搜档网
当前位置:搜档网 › G154-06 非金属材料UV照射用紫外暴露设备

G154-06 非金属材料UV照射用紫外暴露设备

G154-06 非金属材料UV照射用紫外暴露设备
G154-06 非金属材料UV照射用紫外暴露设备

Designation:G154–06

Standard Practice for

Operating Fluorescent Light Apparatus for UV Exposure of Nonmetallic Materials1

This standard is issued under the?xed designation G154;the number immediately following the designation indicates the year of

original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A

superscript epsilon(e)indicates an editorial change since the last revision or reapproval.

Note—A footnote was added to Table X2.1,Table X2.3was added,a new Note X2.8was added,and the year date was changed on June5,2006.

1.Scope

1.1This practice covers the basic principles and operating procedures for using?uorescent UV light,and water apparatus intended to reproduce the weathering effects that occur when materials are exposed to sunlight(either direct or through window glass)and moisture as rain or dew in actual usage. This practice is limited to the procedures for obtaining, measuring,and controlling conditions of exposure.A number of exposure procedures are listed in an appendix;however,this practice does not specify the exposure conditions best suited for the material to be tested.

N OTE1—Practice G151describes performance criteria for all exposure devices that use laboratory light sources.This practice replaces Practice G53,which describes very speci?c designs for devices used for?uores-cent UV exposures.The apparatus described in Practice G53is covered by this practice.

1.2Test specimens are exposed to?uorescent UV light under controlled environmental conditions.Different types of ?uorescent UV light sources are described.

1.3Specimen preparation and evaluation of the results are covered in ASTM methods or speci?cations for speci?c materials.General guidance is given in Practice G151and ISO 4892-1.More speci?c information about methods for deter-mining the change in properties after exposure and reporting these results is described in ISO458

2.

1.4The values stated in SI units are to be regarded as the standard.

1.5This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.

1.6This standard is technically similar to ISO4892-3and ISO DIS11507.

2.Referenced Documents

2.1ASTM Standards:2

D3980Practice for Interlaboratory Testing of Paint and Related Materials

E691Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method

G53Practice for Operating Light-and Water-Exposure Apparatus(Fluorescent UV-Condensation Type)for Expo-sure of Nonmetallic Materials

G113Terminology Relating to Natural and Arti?cial Weathering Tests for Nonmetallic Materials

G151Practice for Exposing Nonmetallic Materials in Ac-celerated Test Devices That Use Laboratory Light Sources 2.2CIE Standard:

CIE-Publ.No.85:Recommendations for the Integrated Irradiance and the Spectral Distribution of Simulated Solar Radiation for Testing Purposes3

2.3ISO Standards:

ISO4582,Plastics—Determination of the Changes of Co-lour and Variations in Properties After Exposure to Day-light Under Glass,Natural Weathering or Arti?cial Light4 ISO4892-1,Plastics—Methods of Exposure to Laboratory Light Sources,Part1,Guidance4

ISO4892-3,Plastics—Methods of Exposure to Laboratory Light Sources,Part3,Fluorescent UV lamps4

ISO DIS11507,Paint and Varnishes—Exposure of Coat-ings to Arti?cial Weathering in Apparatus—Exposure to Fluorescent Ultraviolet and Condensation Apparatus4 3.Terminology

3.1De?nitions—The de?nitions given in Terminology G113are applicable to this practice.

1This practice is under the jurisdiction of ASTM Committee G03on Weathering and Durability and is the direct responsibility of Subcommittee G03.03on Simulated and Controlled Exposure Tests.

Current edition approved June5,2006.Published June2006.Originally approved https://www.sodocs.net/doc/d415852591.html,st previous edition approved in2005as G154–05.

2For referenced ASTM standards,visit the ASTM website,https://www.sodocs.net/doc/d415852591.html,,or contact ASTM Customer Service at service@https://www.sodocs.net/doc/d415852591.html,.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.

3Available from Secretary,U.S.National Committee,CIE,National Institute of Standards and Technology(NIST),Gaithersburg,MD20899.

4Available from American National Standards Institute(ANSI),25W.43rd St., 4th Floor,New York,NY10036.

Copyright?ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States. --```,,```````,```,``,``,,``,,-`-`,,`,,`,`,,`---

3.2De?nitions of Terms Speci?c to This Standard—As used in this practice,the term sunlight is identical to the terms daylight and solar irradiance,global as they are de?ned in Terminology G113.

4.Summary of Practice

4.1Specimens are exposed to repetitive cycles of light and moisture under controlled environmental conditions.

4.1.1Moisture is usually produced by condensation of water vapor onto the test specimen or by spraying the speci-mens with demineralized/deionized water.

4.2The exposure condition may be varied by selection of: 4.2.1The?uorescent lamp,

4.2.2The lamp’s irradiance level,

4.2.3The type of moisture exposure,

4.2.4The timing of the light and moisture exposure,

4.2.5The temperature of light exposure,and

4.2.6The temperature of moisture exposure,and

4.2.7The timing of a light/dark cycle.

4.3Comparison of results obtained from specimens exposed in same model of apparatus should not be made unless reproducibility has been established among devices for the material to be tested.

4.4Comparison of results obtained from specimens exposed in different models of apparatus should not be made unless correlation has been established among devices for the material to be tested.

5.Signi?cance and Use

5.1The use of this apparatus is intended to induce property changes associated with the end use conditions,including the effects of the UV portion of sunlight,moisture,and heat.These exposures may include a means to introduce moisture to the test specimen.Exposures are not intended to simulate the deterioration caused by localized weather phenomena,such as atmospheric pollution,biological attack,and saltwater expo-sure.Alternatively,the exposure may simulate the effects of sunlight through window glass.Typically,these exposures would include moisture in the form of condensing humidity. N OTE2—Caution:Refer to Practice G151for full cautionary guidance applicable to all laboratory weathering devices.

5.2Variation in results may be expected when operating conditions are varied within the accepted limits of this practice. Therefore,no reference shall be made to results from the use of this practice unless accompanied by a report detailing the speci?c operating conditions in conformance with the Section 10.

5.2.1It is recommended that a similar material of known performance(a control)be exposed simultaneously with the test specimen to provide a standard for comparative purposes. It is recommended that at least three replicates of each material evaluated be exposed in each test to allow for statistical evaluation of results.

6.Apparatus

6.1Laboratory Light Source—The light source shall be ?uorescent UV lamps.A variety of?uorescent UV lamps can be used for this procedure.Differences in lamp intensity or spectrum may cause signi?cant differences in test results.A detailed description of the type(s)of lamp(s)used should be stated in detail in the test report.The particular testing application determines which lamp should be used.See Ap-pendix X1for lamp application guidelines.

N OTE3—Do not mix different types of lamps.Mixing different types of lamps in a?uorescent UV light apparatus may produce major inconsis-tencies in the light falling on the samples,unless the apparatus has been speci?cally designed to ensure a uniform spectral distribution.

N OTE4—Many?uorescent lamps age signi?cantly with extended use. Follow the apparatus manufacturer’s instructions on the procedure neces-sary to maintain desired irradiance(1,2).

6.1.1Actual irradiance levels at the test specimen surface may vary due to the type or manufacturer of the lamp used,or both,the age of the lamps,the distance to the lamp array,and the air temperature within the chamber and the ambient laboratory temperature.Consequently,the use of a radiometer to monitor and control the radiant energy is recommended.

6.1.2Several factors can affect the spectral power distribu-tion of?uorescent UV lamps:

6.1.2.1Aging of the glass used in some types of lamps can result in changes in transmission.Aging of glass can result in a signi?cant reduction in the short wavelength UV emission of some lamp types,

6.1.2.2Accumulation of dirt or other residue on lamps can affect irradiance,

6.1.2.3Thickness of glass used for lamp tube can have large effects on the amount of short wavelength UV radiation transmitted,and

6.1.2.4Uniformity and durability of phosphor coating. 6.1.3Spectral Irradiance:

N OTE5—Fluorescent UV A lamps are available with a choice of spectral power distributions that vary signi?cantly.The more common may be identi?ed as UV A-340and UV A-351.These numbers represent the characteristic nominal wavelength(in nm)of peak emission for each of these lamp types.The actual peak emissions are at343and350nm, respectively.

6.1.3.1Spectral Irradiance of UVA-340Lamps for Daylight UV—The spectral power distribution of UV A-340?uorescent lamps shall comply with the requirements speci?ed in Table1. N OTE6—The main application for UV A-340lamps is for simulation of the short and middle UV wavelength region of daylight.

6.1.3.2Spectral Irradiance of UVA-351Lamps for Daylight UV Behind Window Glass—The spectral power distribution of UV A-351lamp for Daylight UV behind Window Glass shall comply with the requirements speci?ed in Table2.

N OTE7—The main application for UV A-351lamps is for simulation of the short and middle UV wavelength region of daylight which has been ?ltered through window glass(3).

6.1.3.3Spectral Irradiance of UVB-313Lamps—The spec-tral power distribution of UVB-313?uorescent lamps shall comply with the requirements speci?ed in Table3.

N OTE8—Fluorescent UVB lamps have the spectral distribution of radiation peaking near the313-nm mercury line.They emit signi?cant amounts of radiation below300nm,the nominal cut on wavelength of global solar radiation,that may result in aging processes not occurring https://www.sodocs.net/doc/d415852591.html,e of this lamp is not recommended for sunlight simulation. See Table3

. --```,,```````,```,``,``,,``,,-`-`,,`,,`,`,,`---

6.2Test Chamber—The design of the test chamber may vary,but it should be constructed from corrosion resistant material and,in addition to the radiant source,may provide for means of controlling temperature and relative humidity.When required,provision shall be made for the spraying of water on

the test specimen for the formation of condensate on the exposed face of the specimen or for the immersion of the test specimen in water.

6.2.1The radiant source(s)shall be located with respect to the specimens such that the uniformity of irradiance at the specimen face complies with the requirements in Practice G151.

6.2.2Lamp replacement,lamp rotation,and specimen repo-sitioning may be required to obtain uniform exposure of all specimens to UV radiation and temperature.Follow manufac-turer’s recommendation for lamp replacement and rotation.

6.3Instrument Calibration—To ensure standardization and accuracy,the instruments associated with the exposure appa-ratus(for example,timers,thermometers,wet bulb sensors,dry bulb sensors,humidity sensors,UV sensors,and radiometers) require periodic calibration to ensure repeatability of test results.Whenever possible,calibration should be traceable to national or international standards.Calibration schedule and procedure should be in accordance with manufacturer’s in-structions.

6.4Radiometer—The use of a radiometer to monitor and control the amount of radiant energy received at the sample is recommended.If a radiometer is used,it shall comply with the requirements in Practice G151.

6.5Thermometer—Either insulated or un-insulated black or white panel thermometers may be used.The un-insulated thermometers may be made of either steel or aluminum. Thermometers shall conform to the descriptions found in Practice G151.

6.5.1The thermometer shall be mounted on the specimen rack so that its surface is in the same relative position and subjected to the same in?uences as the test specimens.

6.5.2Some speci?cations may require chamber air tempera-ture control.Positioning and calibration of chamber air tem-perature sensors shall be in accordance with the descriptions found in Practice G151.

N OTE9—Typically,these devices control by black panel temperature only.

6.6Moisture—The test specimens may be exposed to mois-ture in the form of water spray,condensation,or high humidity.

6.6.1Water Spray—The test chamber may be equipped with

a means to introduce intermittent water spray onto the test specimens under speci?ed conditions.The spray shall be

TABLE1Relative Ultraviolet Spectral Power Distribution Speci?cation for Fluorescent UVA-340Lamps for Daylight UV A,B

Spectral Bandpass Wavelength l in nm Minimum

Percent C

Benchmark Solar

Radiation Percent D,E,F

Maximum

Percent C

l<2900.01 290#l#320 5.9 5.89.3

320

360

A Data in Table1are the irradiance in the given bandpass expressed as a percentage of the total irradiance from290to400nm.The manufacturer is responsible for determining conformance to Table1.Annex A1states how to determine relative spectral irradiance.

B The data in Table1are based on the rectangular integration of65spectral power distributions for?uorescent UV devices operating with UVA340lamps of various lots and ages.The spectral power distribution data is for lamps within the aging recommendations of the device manufacturer.The minimum and maximum data are at least the three sigma limits from the mean for all measurements.

C The minimum and maximum columns will not necessarily sum to100% because they represent the minimum and maximum for the data used.For any individual spectral power distribution,the calculated percentage for the band-passes in Table1will sum to100%.For any individual?uorescent UVA-340lamp, the calculated percentage in each bandpass must fall within the minimum and maximum limits of Table1.Test results can be expected to differ between exposures using devices with?uorescent UVA-340lamps in which the spectral power distributions differ by as much as that allowed by the tolerances.Contact the manufacturer of the?uorescent UV devices for speci?c spectral power distribution data for the?uorescent UVA-340lamp used.

D The benchmark solar radiation data is de?ned in ASTM G177and is for atmospheric conditions and altitude chosen to maximize the fraction of short wavelength solar UV.While this data is provided for comparison purposes only,it is desirable for the laboratory accelerated light source to provide a spectrum that is a close match to the benchmark solar spectrum.

E Previous versions of this standard used solar radiation data from Table4of CIE Publication Number85.See Appendix X3for more information comparing the solar radiation data used in this standard with that for CIE85Table4.

F For the benchmark daylight spectrum,the UV irradiance(290to400nm)is

9.8%and the visible irradiance(400to800nm)is90.2%expressed as a percentage of the total irradiance from290to800nm.Because the primary emission of?uorescent UV lamps is concentrated in the300to400nm bandpass, there are limited data available for visible light emissions of?uorescent UV lamps.

TABLE2Relative Spectral Power Distribution Speci?cation for Fluorescent UVA-351Lamps for Daylight UV Behind Window

Glass A,B

Spectral Bandpass

Wavelength l in nm

Minimum

Percent C

Window Glass Filtered

Daylight Percent D,E,F

Maximum

Percent C l<3000.00.2 300#l#320 1.1#0.5 3.3 320

A Data in Table2are the irradiance in the given bandpass expressed as a percentage of the total irradiance from300to400nm.The manufacturer is responsible for determining conformance to Table1.Annex A1states how to determine relative spectral irradiance.

B The data in Table2are based on the rectangular integration of21spectral power distributions for?uorescent UV devices operating with UVA351lamps of various lots and ages.The spectral power distribution data is for lamps within the aging recommendations of the device manufacturer.The minimum and maximum data are at least the three sigma limits from the mean for all measurements.

C The minimum and maximum columns will not necessarily sum to100% because they represent the minimum and maximum for the data used.For any individual spectral power distribution,the calculated percentage for the band-passes in Table2will sum to100%.For any individual?uorescent UV device operating with UVA351lamps,the calculated percentage in each bandpass must fall within the minimum and maximum limits of Table2.Test results can be expected to differ between exposures using?uorescent UV devices in which the spectral power distributions differ by as much as that allowed by the tolerances. Contact the manufacturer of the?uorescent UV devices for speci?c spectral power distribution data for the lamps used.

D The window glass?ltered solar radiation data is for a solar spectrum with atmospheric conditions and altitude chosen to maximize the fraction of short wavelength solar UV(de?ned in ASTM G177)that has been?ltered by window glass.The glass transmission is the average for a series of single strength window glasses tested as part of a research study for ASTM Subcommittee G3.02.9While this data is provided for comparison purposes only,it is desirable for the laboratory accelerated light source to provide a spectrum that is a close match to this benchmark window glass?ltered solar spectrum.

E Previous versions of this standard used window glass?ltered solar radiation data based on Table4of CIE Publication Number85.See Appendix X3for more information comparing the solar radiation data used in the standard with that for CIE85Table4.

F For the benchmark window glass?ltered solar spectrum,the UV irradiance (300to400nm)is8.2%and the visible irradiance(400to800nm)is91.8% expressed as a percentage of the total irradiance from300to800nm.Because the primary emission of?uorescent UV lamps is concentrated in the300to400nm bandpass,there are limited data available for visible light emissions of?uorescent UV

lamps.--` ` ` , , ` ` ` ` ` ` ` , ` ` ` , ` ` , ` ` , , ` ` , , -` -` , , ` , , ` , ` , , ` ---

uniformly distributed over the samples.The spray system shall be made from corrosion resistant materials that do not con-taminate the water used.

6.6.1.1Spray Water Quality —Spray water shall have a conductivity below 5μS/cm,contain less than 1-ppm solids,and leave no observable stains or deposits on the specimens.Very low levels of silica in spray water can cause signi?cant deposits on the surface of test specimens.Care should be taken to keep silica levels below 0.1ppm.In addition to distillation,a combination of deionization and reverse osmosis can effec-tively produce water of the required quality.The pH of the water used should be reported.See Practice G 151for detailed water quality instructions.

6.6.2Condensation —The test chamber may be equipped with a means to cause condensation to form on the exposed face of the test specimen.Typically,water vapor shall be generated by heating water and ?lling the chamber with hot vapor,which then is made to condense on the test specimens.6.6.3Relative Humidity —The test chamber may be equipped with a means to measure and control the relative humidity.Such instruments shall be shielded from the lamp radiation.

6.7Specimen Holders —Holders for test specimens shall be made from corrosion resistant materials that will not affect the test results.Corrosion resistant alloys of aluminium or stainless steel have been found acceptable.Brass,steel,or copper shall not be used in the vicinity of the test specimens.

6.8Apparatus to Assess Changes in Properties —Use the apparatus required by the ASTM or other standard that describes determination of the property or properties being monitored.

7.Test Specimen

7.1Refer to Practice G 151.

8.Test Conditions

8.1Any exposure conditions may be used as long as the exact conditions are detailed in the report.Appendix X2shows some representative exposure conditions.These are not neces-sarily preferred and no recommendation is implied.These conditions are provided for reference only.

9.Procedure

9.1Identify each test specimen by suitable indelible mark-ing,but not on areas used in testing.

9.2Determine which property of the test specimens will be evaluated.Prior to exposing the specimens,quantify the appropriate properties in accordance with recognized ASTM or international standards.If required (for example,destructive testing),use unexposed ?le specimens to quantify the property.See ISO 4582for detailed guidance.

9.3Mounting of Test Specimens —Attach the specimens to the specimen holders in the equipment in such a manner that the specimens are not subject to any applied stress.To assure uniform exposure conditions,?ll all of the spaces,using blank panels of corrosion resistant material if necessary.

N OTE 10—Evaluation of color and appearance changes of exposed materials shall be made based on comparisons to unexposed specimens of the same material which have been stored in the dark.Masking or shielding the face of test specimens with an opaque cover for the purpose of showing the effects of exposure on one panel is not recommended.Misleading results may be obtained by this method,since the masked portion of the specimen is still exposed to temperature and humidity that in many cases will affect results.

9.4Exposure to Test Conditions —Program the selected test conditions to operate continuously throughout the required number of repetitive cycles.Maintain these conditions throughout the exposure.Interruptions to service the apparatus and to inspect specimens shall be minimized.

9.5Specimen Repositioning —Periodic repositioning of the specimens during exposure is not necessary if the irradiance at the positions farthest from the center of the specimen area is at least 90%of that measured at the center of the exposure area.Irradiance uniformity shall be determined in accordance with Practice G 151.

9.5.1If irradiance at positions farther from the center of the exposure area is between 70and 90%of that measured at the center,one of the following three techniques shall be used for specimen placement.

9.5.1.1Periodically reposition specimens during the expo-sure period to ensure that each receives an equal amount of radiant exposure.The repositioning schedule shall be agreed upon by all interested parties.

9.5.1.2Place specimens only in the exposure area where the irradiance is at least 90%of the maximum irradiance.

TABLE 3Relative Spectral Power Distribution Speci?cation for

Fluorescent UVB 313lamps A ,B

Spectral Bandpass Wavelength l in nm Minimum Percent C

Benchmark Solar Radiation Percent D ,E ,F

Maximum Percent C

l <290

1.3 5.4290#l #32047.8 5.865.9320

1.7

54.2

7.2

A

Data in Table 3are the irradiance in the given bandpass expressed as a percentage of the total irradiance from 250to 400nm.The manufacturer is responsible for determining conformance to Table 3.Annex A1states how to determine relative spectral irradiance.B

The data in Table 3are based on the rectangular integration of 44spectral power distributions for ?uorescent UV devices operating with UVB 313lamps of various lots and ages.The spectral power distribution data is for lamps within the aging recommendations of the device manufacturer.The minimum and maximum data are at least the three sigma limits from the mean for all measurements.C

The minimum and maximum columns will not necessarily sum to 100%because they represent the minimum and maximum for the data used.For any individual spectral power distribution,the calculated percentage for the band-passes in Table 3will sum to 100%.For any individual UVB 313lamp,the calculated percentage in each bandpass must fall within the minimum and maximum limits of Table 3.Test results can be expected to differ between exposures conducted in ?uorescent UV devices using UVB 313lamps in which the spectral power distributions differ by as much as that allowed by the tolerances.Contact the manufacturer of the ?uorescent UV device for speci?c spectral power distribution data for the device operated with the UVB 313lamp used.D

The benchmark solar radiation data is de?ned in ASTM G 177and is for atmospheric conditions and altitude chosen to maximize the fraction of short wavelengthsolar UV.This data is provided for comparison purposes only.E

Previous versions of this standard used solar radiation data from Table 4of CIE Publication Number 85.See Appendix X3for more information comparing the solar radiation data used in this standard with that for CIE 85Table 4.F

For the benchmark solar spectrum,the UV irradiance (290to 400nm)is 9.8%and the visible irradiance (400to 800nm)is 90.2%expressed as a percentage of the total irradiance from 290to 800nm.Because the primary emission of ?uorescent UV lamps is concentrated in the 300to 400nm bandpass,there are limited data available for visible light emissions of ?uorescent UV

lamps.

--```,,```````,```,``,``,,``,,-`-`,,`,,`,`,,`---

9.5.1.3To compensate for test variability randomly position replicate specimens within the exposure area which meets the irradiance uniformity requirements as de?ned in9.5.1.

9.6Inspection—If it is necessary to remove a test specimen for periodic inspection,take care not to handle or disturb the test surface.After inspection,the test specimen shall be returned to the test chamber with its test surface in the same orientation as previously tested.

9.7Apparatus Maintenance—The test apparatus requires periodic maintenance to maintain uniform exposure conditions. Perform required maintenance and calibration in accordance with manufacturer’s instructions.

9.8Expose the test specimens for the speci?ed period of exposure.See Practice G151for further guidance.

9.9At the end of the exposure,quantify the appropriate properties in accordance with recognized ASTM or interna-tional standards and report the results in conformance with Practice G151.

N OTE11—Periods of exposure and evaluation of test results are addressed in Practice G151.

10.Report

10.1The test report shall conform to Practice G151.

11.Precision and Bias

11.1Precision:

11.1.1The repeatability and reproducibility of results ob-tained in exposures conducted according to this practice will vary with the materials being tested,the material property being measured,and the speci?c test conditions and cycles that are used.In round-robin studies conducted by Subcommittee G03.03,the60°gloss values of replicate PVC tape specimens exposed in different laboratories using identical test devices and exposure cycles showed signi?cant variability(3).The variability shown in these round-robin studies restricts the use of“absolute speci?cations”such as requiring a speci?c prop-erty level after a speci?c exposure period(4,5).

11.1.2If a standard or speci?cation for general use requires

a de?nite property level after a speci?c time or radiant exposure in an exposure test conducted according to this practice,the speci?ed property level shall be based on results obtained in a round-robin that takes into consideration the variability due to the exposure and the test method used to measure the property of interest.The round-robin shall be conducted according to Practice E691or Practice D3980and shall include a statistically representative sample of all labo-ratories or organizations that would normally conduct the exposure and property measurement.

11.1.3If a standard or speci?cation for use between two or three parties requires a de?nite property level after a speci?c time or radiant exposure in an exposure test conducted accord-ing to this practice,the speci?ed property level shall be based on statistical analysis of results from at least two separate, independent exposures in each laboratory.The design of the experiment used to determine the speci?cation shall take into consideration the variability due to the exposure and the test method used to measure the property of interest.

11.1.4The round-robin studies cited in11.1.1demonstrated that the gloss values for a series of materials could be ranked with a high level of reproducibility between laboratories.When reproducibility in results from an exposure test conducted according to this practice have not been established through round-robin testing,performance requirements for materials shall be speci?ed in terms of comparison(ranked)to a control material.The control specimens shall be exposed simulta-neously with the test specimen(s)in the same device.The speci?c control material used shall be agreed upon by the concerned parties.Expose replicates of the test specimen and the control specimen so that statistically signi?cant perfor-mance differences can be determined.

11.2Bias—Bias can not be determined because no accept-able standard weathering reference materials are available. 12.Keywords

12.1accelerated;accelerated weathering;durability;expo-sure;?uorescent UV lamps;laboratory weathering;light; lightfastness;non-metallic materials;temperature;ultraviolet;

weathering --```,,```````,```,``,``,,``,,-`-`,,`,,`,`,,`---

ANNEX

A1.DETERMINING CONFORMANCE TO RELATIVE SPECTRAL POWER DISTRIBUTION TABLES

(Mandatory Information for Equipment Manufacturers)

A1.1Conformance to the relative spectral power distribu-tion tables is a design parameter for ?uorescent UV device with the different lamps that can be used.Manufacturers of equip-ment claiming conformance to this standard shall determine conformance to the spectral power distribution tables for all ?uorescent lamps provided,and provide information on main-tenance procedures to minimize any spectral changes that may occur during normal use.

A1.2The relative spectral power distribution data for this standard were developed using the rectangular integration technique.Eq A1.1is used to determine the relative spectral irradiance using rectangular integration.Other integration tech-niques can be used to evaluate spectral power distribution data,but may give different results.When comparing relative spectral power distribution data to the spectral power distribu-tion requirements of this standard,use the rectangular integra-tion technique.

A1.3To determine whether a speci?c ?uorescent UV lamp for a ?uorescent UV device meets the requirements of Table 1,Table 2,or Table 3,measure the spectral power distribution from 250nm to 400nm.Typically,this is done at 2nm increments.If the manufacturer’s spectral measurement equip-ment cannot measure wavelengths as low as 250nm,the

lowest measurement wavelength must be reported.The lowest wavelength measured shall be no greater than 270nm.For determining conformance to the relative spectral irradiance requirements for a ?uorescent UVB-313lamp,measurement from 250nm to 400nm is required.The total irradiance in each wavelength bandpass is then summed and divided by the speci?ed total UV irradiance according to Eq https://www.sodocs.net/doc/d415852591.html,e of this equation requires that each spectral interval must be the same (for example,2nm)throughout the spectral region used.

I R 5

(l i 5A l i 5B

E l

i

(

l i 5C

l i 5400E l i

3100(A1.1)

where:

I R =relative irradiance in percent,

E =irradiance at wavelength l i (irradiance steps must be

equal for all bandpasses),

A =lower wavelength of wavelength bandpass,

B =upper wavelength of wavelength bandpass,

C =lower wavelength of total UV bandpass used for

calculating relative spectral irradiance (290nm for UV A 340lamps,300nm for UV A 351lamps,or 250nm for UVB 313lamps),and

l i =wavelength at which irradiance was measured.

APPENDIXES

(Nonmandatory Information)

X1.APPLICATION GUIDELINES FOR TYPICAL FLUORESCENT UV LAMPS

X1.1General :

X1.1.1A variety of ?uorescent UV lamps may be used in this practice.The lamps shown in this section are representa-tive of their type.Other lamps,or combinations of lamps,may be used.The particular application determines which lamp should be used.The lamps discussed in this Appendix differ in the total amount of UV energy emitted and their wavelength spectrum.Differences in lamp energy or spectrum may cause signi?cant differences in test results.A detailed description of the type(s)of lamp(s)used shall be stated in detail in the test report.

X1.1.2All spectral power distributions (SPDs)shown in this section are representative only and are not meant to be used to calculate or estimate total radiant exposure for tests in ?uorescent UV devices.Actual irradiance levels at the test

specimen surface will vary due to the type and/or manufacturer of the lamp used,the age of the lamps,the distance to the lamp array,and the air temperature within the chamber.

N OTE X1.1—All SPDs in this appendix were measured using a spec-troradiometer with a double grating monochromator (1-nm band pass)with a quartz cosine receptor.The ?uorescent UV SPDs were measured at the sample plane in the center of the allowed sample area.SPDs for sunlight were measured in Phoenix,AZ at solar noon at the summer solstice with a clear sky,with the spectroradiometer on an equatorial follow-the-sum mount.

X1.2Simulations of Direct Solar UV Radiation Exposures :X1.2.1UVA-340Lamps —For simulations of direct solar UV radiation the UV A-340lamp is recommended.Because UV A-340lamps typically have little or no UV output below 300nm (that is considered the “cut-on”wavelength

for

--```,,```````,```,``,``,,``,,-`-`,,`,,`,`,,`---

terrestrial sunlight),they usually do not degrade materials as rapidly as UVB lamps,but they may allow enhanced correla-tion with actual outdoor weathering.Tests using UV A-340lamps have been found useful for comparing different nonme-tallic materials such as polymers,textiles,and UV stabilizers.Fig.X1.1illustrates the SPD of the UV A-340lamp compared to noon,summer sunlight.

X1.2.2UVB-313Lamps —The UVB region (280to 315nm)includes the shortest wavelengths found in sunlight at the earth’s surface and is responsible for considerable polymer damage.There are two commonly available types of UVB-313lamps that meet the requirements of this document.These are known commercially as the UVB-313and the FS-40.These lamps emit different amounts of total energy,but both peak at 313nm and produce the same UV wavelengths in the same relative proportions.In tests using the same cycles and tem-peratures,shorter times to failure are typically observed when the lamp with higher UV irradiance is used.Furthermore,tests using the same cycles and temperatures with these two lamps may exhibit differences in ranking of materials due to differ-ence in the proportion of UV to moisture and temperature.

N OTE X1.2—The Fig.X1.2illustrates the difference between the lamps.

X1.2.2.1All UVB-313lamps emit UV below the normal sunlight cut-on.This short wavelength UV can produce rapid polymer degradation and often causes degradation by mecha-nisms that do not occur when materials are exposed to sunlight.This may lead to anomalous results.Fig.X1.2shows the spectral power distribution (SPD)of typical UVB-313lamps compared to the SPD of noon,summer sunlight.

X1.3Simulations of Exposures to Solar UV Radiation Through Window Glass :

X1.3.1Filtering Effect of Glass —Glass of any type acts as a ?lter on the sunlight spectrum (see Fig.X1.3).Ordinary glass is essentially transparent to light above about 370nm.How-ever,the ?ltering effect becomes more pronounced with decreasing wavelength.The shorter,more damaging UVB wavelengths are the most greatly affected.Window glass ?lters out most of the wavelengths below about 310nm.For purposes

of illustration,only one type of window glass is used in the accompanying graphs.Note that glass transmission character-istics will vary due to manufacturer,production lot,thickness,or other factors.

X1.3.2UVA-351Lamps —For simulations of sunlight through window glass,UV A-351lamps are recommended.The UV A-351is used for these applications because the low end cut-on of this lamp is similar to that of direct sunlight which has been ?ltered through window glass (Fig.X1.4).

N OTE X1.3—UVB-313lamps are not recommended for simulations of sunlight through window glass.Most of the emission of UVB-313lamps is in the short wavelength UV that is ?ltered very efficiently by glass.Because of this,very little energy from this short wavelength region will reach materials in “behind glass”applications.This is because window glass ?lters out about 80%of the energy from UVB-313lamps,as shown in Fig.X1.5.As a result of ?ltering out these short wavelengths,its total effective energy is very limited.Further,because there is little longer wavelength energy,the glass-?ltered UVB-313is actually less severe than a UV A Lamp.

X1.4Simulations of Exposures Where Glass or Transparent Plastic Forms Part of the Test Specimen

:

FIG.X1.1Spectral Power Distributions of UVA-340Lamp and

Sunlight

FIG.X1.2Spectral Power Distributions of UVB Lamps and

Sunlight

FIG.X1.3Direct Sunlight and Sunlight Through Window

Glass

--```,,```````,```,``,``,,``,,-`-`,,`,,`,`,,`---

X1.4.1UVA-340Lamps —In some instances (for example,window sealants),glass or transparent plastic is part of the test specimen itself and normally acts as a ?lter to the light source.In these special cases,the use of UV A-340lamps is recom-mended since the glass or plastic will ?lter the spectrum of the lamp in the same way that it would ?lter sunlight.Fig.X1.6compares the spectral power distribution of sunlight ?ltered through window glass to the spectral power distribution of the UV A-340lamp,both un?ltered and ?ltered through window glass.

N OTE X1.4—UBV-313lamps are lamps not recommended for expo-sures where glass or transparent plastic forms part of the test specimen.See Note X1.3.

N OTE X1.5—UV A-351lamps are not recommended for exposures where glass or transparent plastic forms part of the test specimen.This is because the UV A-351has a special power distribution in the short wave UV region that is similar to sunlight that has already been ?ltered by window glass.As shown in Fig.X1.7,using this lamp through window glass or other transparent material further ?lters out the short wavelength UV and results in a spectrum that is de?cient in the short wavelength UV .

X2.EXPOSURE CONDITIONS

X2.1Any exposure conditions may be used,as long as the exact conditions are detailed in the report.Following are some representative exposure conditions.These are not necessarily preferred and no recommendation is implied.These conditions are provided for reference only (See Table X2.1).

N OTE X2.1—Cycle 1is a commonly used exposure cycle for coatings and plastics.Cycle 2has been widely used for coatings.Cycles 3and 4

have been used for exterior automotive materials.Cycle 5has been used for roo?ng materials.Cycle 6has been used for high irradiance exposures of coatings and plastics.Cycle 7has been used for thermal shock and for erosion testing of coatings for wood.

N OTE X2.2—When selecting programs of UV exposure followed by condensation,allow at least 2h per interval to assure attainment of equilibrium.

N OTE X2.3—Surface temperature of specimens is an essential

test

FIG.X1.4Spectral Power Distributions of UVA-351Lamp and

Sunlight Through Window

Glass

FIG.X1.5Spectral Power Distributions of Un?ltered UVB-313Lamp,UVB-313Through Window Glass,and Sunlight Through

Window

Glass

FIG.X1.6Spectral Power Distributions of Un?ltered UVA-340Lamp,UVA-340Through Window Glass,and Sunlight Through

Window

Glass

FIG.X1.7Spectral Power Distributions of Un?ltered UVA-351Lamp,UVA-351Through Window Glass,and Sunlight Through

Window

Glass

--```,,```````,```,``,``,,``,,-`-`,,`,,`,`,,`---

quantity.Generally,degradation processes accelerate with increasing temperature.The specimen temperature permissible for the accelerated test depends on the material to be tested and on the aging criterion under consideration.

N OTE X2.4—Irradiance data shown is typical.Frequently,the irradi-ance is not controlled in this type of exposure device.

N OTE X2.5—The light output of ?uorescent lamps is affected by the temperature of the air which surrounds the lamps.Consequently,in testers without feed-back-loop control of irradiance,the lamp output will decrease with increasing chamber temperature.

N OTE X2.6—Laboratory ambient temperature may have an effect on the light output of devices without feed-back-loop control of irradiance.Some ?uorescent UV devices use laboratory ambient air to cool the lamps and thereby compensate for the drop in light output at higher exposure temperatures (see Note X2.5).

X2.2For the most consistent results,it is recommended that apparatus without feed-back-loop control of irradiance be operated in an environment in which the ambient temperature is maintained between 18and 27°C.Apparatus operated in ambient temperatures above or below this range may produce

irradiances different from devices operated in the recom-mended manner.

N OTE X2.7—Fluorescent UV lamps emit relatively little infrared radia-tion when compared to xenon arc and carbon arc sources.In ?uorescent UV apparatus,the primary heating of the specimen surface is by convection from heated air passing across the panel.Therefore,there is a minimal difference between the temperature of an insulated or uninsulated black or white panel thermometer,specimen surface,air in the test chamber,or different colored samples (3).

X2.3For conversion of test cycles described in Practice G 53to test cycles described in Practice G 154see Table X2.2.For operational ?uctuations see Table X2.3.

N OTE X2.8—Unless otherwise speci?ed,operate the apparatus to main-tain the operational ?uctuations speci?ed in Table X2.3for the parameters in Table X2.1.If the actual operating conditions do not agree with the machine settings after the equipment has stabilized,discontinue the test and correct the cause of the disagreement before continuing.

TABLE X2.1Common Exposure Conditions

N OTE 1—Previous editions of ASTM G 154contained non-mandatory irradiance set points in Table X2.1that were commonly used in the industry.The previous set points were 0.77and 1.35W/m2at 340nm for UV A-340lamps and 0.44.0.55,and 0.63W/m2for UVB-313lamps.The measurement data used to establish these set points was inaccurate,due to an error in calibration on the part of one manufacturer.It has been found that,for most users,the actual irradiance when running at the previous set points was 11to 15%higher than the indicated set point.The set points shown in this edition of G 154do not change the actual irradiances that have been historically used by these users.However,for users of equipment made by another manufacturer,the irradiance control system did not have the measurement inaccuracies described above,so running at the new set points will represent a change in the actual irradiance of the test.If in doubt,users should consult the manufacturer of their device for clari?cation.

Cycle Lamp Typical Irradiance Approximate Wavelength

Exposure Cycle

1

UVA-340

0.89W/m 2

/nm

340nm

8h UV at 60(63)°C Black Panel Temperature;

4h Condensation at 50(63)°C Black Panel Temperature 2UVB-3130.71W/m 2/nm 310nm

4h UV at 60(63)°C Black Panel Temperature;

4h Condensation at 50(63)°C Black Panel Temperature 3UVB-3130.49W/m 2/nm 310nm

8h UV at 70(63)°C Black Panel Temperature;

4h Condensation at 50(63)°C Black Panel Temperature 4UVA-340 1.55W/m 2/nm 340nm

8h UV at 70(63)°C Black Panel Temperature;

4h Condensation at 50(63)°C Black Panel Temperature 5UVB-3130.62W/m 2/nm 310nm

20h UV at 80(63)°C Black Panel Temperature;

4h Condensation at 50(63)°C Black Panel Temperature 6UVA-340 1.55W/m 2/nm 340nm

8h UV at 60(63)°C Black Panel Temperature;

4h Condensation at 50(63)°C Black Panel Temperature.7UVA-340 1.55W/m 2/nm 340nm

8h UV at 60(63)°C Black Panel Temperature;

0.25h water spray (no light),temperature not controlled;

3.75h condensation at 50(63)°C Black Panel Temperature 8UVB-31328W/m 2270to 700nm

8h UV at 70(63)°C Black Panel Temperature;

4h Condensation at 50(63)°C Black Panel

Temperature

--```,,```````,```,``,``,,``,,-`-`,,`,,`,`,,`---

https://www.sodocs.net/doc/d415852591.html,PARISON OF BENCHMARK SOLAR UV SPECTRUM AND CIE 85TABLE 4SOLAR SPECTRUM

X3.1This standard uses a benchmark solar spectrum based on atmospheric conditions that provide for very high level of solar ultraviolet radiation.This benchmark solar spectrum is published in ASTM G 177,Standard Tables for Reference Solar Ultraviolet Spectral Distributions:Hemispherical on 37degree Tilted Surface.The solar spectrum is calculated using the SMARTS2solar radiation model.5,6,7ASTM Adjunct ADJG0173,SMARTS2Solar Radiation Model for Spectral

Radiation provides the program and documentation for calcu-lating solar spectral irradiance.

X3.2Previous versions of this standard used CIE 85Table 48

as the benchmark solar spectrum.Table X3.1compares the basic atmospheric conditions used for the benchmark solar spectrum and the CIE 85Table 4solar spectrum.

X3.3Table X3.2compares irradiance (calculated using rectangular integration)and relative irradiance for the bench-mark solar spectrum and the CIE 85Table 4solar spectrum,in the bandpasses used in this standard.

5

Gueymard,C.,“Parameterized Transmittance Model for Direct Beam and Circumsolar Spectral Irradiance,”Solar Energy ,V ol 71,No.5,2001,pp.325-346.6

Gueymard,C.A.,Myers,D.,and Emery,K.,“Proposed Reference Irradiance Spectra for Solar Energy Systems Testing,”Solar Energy ,V ol 73,No 6,2002,pp.443-467.7

Myers,D.R.,Emery,K.,and Gueymard,C.,“Revising and Validating Spectral Irradiance Reference Standards for Photovoltaic Performance Evaluation,”Trans-actions of the American Society of Mechanical Engineers,Journal of Solar Energy Engineering ,V ol 126,pp 567–574,Feb.2004.

8

CIE-Publication Number 85:Recommendations for the Integrated Irradiance and the Spectral Distribution of Simulated Solar Radiation for Testing Purposes,1st Edition,1989(Available from American National Standards Institute,11W.42nd St.,13th Floor,New York,NY 10036).

TABLE X2.2Conversion of Test Cycles Described in Practice

G 53to Test Cycles Described in Practice G 154

Practice G 53Test Cycle Description

Corresponding Test Cycle in Practice G 154

Practice G 53describes one default cycle of 4hours UV at 60°C,4hours condensation at 50°C.The default lamp for this and other cycles is the UVB

lamps with peak emission at 313nm,but ?uorescent UVA lamps with peak emission at 343nm or 351nm may also be used.Cycle 2of Table X2.2describes the Practice G 53default cycle using UVB-313lamps.

Practice G 53indicated that a cycle of 8hours UV and 4hours condensation is widely used.Suggested temperatures during UV exposure were 50°C,60°C,70°C

Table X2.2describes 6speci?c exposure cycles that use 8hours UV followed by 4hours

condensation.These cycles use either UVA-340or UVB-313lamps.

TABLE X2.3Operational Fluctuations On Exposure Conditions

Parameter

Maximum Allowable Deviation from the Set Point at the Control Point Indicated by the Readout of the Calibrated Control Sensor

During Equilibrium Operation

Black Panel Temperature

62.5°C

Irradiance (monitored at 340nm or monitored at 310nm)6.02W/(m 2?nm)Irradiance (monitored at 270–700nm)

60.5W/m

2

--```,,```````,```,``,``,,``,,-`-`,,`,,`,`,,`---

REFERENCES

(1)Mullen,P.A.,Kinmonth,R.A.,and Searle,N.D.,“Spectral Energy

Distributions and Aging Characteristics of Fluorescent Sun Lamps and Black Lights,”Journal of Testing and Evaluation ,V ol 3(1),15–20,1975.

(2)Fedor,G.R.,and Brennan,P.J.,“Irradiance Control in Fluorescent UV Exposure Testors,”Accelerated and Outdoor Durability Testing of Organic Materials,ASTM STP 1202,American Society for Testing and Materials,1993.

(3)Ketola,W.,Robbins,J.S.,“UV Transmission of Single Strength Window Glass,”Accelerated and Outdoor Durability Testing of Organic Materials.ASTM STP 1202.Warren D.Ketola and Douglas

Grossman,Editors,American Society for Testing and Materials,1993.(4)Fischer,R.M.,“Results of Round-Robin Studies of Light-and Water-Exposure Standard Practices,”Accelerated and Outdoor Dura-bility Testing of Organic Materials,ASTM STP 1202.Warren K.Ketola and Douglas Grossman,Editors,American Society for Testing and Materials,1993.

(5)Fischer,R.M.,and Ketola,W.D.,“Surface Temperatures of Materials in Exterior Exposures and Arti?cial Accelerated Tests,”Accelerated and Outdoor Durability Testing of Organic Materials,ASTM STP 1202.Warren K.Ketola and Douglas Grossman,Editors,American Society for Testing and Materials,1993.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this https://www.sodocs.net/doc/d415852591.html,ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every ?ve years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.

This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA 19428-2959,United States.Individual reprints (single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585(phone),610-832-9555(fax),or service@https://www.sodocs.net/doc/d415852591.html, (e-mail);or through the ASTM website (https://www.sodocs.net/doc/d415852591.html,).

TABLE X3.1Comparison of Basic Atmospheric Conditions Used

for Benchmark Solar Spectrum and CIE 85Table 4Solar

Spectrum

Atmospheric Condition

Benchmark Solar Spectrum

CIE 85Table 4Solar Spectrum

Ozone (atm-cm)0.300.34Precipitable water vapor (cm)0.57 1.42Altitude (m)20000

Tilt angle 37°facing Equator 0°(horizontal)

Air mass 1.05

1.00

Albedo (ground re?ectance)Light Soil wavelength

dependent

Constant at 0.2Aerosol extinction Shettle &Fenn Rural

(humidity dependent)Equivalent to Linke Turbidity factor of

about 2.8Aerosol optical thickness at 500nm

0.05

0.10

TABLE X3.2Irradiance and Relative Irradiance Comparison for Benchmark Solar Spectrum and CIE 85Table 4Solar Spectrum

Bandpass

Benchmark Solar Spectrum

CIE 85Table 4Solar Spectrum

Irradiance (W/m 2)in stated bandpass

l <290

0.0000.000290#l #320 3.748 4.060320

l <290

0.0%0.0%290

Percent of 290to 800nm irradiance

290#l #400

9.8%11.0

%

--```,,```````,```,``,``,,``,,-`-`,,`,,`,`,,`---

紫外老化试验箱原理

紫外线老化试验箱工作原理 紫外线老化试验箱工作原理: 紫外老化试验箱采用荧光紫外灯为光源,通过模拟自然阳光中的紫外辐射和冷凝,对材料进行加速耐候性试验,以获得材料耐候性的结果。可模拟自然气候中的紫外、雨淋、高温、高湿、凝露、黑暗等环境条件,通过重现这些条件,合并成一个循环,并让它自动执行完成循环次数。 紫外线老化试验箱的用途: 紫外老化试验箱是模拟光照的老化试验设备,专门模拟产品长期放置在户外。太阳中的紫外线对其照射所产生的破坏性,只需要几天或几周时间,设备可以再现户外需要数月或数年所产生的破坏。看产品是否有退色、变色、亮度下降、粉化、龟裂、变模糊、脆化、强度下降及氧化等现象,同时它还可以再现雨水和露水所产生的破坏。紫外老化试验箱通过将待测样品曝晒放在经过控制的阳光和湿气的交互循环中,同时提高温度的方式来进行试验。(采用紫外线荧光灯模拟阳光,同时还可以通过冷凝或喷淋的方式模拟湿气影响)。 紫外光(UV)只占阳光的5%,但它却是造成户外产品耐用性下降的主要光照因素。有几种不同的UV灯可供选择,在大多数情况下,只

需要模拟短波的UV光即可。大多数的这些UV灯主要产生紫外光,而不是可见光和红外光。灯的主要差别体现在它们在各自波长范围内产生的UV总能量上的不同。不同的灯会产生不同的测试结果。实际的曝晒应用环境可以提示应选用哪种类型的UV灯。 1、UV A-340 模拟阳光紫外线的最佳选择,UV A-340可极好地模拟临界短波波长范围的阳光光谱,即波长范围为295-360nm的光谱,UV A-340只产生在阳光中能找到的UV波长的光谱。 2、UVB-313 用于最大程度的加速试验,UVB-313可以很快地提供试验结果。 紫外老化试验箱标准定义发射300nm以下的光能低于总输出光能2%的一种荧光紫外灯,通常称为UV-A灯; 发射300nm以下的光能大于总输出光能10%的一种荧光紫外灯,通常称为UV-B灯。(来源:湖南海达环境试验箱事业部)

紫外线老化试验机的基本知识

紫外线老化试验机的基本知识 一、紫外线老化试验机产品用途: 艾思荔紫外线老化试验机采用荧光紫外灯为光源,通过模拟自然阳光中的紫外辐射和冷凝,对材料进行加速耐候性试验,以获得材料耐候性的结果。本机用于丰非金属材料、有机材料(如:涂料、油漆、橡胶、塑胶及其制品)经在阳光、湿度、温度、凝露等气候条件的变化下检验有关产品及材料老化现象程度,在短时间内得到变色,退色等情况。设备内室采用SUS304不锈钢板再进过喷塑处理,外壳表面平整,美观大方,避免了采用铝板表面喷涂造成长期使用后表面破损的弊端。并在工作室内部装有加湿加热器、液位开关、黑板温度传感器等,另外装有八只紫外辐射荧光灯及紫外线辐射仪。 二、紫 外线老化试验机的温湿度运行控制系统: 1.温度控制器:高精度数显仪表、高精度数显仪表、彩色液晶触摸屏 2.时间控制器:进口可编程时间计算机集成控制器 3.光照加热系统:不锈钢电加热管 4.凝露加湿系统:全不锈钢浅表面蒸发式加湿器 5.黑板温度:双金属黑板温度计 6.供水系统:加湿供水采用自动控制 7.暴露方式:蒸汽冷凝暴露,光照辐射暴露,强制喷淋体伤人。 同时通过紫外线老化试验机,紫外光与湿气之间的协同作用使得材料单一耐光能力或单一耐湿能力减弱或失效,从而广泛用于对材料耐气候性能的评价,设备具有提供最好的阳光UV模拟,使用维护成本低廉,易于使用,设备采用程控器自动运行试验周期,自动化程度高,灯光稳定性好,试验结果重现率高等特点。 三、在紫外线老化试验机的日常使用过程中,应注意做到以下几点: 1.设备运行过程中,一定要保持充足的水源。

2.试验阶段应尽量减少开启箱门的时间。 3.工作室内的传感装置,切勿遭受强力碰击。 4.非专职操作人员,不得随意操作。 5.设备出现自己无法排除故障时,请与本公司联系。 6.长时间停止使用后,如需再次使用,须仔细检查水源、电源及各部件,确定无误后再启动设备。 7.因紫外线辐射对人员(特别是眼睛)有强烈的危害,所以操作人员应尽量减少接触紫外线(接触时间应<1min)。建议操作人员配带防护目镜及护套。 紫外线老化试验机湿润循环期:潮度侵蚀的严重程度随着温度的上升而加剧,所以控制湿润循环过程的温度是不可或缺的。而且:要加速试验就必须在较高温度下进行潮湿暴露试验。在紫外线老化试验机中冷凝这程中的温度可控制在40~60℃之间;凝露过程的温度与紫外曝光温度完全无关。 四、箱体材质: 1.箱体外壳材料:进口SUS不锈钢板烤漆处理; 2.内胆材料:进口SUS不锈钢板; 3.箱盖材料:进口SUS不锈钢板喷塑处理; 4.在工作室的两边共安装4支UV A紫外灯管 5.加热方式为内胆水槽式加热,升温快,温度分布均匀; 6.箱盖为双向翻盖式,开闭轻松自如; 7.内胆水位自动补水; 8.试样架由衬垫和伸张弹簧组成,均采用铝合金材料制成; 9.试验箱底部采用高质量可固定式PU活动轮; 10.排水系统使用回涡型及U型积沉装置排水; 11.试样表面与紫外灯平面距离为50毫米且相平行; 五、紫外线老化试验机加热系统: 1、光源采用4支UV-A额定功率为40W的紫外荧光灯管作发光源,平铺于机器底部。 1、采用U型钛合金高速加温电热管

RC-UV701紫外线老化试验箱安全操作规程

RC-UV701紫外线老化试验箱 安全操作规程 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1.开机前先检查试验箱相关部件是否完好;供给电源为220V且≥5A,接地装置良好。 2.将试样被测面清洗干净,尽量避免测试面带有油污、粉尘等。试验箱内严禁放易燃、易爆或可燃性物品。 3.打开试验箱门,将测试产品放入样品架内,调整好试件与灯管距离;然后关好箱门,打开供给电源的开关。 4.按定时器上1、2、3、4改变数值可设定试验机的工作时间,黄色为清零。先按一次定

时器MODE键,再按上一行任意一个键。定时器下一行即在h、m、s(时分秒)转换,再按DESIST键退出。 5. 试验箱面板红色按钮灯应亮,则表明电源正常;将电源按钮开关按到开机位置,选择开关在连续位置,上端按下后试验进入光照和黑暗循环状态,此开关灯亮。 6.此时温控表开始显示,并且紫外线灯亮。温控仪上面显示为试验箱内实际温度,下面显示为所需温度设定值,其中“”为设定数值增加键,为设定数值减少键,SET为设定键。 7. 试验按规定的时间自然停机后,应及时关闭电源。. 这里填写您的企业名字 Name of an enterprise

紫外老化试验箱使用说明书

武汉尚测试验设备有限公司 ZN-P系列紫外老化试验箱 使 用 说 明 书 武汉尚测试验设备有限公司

前言 亲爱的用户: 感谢您选择本公司仪器,在您启用试验室前,请详阅使用说明书,相信它能让您的试验室发挥最大的功用。阅读完本说明书后,请将其妥善保管,以便随时查阅。 请详细阅读本手册,并依据规定操作,可使您每次皆能顺利地操作使用。请谨记注意事项,可免除机器因人为操作不当而产生故障,正确的保养方法可延长机器寿命。 本公司各类产品均经过严格的品管检验才出厂,您可安心使用,若有任何困难或问题,请与代理商联系或直接通知本公司。 一、操作须知 本试验绝对不能用于对下列物质或含这些物质的试验: A、爆炸物: 1.硝化甘醇(乙二醇二硝酸酯)、硝化甘油(丙三醇三硝酸酯)、硝化纤维素及其它爆炸性的硝酸酯类。 2.三硝基苯、三硝基甲苯、三硝基苯酚(苦味酸)及其它爆炸性的硝基化合物。 3.过乙酸、甲基乙基甲酮过氧化物、过氧化苯甲酰以及其它有机过氧化物。 B、可燃物: 1.自燃物: 金属:锂、钾、钠、黄磷、硫化磷、红磷。 赛璐璐类:碳化钙(电石)、磷化石灰、镁粉、铝粉、亚硫酸氢钠。 2.氧化物性质类: 氯酸钾、氯酸钠、氯酸铵以及其它的氯酸盐类。 过氧酸钾、过氧酸钠、过氧酸铵以及其它的过氧酸盐类。 过氧化钾、过氧化钠、过氧酸钡以及其它的无机过氧化物。 硝酸钾、硝酸钠以及其它的硝酸盐类。 次氯酸钾以及其它的次氯酸盐类。 亚氯酸钠以及其它的亚氯酸盐类。 3、易燃物: 乙醚、汽油、乙醛、氧化丙烯、二硫化碳及其它燃点不到-30℃的物质。 普通乙烷、氧化乙烯、丙酮、苯、甲基乙基甲酮及其它燃点在-30℃以上而小于0℃的物质。 甲醇、乙醇、二甲笨、酸醋戊酯及其它燃点在0℃以上低于30℃的物质。 煤油、轻油、松节油、异戊醇、酸醋及其它燃点在30℃以上低于65℃的物质。 4、可燃性气体: 氢、乙炔、乙烯、甲烷、乙烷、丙烷、丁烷及其它在温度为15℃时1大气压情况下可能会燃

荧光紫外(UVA-340)老化测试

荧光紫外(UV A-340)老化测试 (荧光紫外(UV A-340)老化测试与户外自然环境老化的时间如何换算?或者说UV A-340测试多长时间大致相当于自然环境中的一年?... 荧光紫外(UV A-340)老化测试与户外自然环境老化的时间如何换算?或者说UV A-340测试多长时间大致相当于自然环境中的一年?) 首先,老化的机理比较复杂,通常认为阳光中紫外光段是导致高分子材料老化的主要因素,但是紫外光所有引起的老化又不是线性的;见下图: 上图可以看出,前1300小时的辐照对材料的影响几乎很小,但是1300小时以后,老化是加速的。 其次,各地方的户外自然老化也是不同的,这其中还包括的实际户外老化因素是复合的(光、热、湿度共同催化,综合作用),见下图:

上图中细线是亚利桑那州的自然老化数据,虚线是弗洛里达州的自然老化数据,差别及其巨大。 综上所述,笼统的要求实验室老化和自然老化的比较是其实是个伪问题。必须指明什么条件的实验室老化(辐射强度、循环模式)和某个地域的户外自然老化。而且,没有理论换算公式,不同的地域的老化时间的换算都应该是通过试验获取的经验数据!!! 比如,根据美国一项试验,UVA-340辐照,1.35W/m2@340nm,4H光照/4H冷凝,黑标50℃的测试条件,其2000小时的测试结果与亚利桑那州2年自然老化数据比较吻合。 但我们不能说,1000H测试相当于1年的自然老化! UV紫外老化机灯管是紫外老化试验箱的首要配件,辅佐用于仿照天然气候中的紫外、雨淋、高温、高湿、凝露、漆黑等环境条件,评价资料耐候功能。常用类型: 1.UVA:UVA-340和UVA-351 UVA灯管关于比较不同类型的聚合体测验特别有用。因为UVA灯管没有任何低于正常阳光的295nm截止点的输出,一般它们使资料的降解不如UVB灯管快。但是,它们一般能得到对真实野外老化的更好的相关性。UVA-340可在临界短波的365nm下至阳光截止点295nm的区域内供给对阳光较佳的仿真。峰值发射在340nm。UVA-340灯管关于不同配方的比较测验特别有用。UVA-351仿照穿过窗玻璃的阳光的紫外线部分。这对室内运用最有用,特别是仿制在窗口环境下出现的聚合体丢失。此灯管在家电涂料与轿车内部涂料运用较多。2.UVB:UVB-313和QFS-40 UVB灯管广泛用于耐久性资料的快速、节约的测验。当时有两种类型的UVB灯管。它们发生相同的紫外线波长,但发生的总能量则不同。一切的UVB灯管发射短波紫外线,低于阳光截止点的295nm。虽然这是短波紫外线

常见紫外老化试验标准

常见紫外老化试验标准 阳光中紫外线是照成产品光降解和光老化的主要原因,因此新产品和新材料的选择必须进行产品的耐候性能测试。紫外线老化测试是评估新产品耐紫外线光照性能的一类测试方法,通常是在实验室中通过紫外加速老化试验箱进行测试。 需要进行耐紫外线老化测试的产品以及材料主要有:非金属材料、有机材料(例如:涂料、油漆、染料、布料、印刷包装、粘合剂、化妆品、金属、电子、电镀、橡胶、塑胶及其制品等)。以下是部分行业的紫外老化试验标准。 通用标准 ISO 4892-1 塑料-实验室光源暴露方法-第1部分:概述 ASTM G-151 非金属材料暴露于使用实验室光源的加速测试设备中的测试方法标准 ASTM G-154 非金属材料暴露于荧光设备的紫外线中的测试方法标准 英国标准BS 2782:第5 部分540B方法(实验室光源的暴露方法) SAE J2020 用荧光紫外/冷凝设备对汽车外饰件进行加速暴露测试 JIS D 0205 汽车配件的老化测试方法(日本) 常见测试仪器QUV/se,,quv/pray等皆可满足以上标准。 涂料标准 韩国标准M 5982-1990 加速老化测试方法 西班牙标准UNE 104-281-88 用荧光紫外灯对油漆和粘合剂进行加速测试 以色利标准NO.330 钢窗 以色利标准NO.385 塑料窗 以色利标准NO.935 路标油漆

以色利标准NO.1086 铝窗 NISSAN M0007 荧光紫外/冷凝试验 JIS K 5600-7-8 油漆的测试方法 ASTM D-3794 卷材涂料测试标准 ASTM D-4587 油漆的光照/凝露环境暴露的标准实施规范 ISO 11507 色漆和清漆-涂层暴露于人工老化环境-暴露在荧光紫外线和凝露环境中ISO 20340 色漆和清漆-用于近海建筑及相关结构的防护涂料系统的性能要求 美国政府标准FED-STD-141B 美国联邦政府规范TT-E-489H 磁漆,醇酸树酯,高光泽,低VOC 美国联邦政府规范TT-E-527D 磁漆,醇酸树酯,无光泽,低VOC 美国联邦政府规范TT-E-529G 磁漆,醇酸树酯,半光泽,低VOC 美国联邦政府规范TT-P-19D 油漆,乳胶,丙烯酸乳液,木材和建筑外立面NACE标准TM-01-84 大气表面涂层的筛选方法 GM4367M 面漆层材料-外饰 GM9125P 汽车材料的实验室加速暴露 MS 133:F16部分色漆和清漆的测试方法:F16 部分:涂料暴露于人工老化环境- 暴露于荧光紫外线和凝露环境(ISO 11507) prEN 927-6 色漆和清漆-户外木器涂层材料和涂层体系-第6 部分:. 木器涂层的荧光紫外线/凝露环境的人工老化测试。

UV 紫外光老化机工作原理

UV 紫外光老化机工作原理 紫外灯管模拟阳光? 冷凝模仿自然潮湿 UV 模拟对阳光、潮湿和温度对材料的破坏作用。在几天或几周的时间内,QUV 可模拟再现户外可能几个月或几年发生的损坏。材料老化包括褪色、失光、强度降低、开裂、剥落、粉化和氧化等。 UV的荧光紫外等可以再现阳光的影响,冷凝和水喷淋系统可以再现雨水和露水的影响。整个的测试循环中,温度都是可控的。 测试概述 测试样品暴露在 UV 的测试室中,典型的测试循环通常是高温下的紫外光照射和相对湿度在100%的黑暗潮湿冷凝周期。在一些测试中,我们还要用到水喷淋装置。常用的测试样品可以是涂层面板或塑料片,以及如钓鱼卷轴、网球鞋或乙烯基挡板等产品。 样品安装 UV 有前后两个测试室,每一测试室内带有一组4 个的紫外荧光灯。样品被安置在面向灯管的样品架上,样品架适用于放置多种类型的样品。QUV标准型的扣环式样品盘可用于放置一个 3 x 12 英寸(75 x 300 毫米), 或者两个 3 x 6 英寸 (75 x 150 毫米) 的样品,也可以放置宽度达到4 英寸的样品。平板式的样品范围广泛,包括金属、木器、塑料片和薄膜等,都可方便的放置在扣环式样品盘上而一些尺寸很小的样品可以通过粘贴在标准测试底板或放置在特殊的样品盒内进行测试。 模拟阳光 阳光中的紫外线是造成大多数材料耐久性能破坏的主要因素。UV 使用荧光灯来模拟阳光中的短波紫外部分,他的灯管形状和普通的荧光灯官一致,但它产生很少的可见光或红外光谱能量。我们可以根据不同的测试要求选择不同波长的UV紫外灯因每种灯在总的紫外线辐照能量和波长都不一样。通常,UV灯管可分为UVA和UVB两种,这和他们发射的紫外光光谱范围有关。 UVA-340 灯管可以最佳的模拟阳光的光谱范围从365 纳米到295 纳米之间的短波光谱, UVB-313 EL 灯管的波长范围从340 纳米至270 纳米的非常短的紫外线,比目前地球表面上能找到的UV波长更短。因此,它可快速提供测试结果,但同时也会对某些材料造成不符合实际的损坏。UVA 351模拟透过窗玻璃的阳光紫外光,它对于测试室内材料的老化最为有效。灯管的选择对于测试条件的设定是至关重要的。请参看“灯管选择"以了解更详细的信息。 测试结果,辐照度( 光照强度)的控制是极为重要的。多数型号的QUV安装有太阳眼光强控制系统。太阳眼光强控制系统允许用户根据不同的测试要求设置不同的光照强度。通过其反馈回路装置,太阳眼可精确的监控并维持预先设置的辐照强度。该系统调节灯管的功率以补偿灯管的老化或任何其他变化。下图是太阳眼光强控制系统的工作原理。 UV/se 型和 UV/喷淋型安装有太阳眼光强控制系统。UV/basic型为人工控制光强。 潮湿 绝多数户外潮湿是由露水,而非雨水造成的。因而,UV 使用独特的冷凝机制来模拟户外潮湿。在 UV 的冷凝循环中,测试室底部蓄水池中的水被加热以产生热蒸气,并充满整个测试室,热蒸汽使测试室内的相对湿度维持在100%,并保持一个相对高温。UV的设计确保被测试样实际上构成测试室的侧壁,从而试样的背面曝露在室内环境空气中。样品后面(外面)的室内空气具有冷却效果,导致试样表面温度下降到低于蒸汽温度几度的水平。这一温差的出现导致试样在整个冷凝循环过程中,其表面始终有冷凝生成的液态水。由于户外曝晒接触潮湿的时间每天可以长大十几小时,因此UV 冷凝循环一般持续几个小时。所有的 UV型号都安装有这一冷凝系统。

塑胶件抗UV测试国家标准

中华人民共和国国家标准| 塑料实验室光源暴露试验方法 GB/T16422.3-1997 第3部分:荧光紫外灯eqv ISO 4892-3:1994 Plastics-Methods ofexposure to labory light sources- Part 3:Fluorescent UVlamps 紫外光老化试验标准 1范围 本标准规定了塑料暴露于不同类型荧光紫外灯气候箱的试验方法。通则在GB/T 16422.1中给出。 2引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T 9344-88 塑料氙灯光源曝露试验方法(neq ISO4892-2:1994) GB/T 15596-1995 塑料曝露于玻璃下日光或自然气候或人工光源后颜色和性能变化的测定 (cqv ISO 4582:1980) GB/T 16422.1-1996 塑料实验室光源曝露试验方法第一部分:通则(eqv ISO 4892-1:1994) 3定义 本标准采用下列定义 3.1 荧光紫外灯:发射400nm以下紫外光的能量至少占总输出光能80﹪的荧光灯。 3.2 Ⅰ型荧光紫外灯:300nm以下的光能低于总输出光能2﹪的一种荧光紫外灯。通常称为UV-A灯。 3.3 Ⅱ型荧光紫外灯:发射300nm以下的光能大于总输出光能10﹪的一种荧光紫外灯。通常称为UV-B灯。

3.4 冷凝暴露:试样表面经规定的辐照时间后转入模拟夜间的无辐照状态,此时试样表面仍受暴露室内热空气和水蒸气的饱和混合物加热作用,而试样背面继续受到周围空间的空气冷却,形成试样表面凝露状态。 4总则 4.1 在控制环境条件的荧光紫外灯气候箱中进行试样的暴露试验。有几种不同型号的灯(见3.1~3.3)。推荐采用UV-A灯或UV-A组合灯,如采用不同光谱组合灯时,应保证试样表面所受的光谱辐照均匀,即应使试样围绕灯列连续移位。 4.2 荧光紫外灯使用一种低压汞弧激发荧光物质而发射出紫外光,它能在较窄的波长区间产生连续光谱,通常只有一个波峰。其光谱分布是由荧光物质的发射光谱和玻璃的紫外透过性决定的。这种灯一般是使试样在某一局限光谱范围内的紫外光辐照下进行试验用的。 4.3 试验程序可以包括辐照强度和试样表面辐照量的测定。 国家技术监督局1997-09-09批 准1998-02-01实施 4.4 建议采用一种已知性能的类似材料作为参数,和受试材料同时暴露。 4.5 在不同型号的设备上所作的试验结果不能作比较,除非受试材料在不同设备中的重现性已被确定。 5设备 5.1 光源 5.1.1 Ⅰ型灯是适用的,但Ⅰ型灯有多种不同的辐射光谱分布可供选择,通常可区分为UV-A340、UV-A351、UV-A355和UV-A365,名称数字表示发射峰的特征波长(纳米)。其中UV-A340更能模拟日光的300~340nm光谱分布,采用不同光谱的灯组合时,还有使试样表面 辐照均匀的规定,例如使试样 绕灯列连续移位。 5.1.2 Ⅱ型灯发射光谱分布具 有接近313nm汞线的峰值,在 日光截止波长300nm以下有大

紫外老化试验箱操作规程范本

紫外老化试验箱操 作规程 1

紫外老化试验箱操作规程 一、操作须知 本试验绝对不能用于对下列物质或含这些物质的试验: A、爆炸物: 1.硝化甘醇(乙二醇二硝酸酯)、硝化甘油(丙三醇三硝酸酯)、硝化纤维素及其它爆炸性的硝酸酯类。 2.三硝基苯、三硝基甲苯、三硝基苯酚(苦味酸)及其它爆炸性的硝基化合物。3.过乙酸、甲基乙基甲酮过氧化物、过氧化苯甲酰以及其它有机过氧化物。 B、可燃物: 1.自燃物: 金属:锂、钾、钠、黄磷、硫化磷、红磷。 赛璐璐类:碳化钙(电石)、磷化石灰、镁粉、铝粉、亚硫酸氢钠。 2.氧化物性质类: 氯酸钾、氯酸钠、氯酸铵以及其它的氯酸盐类。 过氧酸钾、过氧酸钠、过氧酸铵以及其它的过氧酸盐类。 过氧化钾、过氧化钠、过氧酸钡以及其它的无机过氧化物。 硝酸钾、硝酸钠以及其它的硝酸盐类。 次氯酸钾以及其它的次氯酸盐类。

亚氯酸钠以及其它的亚氯酸盐类。 3、易燃物: 乙醚、汽油、乙醛、氧化丙烯、二硫化碳及其它燃点不到-30℃的物质。 普通乙烷、氧化乙烯、丙酮、苯、甲基乙基甲酮及其它燃点在-30℃以上而小于0℃的物质。 甲醇、乙醇、二甲笨、酸醋戊酯及其它燃点在0℃以上低于30℃的物质。煤油、轻油、松节油、异戊醇、酸醋及其它燃点在30℃以上低于65℃的物质。 4、可燃性气体: 氢、乙炔、乙烯、甲烷、乙烷、丙烷、丁烷及其它在温度为15℃时1大气压情况下可能会燃烧的气体。 二、产品说明 自然界的阳光和湿气对材料的破坏,每年造成难以估计的经济损失, 紫外光加速耐候试验机能够再现阳光、雨水和露水所产生的破坏。设 备经过将待测材料曝晒放在经过控制的阳光和湿气的交互循环中,同 时提高温度的方式来进行试验。设备采用紫外线荧光灯模拟阳光,同 时还能够经过冷凝或喷淋的方式模拟湿气影响。 只需要几天或几周时间,设备能够再现户外需要数月或数年所产生的 破坏。所造成的损害主要包括退色、变色、亮度下降、粉化、龟裂、 变模糊、脆化、强度下降及氧化。设备提供的测试数据在对新材料的

UV紫外老化试验箱

目录 1、光老化机制 (2) 2、人工加速光老化试验 (2) 3、紫外线基本概念 (5) 4、UV紫外灯试验箱使用方法 (6) 5、设备维护 (10) 6、安全事项 (10) 7、其他 (11)

1、光老化机制 塑料、涂层等高分子材料受日光照射时,会发生一系列反应,主要是光化学反应。光化学第一和第二定律指出: 1)只有被体系内分子吸收的光,才能有效地引起该体系的分子发生光化学反应; 2)在初级过程中,一个被吸收的光子只活化一个分子。 材料分子吸收的光子能量后处于不稳定激发态,当光子能量等于或大于分子键能时,出现原子或分子键的切断、交联、链的移动、断裂及侧链的变化等现象的单独或同时发生,这些反应持续的进行就会引起高分子聚合物的完全解聚反应,即发生老化,宏观上表现为表面粉化、变色、起泡、裂纹、脱落等。 2、人工加速光老化试验 在研发涂料、塑料等材料的过程中,需要模拟自然使用条件,即进行光老化试验对其进行评测来提供评价依据。同时,也为了能快速地评估材料的性能,在进行新材料的光老化试验中,常常采用人工加速光老化的方法。常见试验方法有:碳弧灯、荧光紫外灯、氙弧灯、金属卤素灯等。 1)碳弧灯 目前碳弧等老化试验,主要包括两种,一种是封闭式碳弧灯,一种是阳光型碳弧灯。封闭式碳弧灯光谱能量分布与自然光的光谱能量分布相差较大。阳光型碳弧灯光谱能量分布较接近于太阳光,但在370~390 nm 紫外线集中加强,模拟性不及氙灯,加速倍率介于氙灯及紫外灯之间。

图1 碳弧灯光谱分布 2)荧光紫外灯 荧光灯目前有两种类型, 即荧光灯UV A( UV A-351和UV A-340) 与荧光灯UVB (FS-40 和UVB-313 )。UV A-340光源,在295nm~365nm的紫外波段最接近于太阳光的光谱,它的辐射峰值是在340nm,是目前最接近于户外阳光的紫外光源;UV A-351光源,模拟日光被窗户玻璃过滤后的紫外线部分,它适用于户内环境应用。 荧光紫外灯的光谱分布主要集中在紫外光部分,因此可以达到较高的加速倍率。然而,荧光紫外灯不仅使日光中的紫外线能量增加,同时还增添了日光中没有的辐射能量,从而引起非自然的破坏。另外荧光光源光谱分布很窄,对长波能量敏感的材料就不会出现日光暴晒的变化。

紫外线耐候测试设备工作原理

紫外线耐候测试设备工作原理 一、紫外线耐候测试设备概要: 紫外线耐候测试设备可以模拟由日晒雨淋造成之危害,利用荧光紫外线灯模拟阳光照射,利用蒸馏水喷淋模拟雨淋之效果。被测试材料放置于一定温度下的光照循环程序中进行测试。本机用数天或数周的时间即可重现户外数月或数年出现的危害。危害类型包括:褪色、变色、失光、粉光、开裂、浑浊、气泡、脆变、强度、衰退和氧化等。 紫外灯管:八支 波长范围:UV-A波长范围为315~400nm 光源工作寿命:2000h 温度范围:RT+10℃~70℃ 温度解析度:0.1℃ 温度均匀度:±3℃ 控温方式:PID自整定控温方式 湿度范围:≥75%RH 试品与灯管中心距离:25~45mm 符合标准:GB/T14522-93中华人民共和国国家标准《机械工业产品用塑料、涂料、橡胶材料、人工气候加速试验方法》 参考标准:ISO4892、ASTMG151、G154、D4329、D4587、D4799、SAEJ2020 二、结构及材质

1.工作室尺寸:450×500×1170mm(深×宽×高) 2.外型尺寸:约D900×W600×H1580mm 3.◎内胆材料:SUS304不锈钢板 ◎外壳材料:SUS304不锈钢板 4.紫外灯管:UVA-340紫外线灯管,共8只,40W/只 5.水源及耗量:洁净水或蒸馏水8升/天(客户自备) 6.控制系统:TEMI880触摸屏,PLC可编程控制器 三、紫外线耐候测试设备要求: 1.试验箱的结构由耐腐蚀金属材料制成,包含8只荧光紫外灯,试验样品架和温度、时间控制系统及指示器。 2.灯管功率40W。 3.灯安装成一排,每个开关控制四支灯管分成两组。 4.试验样品固定安装在相距灯表面的最近平行面50㎜的位置 试验箱应放置于温度为15~35℃的试验室内,距离墙300㎜,并应防止其它热源的影响,试验室内的空气不应强烈的流通,以免影响光照和凝露条件。 四、紫外线耐候测试设备试验条件: 1.试验样品放置于试样架上 2.试验温度:光照时可采用50、60、70℃三种温度,优先推荐采用60℃;冷凝阶段的温度为50℃,温度的容差均匀度为±3℃。 3.光照各冷凝的周期可选择4H光照、4H冷凝或8H光照、4H冷凝等循环。 4.在第一次光照400~450H后,灯管需更换一至两支,其它灯管按照灯循环和替换方式来补偿灯管老化造成的损失。这样的运行模式确保每支灯管的使用寿命在1600~2000H。 五、试验样品和性能评定: 1.外观的评定:对涂料主要是外观的评定,塑料和橡胶必要时也可以进行外观评定,检查的项目主要是光泽、颜色变化、粉化、斑点、起泡、裂纹及尺寸稳定性等。应尽量用仪器进

老化测试 老化试验

老化测试老化试验 老化检测是可靠性检测的一部分,是模拟产品在现实使用条件中涉及到的各种因素对产品产生老化的情况进行相应条件加强实验的过程。 主要通过使用各种环境试验设备模拟气候环境中的高温、低温、高温高湿以及温度变化等情况,加速激发产品在使用环境中可能发生的失效,来验证其是否达到在研发、设计、制造中的预期的质量目标,从而对产品整体进行评估,以确定产品可靠性寿命。老化检测正是可靠性测试的重要部分。 一、主要的测试范围包括: 材料寿命推算 冷热冲击 盐雾测试 快速温变 老化检测气候老化(自然气候暴晒试验,人工气候老化) 紫外老化检测 臭氧老化检测 老化试验湿热老化检测 氙灯老化检测 碳弧灯老化检测 二、重点检测项目 1、紫外老化检测 采用荧光紫外灯为光源(有UVA,UVB不同型号灯源),通过模拟自然阳光中的紫外辐射和冷凝,对材料进行加速耐气候性试验,以获得材料耐候性的结果。 紫外老化测试,可以再现阳光、雨水和露水所产生的破坏。设备通过将待测材料曝晒放在经过控制的阳光和湿气的交互循环中,同时提高温度的方式来进行试验。试验设备采用紫外线荧光灯模拟阳光,同时还可以通过冷凝或

喷淋的方式模拟湿气影响。用来评估材料在颜色变化、光泽、裂纹、起泡、催化、氧化等方面的变化。 紫外老化试验机并不模拟全光谱太阳光,但是却模拟太阳光的破坏作用。通过把荧光灯管的主要辐射控制在太阳光谱的紫外波段来实现。这种方式是有效的,因为短波紫外线是造成户外材料老化的最主要因素。 2、盐雾老化检测 盐雾试验是一种主要利用盐雾试验设备所创造的人工模拟盐雾环境条件来考核产品或金属材料耐腐蚀性能的环境试验。 盐雾试验分为:天然环境暴露试验;人工加速模拟盐雾环境试验。 人工模拟盐雾试验: 包括中性盐雾试验、醋酸盐雾试验、铜盐加速醋酸盐雾试验、交变盐雾试验。 3、臭氧老化检测 臭氧老化就是将试样暴露于密闭无光照的含有恒定臭氧浓度的空气和恒温的试验箱中,按预定时间对试样进行检测,从试样表面发生的龟裂或其它性能的变化程度,以评定试样的耐臭氧老化性能。 臭氧老化分为静态拉伸测试和动态拉伸测试,在这个测试中臭氧浓度、温度、试样定伸比是非常重要的三个参数。 4、湿热老化检测 湿热老化检测适用于可能在温暖潮湿的环境中使用的产品,湿度试验、恒定湿热、交变湿热,是可靠性测试的一种。 试验的目的:检验产品对温暖潮湿的环境的适应能力。对塑性材料、PCB、PCBA多孔性材料或成品等而言,各种不同材料对温度与湿气有不同形态之物理反应,温度所产生效应多为塑性变形或产品过温或低温启动不良等等,多孔性材料在湿度环境下会应毛细孔效应而出现表面湿气吸附,渗入、凝结等情形,在低湿环境中会因静电荷累积效应诱发产品出现失效。 常见湿度效应:物理强度的丧失、化学性能的改变、绝缘材料性能的退化、电性短路、金属材料氧化腐蚀、塑性的丧失、加速化学反应、电子组件的退化等现象。

UV紫外线老化实验箱

UV紫外线老化实验箱 一、设备用途:UV紫外线老化实验箱模拟由紫外光、雨水、露水引 起的破坏,通过将被测材料暴露于受控高温下光照与水份的交变循环中,对材料进行测试。它用紫外线灯管模拟阳光的辐射作用,用凝结水和喷水来模拟露水和雨水。只需几天或几个星期的时间,紫外线辐照设备就可以再现在室外需要几个月甚至几年的时间才会发生的损伤,其中包括褪色、颜色变化、失去光泽、粉化、破裂、裂纹、起皱、起泡、脆化、强度降低、氧化等,其测试结果可用于选择新材料,改善现有材料,或评估材料配方的改变。 二、UV紫外线老化实验箱技术指标:

UV紫外线老化实验箱型号:HE-UV8 1、工作室尺寸:400mm×1140 mm×380 mm (D×W×H) 2、外形尺寸:500mm×1300mm×1460 mm (D×W×H) 3、紫外灯管参数(豪恩仪器:、): 3-1灯管型号:UV-A(315~400nm)、UV-B(280~315nm)任选3-2灯管品牌:美国原装进口ATALS 3-3灯的中心距离:70mm 3-4辐射强度:0.4W/m2~1W/m2以内可调(另选购) 4、试验箱温度指标: 4-1光照温度范围:50℃~70℃ 4-2冷凝温度范围:40℃~60℃ 4-3光照温度容差:≤±2℃ 4-4温度波动度≤±2℃ 4-5温度解析度:0.1℃ 5、黑板温度计 5-1测量范围:30~80℃ 5-2容差为±1℃ 6、湿度范围:45%~90%R.H 7、控温方式:PID自整定控温方式 8、水槽要求:水深不大于25mm,并有供水自动控制器 9、样品架: 9-1标准试件尺寸:75×90mm(可定做特殊规格样品架)

RC-UV701紫外线老化试验箱安全操作规程示范文本

RC-UV701紫外线老化试验箱安全操作规程示范 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

RC-UV701紫外线老化试验箱安全操 作规程示范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1.开机前先检查试验箱相关部件是否完好;供给电源为 220V且≥5A,接地装置良好。 2.将试样被测面清洗干净,尽量避免测试面带有油污、 粉尘等。试验箱内严禁放易燃、易爆或可燃性物品。 3.打开试验箱门,将测试产品放入样品架内,调整好试 件与灯管距离;然后关好箱门,打开供给电源的开关。 4.按定时器上1、2、3、4改变数值可设定试验机的工 作时间,黄色为清零。先按一次定时器MODE键,再按 上一行任意一个键。定时器下一行即在h、m、s(时分秒)转 换,再按DESIST键退出。 5. 试验箱面板红色按钮灯应亮,则表明电源正常;将

电源按钮开关按到开机位置,选择开关在连续位置,上端按下后试验进入光照和黑暗循环状态,此开关灯亮。 6.此时温控表开始显示,并且紫外线灯亮。温控仪上面显示为试验箱内实际温度,下面显示为所需温度设定值,其中“”为设定数值增加键,为设定数值减少键,SET 为设定键。 7. 试验按规定的时间自然停机后,应及时关闭电源。. 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

RC-UV701紫外线老化试验箱安全操作规程

编号:CZ-GC-02865 ( 操作规程) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 RC-UV701紫外线老化试验 箱安全操作规程 Safety operation procedures for rc-uv701 ultraviolet aging test chamber

RC-UV701紫外线老化试验箱安全 操作规程 操作备注:安全操作规程是要求员工在日常工作中必须遵照执行的一种保证安全的规定程序。忽视操作规程 在生产工作中的重要作用,就有可能导致出现各类安全事故,给公司和员工带来经济损失和人身伤害,严重 的会危及生命安全,造成终身无法弥补遗憾。 1.开机前先检查试验箱相关部件是否完好;供给电源为220V且≥5A,接地装置良好。 2.将试样被测面清洗干净,尽量避免测试面带有油污、粉尘等。试验箱内严禁放易燃、易爆或可燃性物品。 3.打开试验箱门,将测试产品放入样品架内,调整好试件与灯管距离;然后关好箱门,打开供给电源的开关。 4.按定时器上1、2、3、4改变数值可设定试验机的工作时间,黄色为清零。先按一次定时器MODE键,再按上一行任意一个键。定时器下一行即在h、m、s(时分秒)转换,再按DESIST键退出。 5.试验箱面板红色按钮灯应亮,则表明电源正常;将电源按钮开关按到开机位置,选择开关在连续位置,上端按下后试验进入光照

和黑暗循环状态,此开关灯亮。 6.此时温控表开始显示,并且紫外线灯亮。温控仪上面显示为试验箱内实际温度,下面显示为所需温度设定值,其中“”为设定数值增加键,为设定数值减少键,SET为设定键。 7.试验按规定的时间自然停机后,应及时关闭电源。. 这里填写您的公司名字 Fill In Your Business Name Here

紫外老化试验箱的主要用途以及产品介绍

紫外老化试验箱用途: 紫外老化试验箱适用于电工、电子产品、航空航天产品、汽车零部件、各种电子元气件在高温、低温或湿热环境下,检测其各性能指标。?产品原理及作用 紫外老化试验箱采用荧光紫外灯为光源,通过模拟自然阳光中的紫外辐射和冷凝,对材料进行加速耐候性试验,以获得材料耐候性的结果。可模拟自然气候中的紫外、雨淋、高温、高湿、凝露、黑暗等环境条件,通过重现这些条件,合并成一个循环,并让它自动执行完成循环次数。 选型 LRHS-NZY 450×1170×500 700×1350×1450 规格与技术参数 型号:ZN-P工作室尺寸:450×1170×500 外型尺寸:700×1350×1450 温度范围:RT+10℃~70℃ SC/ZN-P紫外老化试验箱 湿度范围:≥95%RH 温度波动度:±℃(空载时) 灯管间距离:35mm 样品与灯管距离:50mm

紫外灯管:8支(美国知名品牌) 灯管功率:40W/支 紫外波长:290nm~400nm 模拟凝露:凝露系统时间可调 紫外光暴露、模拟凝露时间范围:1~99H 支持样板:300*75(mm) 样板数量:约20块 试验时间:1~9999H 可调 辐照度范围:≤50w/m2 箱体结构 材质结构:外壳材料:采用优质A3钢板喷塑处理 内胆材料:进口SUS不锈钢板 试样架由衬垫和伸张弹簧组成,均采用铝合金材料制成 盛水盘材料:不锈钢 试验箱标准配置:在工作室的两边共安装8支UV紫外灯管样品架夹具数量:20块 样品架夹具尺寸:404×105(mm) 其它:加热方式为内胆水槽式加热,升温快,温度分布均匀排水系统使用回涡型及U型积沉装置排水 试样表面与紫外灯平面距离为50毫米且相平行 实际工作室由试验样品和支架构成箱体内壁,梯形状 内胆水位自动补水

UV-老化操作说明书

Q T E S T-U V 7寸真彩触摸屏微电脑 紫外线加速耐候试验设备可编程控制器用户操作手册

特点: ●7寸真彩触摸屏微电脑。 ●可编程,可灵活组合辐照、冷凝和水喷淋各种试验。 ●高精度,采用24位A/D转换。 ●配辐照度测控系统,俗称“太阳眼”。提供辐照度测量 和控制。 ●支持中文和英文显示。 ●支持多种电源模式,掉电后重上电可继续运行。 ●提供电脑监控软件,可远程监控试验状态。

目录 1.使用说明书 (1) 1.1 设定按钮 (1) 1.1.1 基本设定按钮 (1) 1.1.2 设定值输入键盘 (1) 1.1.3 设定按钮及设定值的有效性 (2) 1.2 设定值输入方法 (2) 1.2.1 设定值输入键的功能与说明 (2) 1.3 基本运行设定流程图 (4) 1.4 主目录画面 (5) 1.5 监视显示画面 (6) 1.5.1 定值停止画面 (6) 1.5.2 定值运行画面 (7) 1.5.3 程式停止画面 (8) 1.5.4 程式运行画面 (8) 1.5.5 监视曲线画面 (9) 1.5.6 文档设定画面 (10) 1.5.7 参数设定画面 (11) 1.6 运行设定画面 (12) 1.6.1 运行设定画面一 (12) 1.6.2 运行设定画面二 (13) 1.7 定值设定画面 (14) 1.7.1 定值设定画面一 (14) 1.7.2 定值设定画面二 (15) 1.7.3 定值设定画面三 (16) 1.8 程式设定画面 (17) 1.8.1 程式设定画面一 (17) 1.8.2 程式设定画面二 (18) 1.9 文档管理画面 (20) 1.9.1 文档管理画面 (20) 1.9.2 记录文件曲线画面 (21) 1.10 其他设定画面 (22) 1.10.1 其他设定画面一 (22) 1.10.2 其他设定画面二 (23)

uv紫外线老化测试设备工作原理

uv紫外线老化测试设备工作原理 一、uv紫外线老化测试设备自然波长 uv紫外线老化测试设备可以很快地提供试验结果。它们所采用的短波长UV比目前地球上通常找到的UV光波更为强烈。尽管这些比自然波长短许多的UV光能够最大程度地加速试验,但它同时也会对某些材料造成不符和实际的退化破坏。 标准定义发射300nm以下的光能低于总输出光能2%的一种荧光紫外灯,通常称为UV-A 灯;发射300nm以下的光能大于总输出光能10%的一种荧光紫外灯,通常称为UV-B灯;紫外区分UV-A波长范围为315-400nm;UV-B波长范围为280-315nm; uv紫外线老化测试设备适用于多种工业产品的性能可靠性试验,紫外老化试验箱参照GB/T14522-1993,GB/T16585-1996及GB/T16422.3-1997等相应标准条款设计制造。紫外老化试验箱符合ASTMD4329、D499、D4587、D5208、G154、G53;ISO4892-3、ISO11507;EN534;PREN1062-4、BS2782;JISD0205;SAEJ2020等紫外线老化试验标准。 二、技术指标: 1.工作室尺寸:深450×宽1170×高500㎜; 2.外形尺寸:580×1280×1450㎜; 3.温度范围:RT+10℃~70℃; 4.湿度范围:90~98%R?H; 5.温度均匀度:2℃; 6.温度波动度:±0.5℃; 7.控温方式:PID自整定控温方式; 8.灯中心距离:70㎜;

9.样品与灯中心距离:50㎜; 10.标准试件尺寸:75×150㎜厚度5㎜; 11.水槽水深要求:25㎜,自动控制; 12.有效辐照区域:900×210㎜; 13.紫外线波长:UV-A波长范围为315-400nm; 14.UV-B波长范围为280-315nm; 15.试验时间:0~999H可调; 16.黑板温度:40℃~65℃; 17.紫外光、凝露时间交替可调; 三、模拟雨水和露水的影响: uv紫外线老化测试设备在户外的材料与湿气接触的时间,每天可以长达12小时,研究结果表明造成这种户外潮湿的主要原因是露水,而不是雨水。紫外光加速耐候试验机通过一系列独特的冷凝原理来模拟户外的湿气影响。在设备的冷凝循环圈中,在箱体的底部有一蓄水箱,并对其进行加热来产生水汽。热蒸汽使试验箱内的相对湿度维持在100%,并且保持一个相对高温。产品的设计确保测试试件实际上构成试验箱的侧壁,从而试件的背面则暴露在室内仪器空气中。室内空气的冷却效用导致试件表面温度下降到低于蒸汽温度几度的水平。这一温差的出现导致试件在整个冷凝循环过程中,其表面始终有冷凝生成的液态水。这种冷凝产物是很稳定的纯净蒸馏水。这种纯净水提高了试验的再现率,而同时避免了水渍问题。由于户外曝晒接触潮湿的时间每天可以长达12小时,因此紫外光加速耐候试验机的潮湿周期一般持续几小时。我们建议每一冷凝周期至少持续4小时。注意到设备中的UV曝晒和冷凝曝晒是分别进行的,与实际气候条件是一致的。 uv紫外线老化测试设备对于某些应用过程而言,水喷淋能更好的模拟最终使用的仪器条件。水喷淋在模拟由于温度剧变和由于雨水冲刷所造成的机械侵蚀是极其有用的。屋面、汽车材料和在金属建筑或结构上使用的涂料经常会遭遇到突然的温度剧变。例如在炎热的夏季

相关主题