流被切断,小电弧立即向主电弧过渡,这时由于刚在灯丝加热时提供了充足的初始电子,大电弧建立变得非常容易,荧光灯管就能迅速启亮,在灯管大电弧放电形成后在灯管二端灯丝上的A点和C点就存在二个热点。保持热

点存在一方面是由于灯丝作为阴极时受到正离子的轰击而获得热能,另一方面是由于另一个半周在作为阳极时受到大量电子的轰击而发热,电子轰击发热量往往更大。

当灯管进入弧光放电后,除在阴极和阳极附近出现很小的阴极位降区和阳极位降区外,二个电极间的绝大部分空间都属于正柱区。在正柱区均匀地产生汞原子的激发和电离,将会辐射出如“1.2低汞气压放电光谱”中所述的光谱,其中254nm及185nm是汞原子光谱中的特征谱线,可见光主要是405nm(蓝紫光)、436nm(蓝光)、546nm(绿光)和577nm(黄光)的光混合在一起产生的淡蓝色光。如果灯管没有涂荧光粉,灯管放电时就可以看到这种淡蓝色光。形成气体放电输入的电能另外一部分在放电的正柱区和电极内部会以热量的形式散失。在正柱区的能量损耗是由于在放电过程中离子和气体原子之间的碰撞,也有一些电子和汞离子扩散到管壁并在那里复合导致能量损耗,电极损耗主要有阴极和阳极电阻损耗造成。

二、荧光灯的发光

(一)荧光灯发光过程

上节中我们分析了在荧光灯放电的过程中会产生254nm等紫外辐射。与汞原子吸收电子能发出汞光谱相似,当254nm紫外线辐射到灯管内壁的荧光粉涂层上,荧光粉体内形成的一些“发光中心”在紫外辐射过程中吸收此能量,使处在基态的电子跃迁到比基态高的某个激发态能级,随后这些个电子再跃迁到某个次高能级上,同时辐射一个光子。

光子的波长是由跃迁过程的能级差所决定,由于荧光粉发光中心材料,这些波长绝大部分为可见光。由于在激发时材料发光中心所处的振动能级不一样,以及辐射终止的能级也不一样,如图12-3-4所示。因此即使吸收了同样波长紫外光的发光中心会辐射出不同波长的可见光子,即在254nm紫外光辐射到荧光材料上就能够发出不同波长的荧光光谱。

荧光灯中的辐射光(波长长)能量比吸收光(波长短)能量小,称为斯托克斯发光。在这种发光过程中,二者之间的能量差转化为热量,并在荧光粉涂层中耗损。

因此,荧光灯中发出的可见光包括二个部分:第一是紫外辐射在荧光涂层中发出的可见光,第二是在放电过程中直接产生的可见光,二者总和约相当输入到荧光灯内能量的28%。(二)荧光灯的光色

光源的光色是评价光源质量的一个重要指标,分为舒适性及显色性两类,与人类长期照明习惯有关。

1.发光(颜)色

物体不同颜色是由于各种不同波长的光波在人眼中的视觉感觉,也就是说不同的波长的光就会有不同颜色。太阳光具有可见光380nm-780nm全部光色,并按一定的比例混合而成。可见光波长和颜色的关系如表12-3-1。

表12-3-1 波长与颜色

波长(nm) 380-424 424-455 455-492 492-565 565-580 580-640 640-780

颜色紫蓝青绿黄橙红

照明光颜色近于白色,如第一章所述,可用黑体被施加温度后所发的光色来表示,即“相关色温”,大多数人简称为色温,单位K(开尔文)。

色温在3000K以下光色有偏红的现象,给人温暖的感觉,若色温越低,则光色越趋于红色。色温在3000K以上时,光色就开始偏向蓝光,给人们一种清冷的感觉,若色温越高则光色越蓝。例如晴朗白天的日光其色温高,4000K中白色相当于早上9:00-10:00太阳光色,正午12:00太阳光色为6500K左右称为日光色,而在日出之后或日落前的光色温低,为2500K 左右,接近白炽灯光色。荧光灯的光色可以在2500K-7000K范围内有多款色温可供选择使用。

由于人类长期照明习惯,对灯的发光色就有“习惯”要求,即舒适性。

舒适性与人长期生活地区以及照明场所有关。例如非洲人喜欢偏高色温,欧洲人喜欢偏低色温。又例如照度要求较高的教室、办公室照明色温需偏高,照度要求较低的卧室照明色温宜偏低。

2.显色性

显色性是指与参照标准下相比较,一个光源对物体颜色外貌所产生的效果。现下评价显色性用的“显色指数”是CIE1974年推荐的。因人类长时期照明,白天用太阳,夜晚用篝火(后加油灯及蜡烛)。为表征显色性,科学家们把全辐射的黑体受热所发光谱(5500K以下)以及太阳光谱(5500K并以上)作为评价显色性的“参照标准”光源。

由于种种原因(详见第一章),显色指数Ra只能粗略表征灯的显色性,起码相差2到3才有意义,数值越大(接近100)精度越高。为了提高表征显色性能力,CIE正在试行新的方法。光源显色性与舒适性无必然联系。舒适性只与灯发光颜色有关,而显色性不仅与发光颜色有关,(因同色异谱)更与光谱有关,即光谱中是否含有需显示颜色的光。

荧光灯很容易做到太阳光颜色,但要做到太阳光照射的显示颜色效果需作些努力。(三)荧光灯的光效

光源的发光效率是评价光源质量的另一个重要指标。发光效率是光源每消耗一瓦所发出的光通量。

荧光灯的光效既决定于ηUV,以及由254nm通过荧光粉转化为可见光的效率。另外还与玻璃管对可见光的吸收,灯丝消耗的电功率等荧光灯结构和工作条件有关。因此,理论上荧光灯效功率可以达到300ml/W左右,但荧光灯早期充氩气T12荧光灯管的光效仅在60ml/W 左右,后来在T8荧光灯管内充氪、氩混合气体,减少了电极损耗使荧光灯管光效达到

70-80ml/W,在1995年诞生的T5荧光灯管,管径变细,使用稀土三基色荧光粉,光效提高到104ml/W。

发光效率一直是人们十分关注的重要指标,尤其在强调“节能”的今天,光效更是主要追求目标。目前荧光灯所能达到的实际光效仅是荧光灯理想发光效率的1/4-1/3。

(四)发光色一致性

在多灯共同照明时,各灯的发光色应一致。按色度学,精确表示发光色应该是色坐标加亮度。色坐标较抽象,人们才用“色温”来表示。在色度图上,同相关色温(简称色温)是一条线,即相同相关色温不能保证颜色相同,很可能有明显差异。

为使同类色温灯的发光色一致,我国采用国际上流行的方法,规定某种色温的发光色须在一定的色坐标范围内,俗称光圈。表12-3-2是我国的有关国家标准。其中日光色号称6500K,因中心色坐标的相关色温才6430K,故有人也称其为6400K。

表12-3-2 我国荧光灯发光色国家标准

色调名符号色温名中心色坐标中心相关色温

x y

日光色RR 6500K .313 .337 6430K

中性白色RZ 5000K .346 .359 5000K

冷白色RL 4000K .380 .380 4040K

白色RB 3500K .409 .394 3450K

暖白色RN 3000K .440 .403 2940K

白炽灯色RD 2700K .463 .420 2720K

由于色调名、符号、尤其色坐标难记且抽象,现下流行的发光色称呼多用“色温名”。此时的色温只是一名称,只要其发光色的坐标在规定范围内,不管实际相关色温是多少,均可称为是某色温。

既然是为了发光色一致,离中心距离也与人眼可察觉颜色差异的敏感程度有关。就现下的颜色坐标系统,人眼对颜色差异的敏感程度是不均匀的。为此,在CIE 1931-XYZ系统中,各色温离中心距离不同,而且一中心各方向离中心距离也不同,它们各成一长短轴不同、倾斜角不同的椭圆,单位称SDCM。表12-3-3为六个常用色温“同色圈”的椭圆参数。

表12-3-3 常用色温“同色圈”参数

名称G11 G12 G22 a b θ

日光色860 -400 450 223 95 58°23’

中性白色560 -250 280 274 118 59°37’

冷白色395 -215 260 313 134 54°00’

白色380 -200 250 317 139 52°58’

暖白色390 -195 275 278 136 53°10’

白炽灯色440 -186 270 258 137 57°17’

表中:G11、G12、G22 是各发光色范围的参数,计算式如下:

G11 Δx 2 + 2 G12 Δx Δy + G22 Δy 2 = K2 SDCM ①

a、b、θ 是由上式K为1时导出的发光色范围长半轴、短半轴,长轴与x轴夹角。

色差是矢量,SDCM是无方向的标量,故而同SDCM值的两灯并不保证互换性。国家标准规定的光圈是一大范围,对具体的制灯公司,尤其是该公司某种型号的灯,还须把发光色控制在小范围内,以保证互换性。控制方法可用:灯的色坐标点在坐标图上,视其是否出控制范围;或在CIE 1931-XYZ系统中确定一中心x、y坐标,利用所在光圈的三个G值,把荧光灯与中心的Δx、Δy代入①式算得自我需控制的SDCM值。

解三角形讲义

一、正弦定理 1、在ABC ?中: 2R sinC c sinB b sinA a ===(R 为△ABC 的外接圆半径) 。它的变式有:①a=2RsinA ,b=2RsinB ,c=2RsinC ;②; ,R c C R B R a A 2sin 2b sin 2sin ===③a :b :c=sinA :sinB :sinC 。 推论1:△ABC 的面积为:S △ABC =21absinC=21bcsinA=2 1 casinB (证明:由正弦函数定义,BC 边上的高为bsinC ,所以S △ABC = C ab sin 2 1 ) 。 推论2:在△ABC 中,有bcosC+ccosB=a 。(证明:因为B+C=π-A ,所以sin(B+C)=sinA ,即sinBcosC+cosBsinC=sinA ,两边同乘以2R 得bcosC+ccosB=a);还有两个式子为:acosC+ccosA=b ,bcosA+acosB=c 。 2、利用正弦定理,可以解决以下两类有关三角形的问题 ①已知两角和任意一边,求其他两边和一角; ②已知两边和其中一边对角,求另一边的对角,进而求出其他的边和角。 例1 △ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知a=2,?=45B ,分别求出下 式中角A 的值。①b= 2 1 ;②b=1;③b=332;④b=2;⑤b=2。【答①无解;②A=?90;③A=??12060或; ④A=?45;⑤A=?30。】 例2 在△ABC 中,已知AB=1,?=50C ,当B= 时,BC 的长取最大值。【答:?40】 3、推导并记住:42675cos 15sin -= = ,4 2 615cos 75sin +== 。 例3 在锐角△ABC 中,若C=2B ,则 b c 的范围是( ) A 、(0,2) B 、)2,2( C 、)3,2( D 、)3,1( 【答:C 】 例4 在△ABC 中,c=3,C=?60,求a+b 的最大值。 【答:23】 例5 在等腰△ABC 中,已知 2 1 sinB sinA =,BC=3,则△ABC 的周长为 。 【答:15】 4、角平分线定理:在△ABC 中,AD 平分∠BAC ,则AC AB DC BD = 。 例6 已知△ABC 的三条边分别是3、4、6,则它较大的锐角的平分线分三角形所成的两个三角形的面积比为( ) A 、1:1 B 、1:2 C 、1:4 D 、3:4 【答:B 】 练习1 △ABC 中,角A 、B 、C 所对的边分别为a 、b 、c 。若x a =,2=b ,?=45B ,且此三角形有两解,则x 的取值范围为 ( ) A 、)22,2( B 、22 C 、),2(+∞ D 、]22,2( 【答:A 】

传感器讲义学生版

传感器讲义(12月23号) 一、选择题 1.如图所示,某半导体热敏电阻I- U图线可能是() °U C 2.如图所示,将一光敏电阻接入多用电表两表笔 上, 1> 将多用电表的选择开关置于欧姆挡,测光敏电阻时,表针的偏角为0;现用手掌挡住部分光线, 表针的偏角为 A.0' = 0 B. 0' <0 C . 0' > 0 D .不能确定 3.(2011年如皋高二检测)下列说法正确的是() A ?热敏电阻是把热量这个热学量转为电阻这个电学量 B ?金属热电阻的化学稳定性好,但灵敏度 差 C .电熨斗中的双金属片是温度传感器 D ?霍尔元件是能够把磁学量磁感应强度转换为电压的传感元件 4.传感器是一种采集信息的重要器件,图 ,则可判断( ) 路,当待测压力作用于膜片电极上时,下列说法中正确的是 ①若F向下压膜片电 极,电路中有从a到b的电流; ②若F向下压膜片电 极,电路中有从b到a的电流; ③若F向下压膜片电极,电路中不会有电流产生; ④若电流表有示数,说明压力 ⑤若电流表有示数,说明压力 A .②④ C .③⑤ 5.(2010年高考重庆理综卷 6-4是由电容器作为传感器来测定压力变化的电 rb: F发生变化; F不会发生变化. B .①④ D .①⑤ )某电容式话筒的原理示意图如图所 示, 为电源,R为电阻,薄片 P和Q为两金属极板?对着话筒说话时,振动而Q 可视为不动?在 P、Q间距增大过程中() A . P、Q构成的电容器的电容增大 B.P上电荷量保持不变 C.M点的电势比N点的低 D.M点的电势比N点的高 6.如图所示为测定压力的电容式传感器,将平行板电容器、灵敏电流表 源串联成闭合回路,当压力F作用于可动膜片电极上时,膜片发生形变, 1 ='??S' ! :▼?!!- □ J ft犠w定止 架 J I ■_ 1卜 1 h .1 E P (零刻度在中间)和电 引起电容的变化, 导致灵敏电流表指针偏转,在对膜片开始施加压力使膜片电极从图中的虚线推到图中实线位置并保 持固定的过程中,灵敏电流表指针偏转情况为(电流从电流表正接线柱流入时指针 向右偏) A.向右偏到某一刻度后回到零刻度 B.向左偏到某一刻度后回到零刻度 C.向右偏到某一刻度后不动 D.向左偏到某一刻度后不动 7.(2011年西安八校联考)酒精测试仪用于对机动车驾驶人员是否酒后驾车及其他严禁酒后作业人员的现场检测,它利用的是一种二氧化锡半导体型酒 精气体传感器.酒精气体传感器的电阻随酒精气体浓度的变化而变化,在如图6-7所示的

维生素C上课讲义

维生素C

维生素C具有减压、增强免疫力、抗癌的作用。当承受强大心理压力时,身体会消耗比平时多8倍的维生素C,所以,日常生活中要尽可能地多摄取富含维生素C的食物。补充维生素C要吃哪些食物?含维生素C的食物到底有哪些? ①黄色、橙色水果和蔬菜都含维生素C。含维生素C的新鲜蔬菜和水果,如小白菜、油菜、油菜苔、紫菜苔、苋菜、芹菜、香椿、苦瓜、花菜、辣椒、毛豆、豌豆苗、藕等; ②野菜如马齿苋、野苋菜、蒲公英、制茶等; ③富含维生素C的水果也很多,如鲜枣、红果、柚子、桔子、橙子、柠檬、草莓、柿子、芒果、猕猴桃、龙眼等,有的野果维生素C含量高于普通水果许多倍,如刺梨、石榴、金樱子等。 哪些食物富含维生素C ①西红柿维生素C的含量也较高,介于水果和蔬菜之间,多吃西红柿是很好的补充维生素C的方法。 ②南瓜中含有人体所需的多种氨基酸,当然还有很高的维生素C含量,十分有益健康。 ③苹果中的维生素C是心血管的保护神、心脏病患者的健康元素。 ④猕猴桃号称是维C之王,可见其维生素C的含量有多大。 ⑤蔬菜中,辣椒中维生素C的含量居第一位,可见辣椒也是很好的补充维生素C的食物。

⑥橘子含有丰富是维生素C,1个橘子就几乎满足人体每天所需的维生素C量。橘子含有170余种植物化合物和60余种黄酮类化合物,其中的大多数物质均是天然抗氧化剂。 ⑦柚中含有大量的维生素C,能降低血液中有胆固醇,但是柚子不宜多吃。 ⑧红薯含维生素C也很丰富,维生素A原含量接近于胡萝卜的含量。常吃甘薯能降胆固醇,减少皮下脂肪,补虚乏,益气力,健脾胃,益肾阳,从而有助于护肤美容。 ⑨芹菜也是一种十分健康的蔬菜,维生素C的含量也很高,能够防癌放辐射。 ⑩胡萝卜含有丰富的维生素C,能抑制黑色素合成,阻止脂肪氧化,防止脂褐质沉积。因此,常食胡萝卜可使皮肤白净细腻。 维生素C含量食物Top10:樱桃、番石榴、红椒、黄椒、柿子、青花菜、草莓、橘子、芥蓝菜花、猕猴桃。 你好,维生素C的功效主要可以分为以下几点: 1.胶原蛋白的合成 2.治疗坏血病 3.预防牙龈萎缩、出血 健康的牙床紧紧包住每一颗牙齿。牙龈是软组织,当缺乏蛋白质、钙、VC 时易产生牙龈萎缩、出血。

高中数学竞赛_解三角形【讲义】

第七章 解三角形 一、基础知识 在本章中约定用A ,B ,C 分别表示△ABC 的三个内角,a, b, c 分别表示它们所对的各边长, 2 c b a p ++= 为半周长。 1.正弦定理:C c B b A a sin sin sin ===2R (R 为△AB C 外接圆半径)。 推论1:△ABC 的面积为S △ABC =.sin 2 1 sin 21sin 21B ca A bc C ab == 推论2:在△ABC 中,有bcosC+ccosB=a. 推论3:在△ABC 中,A+B=θ,解a 满足 ) sin(sin a b a a -= θ,则a=A. 正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。先证推论1,由正弦函数定义, BC 边上的高为bsinC ,所以S △ABC =C ab sin 2 1 ;再证推论2,因为B+C=π-A ,所以sin(B+C)=sinA ,即sinBcosC+cosBsinC=sinA ,两边同乘以2R 得bcosC+ccosB=a ;再证推论3,由正弦定理B b A a sin sin =, 所以) sin() sin(sin sin A a A a --= θθ,即sinasin(θ-A)=sin(θ-a)sinA ,等价于21-[cos(θ-A+a)-cos(θ-A-a)]= 2 1 -[cos(θ-a+A)-cos(θ-a-A)],等价于cos(θ-A+a)=cos(θ-a+A),因为0<θ-A+a ,θ-a+A<π. 所以只有θ-A+a=θ-a+A ,所以a=A ,得证。 2.余弦定理:a 2=b 2+c 2 -2bccosA bc a c b A 2cos 2 22-+=?,下面用余弦定理证明几个常用的结论。 (1)斯特瓦特定理:在△ABC 中,D 是BC 边上任意一点,BD=p ,DC=q ,则AD 2=.22pq q p q c p b -++ (1) 【证明】 因为c 2=AB 2=AD 2+BD 2-2AD ·BDcos ADB ∠, 所以c 2=AD 2+p 2-2AD ·pcos .ADB ∠ ① 同理b 2=AD 2+q 2-2AD ·qcos ADC ∠, ② 因为∠ADB+∠ADC=π, 所以cos ∠ADB+cos ∠ADC=0, 所以q ×①+p ×②得 qc 2 +pb 2 =(p+q)AD 2 +pq(p+q),即AD 2 =.22pq q p q c p b -++ 注:在(1)式中,若p=q ,则为中线长公式.2 222 22a c b AD -+= (2)海伦公式:因为412 =? ABC S b 2c 2 sin 2 A=4 1b 2c 2 (1-cos 2 A)= 4 1 b 2 c 2 16 14)(12 22222=??????-+-c b a c b [(b+c)2-a 2 ][a 2 -(b-c) 2 ]=p(p-a)(p-b)(p-c). 这里 .2 c b a p ++= 所以S △ABC =).)()((c p b p a p p --- 二、方法与例题

振动测试技术方案上课讲义

振动测试技术方案 采用加速度计作为振动传感器,对被测系统的三轴向加速度进行测量,描述系统的冲击振动特性。 一、指标分析 最常用的振动测量传感器按各自的工作原理可分为压电式、压阻式、电容式、电感式以及光电式。压电式加速度传感器因为具有测量频率范围宽、量程大、体积小、重量轻、对被测件的影响小以及安装使用方便,所以成为最常用的振动测量传感器。在一般通用振动测量时,用户主要关心的是加速度计传感器的技术指标,包括灵敏度、带宽、量程、分辨率、输出电气特性等。 (1)灵敏度 传感器的灵敏度是传感器的最基本指标之一,灵敏度的大小直接影响到传感器对振动信号的测量。不难理解,传感器的灵敏度应根据被测振动量(加速度值)大小而定,但由于加速度传感器是测量振动的加速度值,而在相同的位移幅值条件下加速度值与信号的频率平方成正比,所以不同频段的加速度信号大小相差甚大。选择加速度传感器灵敏度时应对信号有充分的估计,最常用的振动测量压电式加速度计灵敏度,电压输出型(IEPE 型)为50~100 mV/g,电荷输出型为10 ~ 50 pC/g。 (2)带宽

传感器的带宽是指传感器在规定的频率响应幅值误差内(±5%, ±10%, ±3dB)传感器所能测量的频率范围。频率范围的高,低限分别称为高、低频截止频率。截止频率与误差直接相关,所允许的误差范围大则其频率范围也就宽。作为一般原则,传感器的高频响应取决于传感器的机械特性,而低频响应则由传感器和后继电路的综合电气参数所决定。高频截止频率高的传感器必然是体积小,重量轻,反之用于低频测量的高灵敏度传感器相对来说则一定体积大和重量重。(3)量程 加速度传感器的测量量程是指传感器在一定的非线性误差范围内所能测量的最大测量值。通用型压电加速度传感器的非线性误差大多为1%。作为一般原则,灵敏度越高其测量范围越小,反之灵敏度越小则测量范围越大。IEPE(电压)输出型压电加速度传感器的测量范围是由在线性误差范围内所允许的最大输出信号电压所决定,最大输出电压量值一般都为±5V。通过换算就可得到传感器的最大量程,即等于最大输出电压与灵敏度的比值。需要指出的是IEPE压电传感器的量程除受非线性误差大小影响外,还受到供电电压和传感器偏置电压的制约。当供电电压与偏置电压的差值小于传感器技术指标给出的量程电压时,传感器的最大输出信号就会发生畸变。因此IEPE 型加速度传感器的偏置电压稳定与否不仅影响到低频测量也可能会使信号失真,这种现象在高低温测量时需要特别注意,当传感器的内置电路在非室温条件下不稳定时,传感器的偏置电压很可能不断缓慢地漂移而造成测量信号忽大忽小。

最全面的解三角形讲义

解三角形 【高考会这样考】 1.考查正、余弦定理的推导过程. 2.考查利用正、余弦定理判断三角形的形状. 3.考查利用正、余弦定理解任意三角形的方法. 4.考查利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题. 基础梳理 1.正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变 形为: (1)a ∶b ∶c =sin A ∶sin B ∶sin C ; (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ; (3)sin A =a 2R ,sin B =b 2R ,sin C =c 2R 等形式,以解决不同的三角形问题. 2.余弦定理:a 2 =b 2 +c 2 -2bc cos_A ,b 2 =a 2 +c 2 -2ac cos_B ,c 2 =a 2 +b 2 -2ab cos_C .余弦定 理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab . 3.面积公式:S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2(a +b +c )·r (R 是三角形外接 圆半径,r 是三角形内切圆的半径),并可由此计算R ,r . 4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则 A 为锐角 A 为钝角或直角 图形 关系 式 a <b sin A a =b sin A b sin A <a <b a ≥b a >b a ≤b 解的 个数 无解 一解 两解 一解 一解 无解 5.用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.

学生上课要求上课讲义

学生上课要求

武夷山中华职业学校学生上课要求 1、严格按学校作息时间上下课,做到不迟到、不早退、不旷课。 2、上课期间对老师要有礼貌,尊重老师,认真听课。 3、上课期间不许喧哗、睡觉等不良现象。 4、上课期间不得玩手机、接打电话(手机一律关机)、做与课堂 无关的事情。 5、上课期间有特殊情,如身体不适需离开课堂时,应提前举手请 示任课教师,同意后方可出去。 6、上课期间不得上厠所,体育课不得到处乱跑,体育课活动场所 必需在操场。 7、技能操作课要遵守各操作室管理制度,不破坏设备,电脑课不 得玩游戏。有意破坏教学设备,则双倍赔偿。 8、请假有影响课时的需到教务处审批。 武夷山中华职业学校教务处 2014年2月16日

学生考勤制度 I.考勤范围、标准和计算方法 一、考勤范围 包括课程表安排的课时和学校安排的集体活动(如升旗,课间操等)。 二、考勤标准 (一)要求请假、请假未获准和超过假期而缺勤者,视为旷课;(二)老师点名或开始讲课后进入教室者为迟到; (三)上课时未经任课教师允许而先行离开教室者为迟早退;(四)检察人员检查时学生不在现场可确定为旷课。 三、考勤计算方法 (一)考勤计算的基本单位为节(课时); (二)迟到、早退3次为旷课1节; (三)迟到或早退超过半节视为旷课一节; (四)升旗或课间操折算为1节; (五)学校统一安排的活动按规定折合课时计算; (六)6节折合为1天。 II 考勤程序与请假审批 一、考勤程序 (一)班级课堂考勤表每次课一份,由班长交由任课教师考勤,考勤完毕后交回班长,班主任抽查,掌握学生情况,必要时及时与家长联系;考勤表每天傍晚17:00之前交到教务处。

专题突破电磁感应中的动力学问题课后练习上课讲义

专题突破电磁感应中的动力学问题 (答题时间:30分钟) 1. 如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab、cd的质量之比为2∶1。用一沿导轨方向的恒力F水平向右拉金属棒cd,经过足够长时间以后() A. 金属棒ab、cd都做匀速运动 B. 金属棒ab上的电流方向是由b向a C. 金属棒cd所受安培力的大小等于2F/3 D. 两金属棒间距离保持不变 2. 如图(a)所示为磁悬浮列车模型,质量M=1 kg的绝缘板底座静止在动摩擦因数μ1=0.1的粗糙水平地面上。位于磁场中的正方形金属框ABCD为动力源,其质量m=1 kg, 边长为1 m,电阻为1 16Ω,与绝缘板间的动摩擦因数μ2=0.4。OO′为AD、BC的中线。在金属框内有可随金属框同步移动的磁场,OO′CD区域内磁场如图(b)所示,CD恰在磁场边缘以外;OO′BA区域内磁场如图(c)所示,AB恰在磁场边缘以内(g=10 m/s2)。若绝缘板足够长且认为绝缘板与地面间最大静摩擦力等于滑动摩擦力,则金属框从静止释放后()

A. 若金属框固定在绝缘板上,金属框的加速度为3 m/s2 B. 若金属框固定在绝缘板上,金属框的加速度为7 m/s2 C. 若金属框不固定,金属框的加速度为4 m/s2,绝缘板仍静止 D. 若金属框不固定,金属框的加速度为4 m/s2,绝缘板的加速度为2 m/s2 3. 如图所示,两根光滑的平行金属导轨竖直放置在匀强磁场中,磁场和导轨平面垂直,金属杆ab与导轨接触良好可沿导轨滑动,开始时电键S断开,当ab杆由静止下滑一段时间后闭合S,则从S闭合开始计时,ab杆的速度v与时间t的关系图象可能正确的是() 4. 如图甲所示,垂直纸面向里的有界匀强磁场磁感应强度B=1.0 T,质量为m=0.04 kg、高h=0.05 m、总电阻R=5 Ω、n=100匝的矩形线圈竖直固定在质量为M=0.08kg的小车上,小车与线圈的水平长度l相同。当线圈和小车一起沿光滑水平面运动,并以初速度v1=10 m/s进入磁场,线圈平面和磁场方向始终垂直。若小车运动的速度v随车的位移x变化的v-x图象如图乙所示,则根据以上信息可知()

解三角形完整讲义

正余弦定理知识要点: 1、正弦定理:或变形: 2、余弦定理:或 3、解斜三角形的常规思维方法是: (1 )已知两角和一边(如A、B C),由A+B+C = n求C,由正弦定理求a、b; (2)已知两边和夹角(如a、b、c),应用余弦定理求c边;再应用正弦定理先求较短边所对的角,然后利用A+B+C = n求另一角; (3)已知两边和其中一边的对角(如a、b、A),应用正弦定理求B,由A+B+C = n求C, 再由正弦定理或余弦定理求c边,要注意解可能有多种情况; (4)已知三边a、b、c,应余弦定理求A、B,再由A+B+C = n求角C。 4、判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式? 5、解三角形问题可能出现一解、两解或无解的情况,这时应结合三角形中大边对大角定理及几何作图来帮助理解”。 6、已知三角形两边a,b,这两边夹角C,则S = 1/2 * absinC 7、三角学中的射影定理:在△ ABC中,,… &两内角与其正弦值:在△ ABC中,,… 【例题】在锐角三角形ABC中,有(B ) A. cosA>sinB 且cosB>sinA B. cosAsinB 且cosBsinA 9、三角形内切圆的半径:,特别地, 正弦定理 专题:公式的直接应用 1、已知中,,,,那么角等于() A. B. C. D. 2、在厶AB(中, a=, b =, B= 45°贝U A 等于(C ) A. 30 ° B. 60 ° C. 60 或120 ° D 30 或150 3、的内角的对边分别为,若,则等于() A. B. 2 C. D. 4、已知△ AB(中,,,则a等于(B ) A. B. C. D. 5、在△ AB(中, = 10 , B=60° ,C=4则等于(B ) A. B. C. D. 6、已知的内角,,所对的边分别为,,,若,,则等于.() 7、△ AB(中,,,,则最短边的边长等于(A ) A . B. C . D . & △ AB(中,,的平分线把三角形面积分成两部分,则( C ) A . B . C . D . 9、在△ AB(中,证明:。 证明: 由正弦定理得: 专题:两边之和 1、在厶AB(中, A= 60 ° B= 45 则a = (,)

必修5 解三角形复习讲义

解三角形复习 【知识梳理】 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径,则有 2sin sin sin a b c R C ===A B . 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A =,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④ sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 3.解决以下两类问题: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B =;(唯一解) ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b =。 (一解或两解) 4、三角形面积公式:111sin sin sin 222 C S bc ab C ac ?AB = A == B . 5.余弦定理: 形式一:A cos bc 2c b a 222?-+=,B cos ac 2c a b 222?-+=,C cos ab 2b a c 222?-+= 形式二:bc 2a c b A cos 222-+=,ac 2b c a B cos 222-+=,ab 2c b a C cos 222-+=,(角到边的转换) 6.解决以下两类问题: 1)、已知三边,求三个角;(唯一解) 2)、已知两边和它们的夹角,求第三边和其他两个角;(唯一解)

MQ-2烟雾传感器的工作原理上课讲义

M Q-2烟雾传感器的工 作原理

MQ-2烟雾传感器的应用介绍 鉴于网上关于MQ-2烟雾传感器的技术资料少之甚少,本人正好现在在做关于《储备粮仓环境监测系统》的项目。因此自己总结关于MQ-2的技术文档,与大家共享,共同学习! 一、MQ-2烟雾传感器的应用领域 可用于家庭和工厂的气体泄漏监测装置,适宜于液化气、苯、烷、酒精、氢气、烟雾等的探测。故因此,MQ-2可以准确来说是一个多种气体探测器。MQ-2的探测范围极其的广泛。它的优点:灵敏度高、响应快、稳定性好、寿命长、驱动电路简单。 二、MQ-2的工作原理 MQ-2型烟雾传感器属于二氧化锡半导体气敏材料,属于表面离子式N型半导体。处于200~300摄氏度时,二氧化锡吸附空气中的氧,形成氧的负离子吸附,使半导体中的电子密度减少,从而使其电阻值增加。当与烟雾接触时,如果晶粒间界处的势垒收到烟雾的调至而变化,就会引起表面导电率的变化。利用这一点就可以获得这种烟雾存在的信息,烟雾的浓度越大,导电率越大,输出电阻越低,则输出的模拟信号就越大。 三、MQ-2的特性 1、MQ-2型传感器对天然气、液化石油气等烟雾有很高的灵敏度,尤其对烷类烟雾更为敏感 具有良好的抗干扰性,可准确排除有刺激性非可燃性烟雾的干扰信息。 (经过测试:对烷类的感应度比纸张木材燃烧产生的烟雾要好的多,输出的电压升高的比较快)

2、MQ-2型传感器具有良好的重复性和长期的稳定性。初始稳定,响应时间短,长时间工作性能好。需要注意的是:在使用之前必须加热一段时间,否则其输出的电阻和电压不准确。 3、其检测可燃气体与烟雾的范围是100~10000ppm (ppm为体积浓度。 1ppm=1立方厘米/1立方米) 4.电路设计电压范围宽,24V以下均可,加热电压5±0.2V 需要注意:加热电压。如果过高,会导致内部的信号线熔断,从而器件报废。 四、MQ-2的结构 引脚及封装图

相似三角形完整讲义(教师版)

相似三角形基本知识 知识点一:放缩与相似形 1.图形的放大或缩小,称为图形的放缩运动。 2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。 注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。 ⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。 ⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形. 3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。 注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1. 知识点二:比例线段有关概念及性质 (1)有关概念 1、比:选用同一长度单位量得两条线段。a 、b 的长度分别是m 、n ,那么就说这两条线段 的比是a :b =m :n (或 n m b a =) 2、比的前项,比的后项:两条线段的比a :b 中。a 叫做比的前项,b 叫做比的后项。 说明:求两条线段的比时,对这两条线段要用同一单位长度。 3、比例:两个比相等的式子叫做比例,如 d c b a = 4、比例外项:在比例d c b a = (或a :b =c :d )中a 、d 叫做比例外项。 5、比例内项:在比例d c b a = (或a :b =c :d )中b 、c 叫做比例内项。 6、第四比例项:在比例d c b a = (或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。 7、比例中项:如果比例中两个比例内项相等,即比例为 a b b a =(或a:b =b:c 时,我们把b 叫做a 和d 的比例中项。 8.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即 d c b a =(或a :b= c : d ) ,那么,这四条线段叫做成比例线段,简称比例线段。(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)

解三角形讲义(提高版)

解三角形讲义(提高版) -CAL-FENGHAI.-(YICAI)-Company One1

必修5 第一章 解三角形 1、正弦定理:R C c B b A a 2sin sin sin ===.(其中R 为ABC ?外接圆的半径) 2sin ,2sin ,2sin ;a R A b R B c R C ?===::sin :sin :sin .a b c A B C ?= 用途:⑴已知三角形两角和任一边,求其它元素; ⑵已知三角形两边和其中一边的对角,求其它元素。 2、余弦定理: ??????-+=?-+=?-+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222????? ?????-+=-+=-+=ab c b a C a c b c a B bc a c b A 2cos 2cos 2cos 2222222 22 用途:⑴已知三角形两边及其夹角,求其它元素; ⑵已知三角形三边,求其它元素。 3、三角形面积公式:B ac A bc C ab S ABC sin 21sin 21sin 21===? 4、三角形内角和定理: ()A B C C A B ππ++=?=-+ 基础巩固: 1. 在ABC ?中,3,5==b a ,则sinA :sinB=_____________. 2. 在ABC ?中,0060,75,3===B A c ,则b=_____________. 3. 在ABC ?中,若A b a sin 23=,则B=___________. 5. 在ABC ?中,060,22,2===C b a ,则c=__________ ,A=____________. 6. 在ABC ?中,5,3,7===c b a ,则最大角为____________. 7. 在ABC ?中,若ab c b a =-+222,则cosC=_____________. 8. 在ABC ?中,sin A :sin B :sin C =3:2:4,那么cos C =_________. 9.在ABC ?中,060=A ,AB=2,且ABC ?的面积为23,则BC=_____________. 10.在ABC ?中,已知2,32,1200===AC AB A 则ABC ?的面积为__________. 能力提升: 例1 在ABC ?中,若bcosA=acosB,试判断ABC ?的形状.

高三物理讲义-电磁感应

电磁感应 一、磁通量 1.如图所示,环形导线a 中有顺时针方向的电流,a 环外有两个同心导线圈b 、c ,与环形导线a 在同一平 面内。穿过线圈b 、c 的磁通量各是什么方向?穿过哪 个线圈的磁通量更大? 2.如图所示,虚线圆a 内有垂直于纸面向里的匀强磁场,虚 线圆a 外是无磁场空间。环外有两个同心导线圈b 、c ,与虚 线圆a 在同一平面内。穿过线圈b 、c 的磁通量哪个更大?当 虚线圆a 中的磁通量增大时,在相同时间内穿过线圈b 、c 的 磁通量哪一个变化量更大? 二、产生感应电流的条件 3. 如图所不,开始时矩形线圈与磁场垂直,且一半在匀强磁场内,一半在匀强磁场外。若要线圈产生感应电流,下列方法中不可行的是: (A)将线圈向左平移一小段距离 (B) 以ad 为轴转动(小于90°) (C)以ab 为轴转动(小于90°) (D)以bc 为轴转动(小于90°) 三、感应电动势的大小 4.法拉第电磁感应定律可以这样表述,闭合电路中感应电动势大小 A.跟穿过这一闭合回路的磁通量成正比 B.跟穿过这一闭合回路的磁通量变化量成正比 C.跟穿过这一闭合回路的磁通量变化率成正比 D.跟穿过这一闭合回路的磁感应强度成正比 a b c b c a

5.将一根金属杆在竖直向下的匀强磁场中以初速度υ水平抛出,若金属杆在运动过程中始终保持水平,那么,金属杆的感应电动势E 的大小将:( ) A .随杆的速度的增大而增大 B .随杆的速度方向与磁场方向的夹角的减小而减小 C .保持不变 D .因速度的大小与方向同时变化,无法判断 E 的大小 6.如图所示,PQRS 为一正方形导线框,它以恒定的速度向右进入以MN 为边界的匀强磁场,磁场方向垂直线圈平面,MN 线与线框的边成450角.E 、F 分别为PS 和PQ 的中点.关于线框中的感应电流,正确的说法是: A.当E 点经过边界MN 时,线框中感应电流最大 B.当P 点经过边界MN 时,线框中感应电流最大 C.当F 点经过边界MN 时,线框中感应电流最大 D.当Q 点经过边界MN 时,线框中感应电流最大 四、感应电流的方向 7.如图,闭合线圈上方有一竖直放置的条形磁铁,磁铁的N 极朝下。当磁铁向下运动时(但未插入线圈内部): A .线圈中感应电流的方向与图中箭头方向相同,磁铁 与线圈相互吸引 B .线圈中感应电流的方向与图中箭头方向相同,磁铁 与线圈相互排斥 C . 线圈中感应电流的方向与图中箭头方向相反,磁铁 与线圈相互吸引 D .线圈中感应电流的方向与图中箭头方向相反,磁铁 与线圈相互排斥 8.如图所示,两根相距为l 的平行直导轨a b .cd .b .d 间连有一固定电阻R ,导轨电阻可忽略不计。MN 为 放在ab 和cd 上的一导体杆,与ab 垂直,其电阻 也为R 。整个装置处于匀强磁场中,磁感应强度的 大小为B ,磁场方向垂直于导轨所在平面(指向图 中纸面内)。现对MN 施力使它沿导轨方向以速度v (如图)做匀速运动。令U S N

必修五 解三角形 讲义

1 人教版数学必修五 第一章解三角形重难点解析 【重点】 1、正弦定理、余弦定理的探索和证明及其基本应用。 2、在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形; 3、三角形各种类型的判定方法;三角形面积定理的应用;实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解决。 4、结合实际测量工具,解决生活中的测量高度问题。 5、能根据正弦定理、余弦定理的特点找到已知条件和所求角的关系。 6、推导三角形的面积公式并解决简单的相关题目。 【难点】 1、已知两边和其中一边的对角解三角形时判断解的个数。 2、勾股定理在余弦定理的发现和证明过程中的作用,正、余弦定理与三角形的有关性质的综合运用。 3、根据题意建立数学模型,画出示意图,能观察较复杂的图形,从中找到解决问题的关键条件。 4、灵活运用正弦定理和余弦定理解关于角度的问题。 5、利用正弦定理、余弦定理来求证简单的证明题。 【要点内容】 一、正弦定理: 在任一个三角形中,各边和它所对角的正弦比相等,即 A a sin = B b sin = C c sin =2R (R为△ABC外接圆半径) 1.直角三角形中:sinA= c a ,sinB= c b , sinC=1 即c= A a sin , c= B b sin , c= C c sin . ∴ A a sin = B b sin = C c sin 2.斜三角形中 证明一:(等积法)在任意斜△ABC当中 S△ABC=A bc B ac C ab sin 2 1 sin 2 1 sin 2 1 = = 两边同除以abc 2 1 即得: A a sin = B b sin = C c sin a b c O B C A D

传感器原理及应用习题及答案.上课讲义

传感器原理及应用习 题及答案.

习题集及答案 第1章概述 1.1 什么是传感器?按照国标定义,“传感器”应该如何说明含义? 1.2 传感器由哪几部分组成?试述它们的作用及相互关系。 1.3传感器如何分类?按传感器检测的范畴可分为哪几种? 答案 1.1答: 从广义的角度来说,感知信号检出器件和信号处理部分总称为传感器。我们对传感器定义是:一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。从狭义角度对传感器定义是:能把外界非电信息转换成电信号输出的器件。 我国国家标准(GB7665—87)对传感器(Sensor/transducer)的定义是:“能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置”。定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出;传感器的输出与输入之间存在确定的关系。按使用的场合不同传感器又称为变换器、换能器、探测器。 1.2答: 组成——由敏感元件、转换元件、基本电路组成; 关系,作用——传感器处于研究对象与测试系统的接口位置,即检测与控制之首。传感器是感知、获取与检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号,其作用与地位特别重要。 1.3答:(略)答:

按照我国制定的传感器分类体系表,传感器分为物理量传感器、化学量传感器以及生物量传感器三大类,含12个小类。按传感器的检测对象可分为:力学量、热学量、流体量、光学量、电量、磁学量、声学量、化学量、生物量、机器人等等。 第3章 电阻应变式传感器 3.1 何为电阻应变效应?怎样利用这种效应制成应变片? 3.2 图3-31为一直流电桥,负载电阻R L 趋于无穷。图中E=4V , R 1=R 2=R 3=R 4=120Ω,试求:① R 1为金属应变片,其余为外接电阻,当R 1的增量为ΔR 1=1.2Ω时,电桥输出电压U 0=? ② R 1、R 2为金属应变片,感应应变大小变化相同,其余为外接电阻,电桥输出电压U 0=? ③ R 1、R 2为金属应变片,如果感应应变大小相反,且ΔR 1=ΔR 2 =1.2Ω,电桥输出电压U 0=? 答案 3.1 答: 导体在受到拉力或压力的外界力作用时,会产生机械变形,同时机械变形会引起导体阻值的变化,这种导体材料因变形而使其电阻值发生变化的现象称为电阻应变效应。 当外力作用时,导体的电阻率ρ、长度l 、截面积S 都会发生变化,从而引起电阻值R 的变化,通过测量电阻值的变化,检测出外界作用力的大小。 3.2解: ①100.0104E R R U V R ?=?=因为只有为应变片,电桥输出按单臂电桥计算, ②00U V =因为两应变片变化大小相同,相互抵消无输出,

解三角形(讲义)

解三角形(讲义) ?知识点睛 1.解三角形 (1)在三角形中,由已知的边、角出发,求未知边、角的过程叫做解三角形.已知边指已知该边的长度,已知角指已知该角的三角函数值.解三角形时,往往会通过作高的方式将三角形分割为2个直角三角形进行研究;作高时,一般要保留已知三角函数值的角. (2)常见的可解三角形 ①2边1角 ②2角1边 ③3边 ④1边1角表达 AB=mACAB+BC=n ?精讲精练

1.如图,在△ABC中,AB=BC=11,tan B=1 2 ,则AC=________, sin C=________. 2.如图,在△ABC中,AC=ABC=150°,BC=8,则AB=______,sin A=________. 3.如图,在钝角三角形ABC中,∠CAB>90°,AB=10,BC=14,∠C=45°,则 AC=_______. 4.如图,在△ABC中,tan B=1 2 ,∠C=45°,BC=12,则AB=_________. 5.如图,在△ABC中,tan A=1 2 ,∠ABC=135°,BC=AB=___________.

6.如图,在△ABC中,AB=5,BC=4,AC=6,则∠B的正切值为_________. 7.如图,在△ABC中,BC∠C=45°,AB AC,则AC的长为_________. 8.如图,在矩形ABCD中,AB=4,E为CD边上一点,将△BCE沿BE 折叠,使得C落到矩形内点F的位置,连接AF,若tan∠BAF=1 2 ,则CE=_______.

9. 如图,在△ABC 中,D 是AC 边上的中点,连接BD ,把△BDC 沿BD 翻折,得到 △BDC′,DC′与AB 交于点E ,连接AC′,若AD =AC′=2,BD =3,则点D 到BC′的距离为() A . 2 B .7 C D 10. 如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,△ACB 的顶点 A 在△ECD 的斜边DE 上,若AE ,AD ,则两个三角形重叠部分的面积为________. 第10题图第11题图 11. 如图,在△ABC 中,∠BAC =30°,AB =AC ,AD 是BC 边上的中线,∠ACE = 12 ∠BAC ,CE 交AB 于点E ,交AD 于点F .若BC =2,则EF 的长为________. 12. 如图,在Rt △ABC 中,∠A =90°,AB =23,点E ,点D 分别是边AB ,AC 上一 点,AE =3,AD =4,过点E 作EF ⊥DE ,交BC 于点F .若EF =2ED ,则AC 的长为__________. 13. 如图,在Rt △ABC 中,∠B =90°,AB =BC △ABC 绕点A 按逆时针方向旋转90°得到△AB′C′,连接B′C ,则sin ∠ACB′=________.

解三角形完整讲义

正余弦定理知识要点: 1、正弦定理:2sin sin sin a b c R A B C ===或变形:::sin :sin :sin a b c A B C =. 2、余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ?=+-?=+-??=+-? 或 222222222 cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ?+-=??+-?=???+-=?? . 3、解斜三角形的常规思维方法是: (1)已知两角和一边(如A 、B 、C ),由A+B+C = π求C ,由正弦定理求a 、b ; (2)已知两边和夹角(如a 、b 、c ),应用余弦定理求c 边;再应用正弦定理先求较短边所对的角,然后利用A+B+C = π,求另一角; (3)已知两边和其中一边的对角(如a 、b 、A ),应用正弦定理求B ,由A+B+C = π求C ,再由正弦定理或余弦定理求c 边,要注意解可能有多种情况; (4)已知三边a 、b 、c ,应余弦定理求A 、B ,再由A+B+C = π,求角C 。 4、判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式. 5、解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定理及几何作图来帮助理解”。 6、已知三角形两边a,b,这两边夹角C ,则S =1/2 * absinC 7、三角学中的射影定理:在△ABC 中,A c C a b cos cos ?+?=,… 8、两内角与其正弦值:在△ABC 中,B A B A sin sin

解三角形完整讲义

解三角形完整讲义-CAL-FENGHAI.-(YICAI)-Company One1

正余弦定理知识要点: 1、正弦定理: 2sin sin sin a b c R A B C ===或变形:::sin :sin :sin a b c A B C =. 2、余弦定理: 222222 2222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ?=+-?=+-??=+-? 或 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ?+-=?? +-? = ?? ?+-= ?? . 3、解斜三角形的常规思维方法是: (1)已知两角和一边(如A 、B 、C ),由A+B+C = π求C ,由正弦定理求a 、b ; (2)已知两边和夹角(如a 、b 、c ),应用余弦定理求c 边;再应用正弦定理先求较短边所对的角,然后利用A+B+C = π,求另一角; (3)已知两边和其中一边的对角(如a 、b 、A ),应用正弦定理求B ,由 A+B+C = π求C ,再由正弦定理或余弦定理求c 边,要注意解可能有多种情况; (4)已知三边a 、b 、c ,应余弦定理求A 、B ,再由A+B+C = π,求角C 。 4、判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式. 5、解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定理及几何作图来帮助理解”。 6、已知三角形两边a,b,这两边夹角C ,则S =1/2 * absinC 7、三角学中的射影定理:在△ABC 中,A c C a b cos cos ?+?=,… 8、两内角与其正弦值:在△ABC 中,B A B A sin sin sinB 且cosB>sinA B .cosAsinB 且cosBsinA 9、三角形内切圆的半径:2S r a b c ? =++,特别地,2 a b c r +-= 斜直 正弦定理 专题:公式的直接应用 1、已知ABC △ 中,a = b =60B =,那么角A 等于( ) A .135 B .90 C .45 D .30

相关主题