搜档网
当前位置:搜档网 › 关于三角形角平分线的几个结论

关于三角形角平分线的几个结论

关于三角形角平分线的几个结论
关于三角形角平分线的几个结论

关于三角形角平分线的几个结论

若△ABC的内角的平分线与一个外角的平分线相交于点D,试猜想∠D与∠A的关系,并说明理由

若△ABC的内角的平分线CE与一个外角的平分线AE相交于点E

求证:∠B=2∠E

1 三角形任意两个内角平分线的夹角与第三个内角的关系

2 三角形中任意一个内角平分线与另一个角外角平分线的夹角与第三个内角的关系

3 三角形任意两个内角相邻的外角的平分线的夹角与第三个内角的关系

一个很好的变式问题:在四边形ABCD中,∠ABC的平分线BE交CD于E,∠BCD的平分线CF交AB于F,BE,CE相交于O,∠A=124,∠D=100.求,∠BOF的度数

将本题中的BA、CD延长相交于M后就是一个三角形MBC,再作出两个角的角平分线,演变为上面的问题的第一小题。而∠M是很容易求出的(44度)

所以∠BOC=90度+∠M/2=112度

所以∠BOF=180度-112度=68度

初一几何题

(图上的字母有些抱歉啦,因为不知怎么的那上面的字是在打不出来,只好让大家看个大概,勉强看看吧

(1)如图,在△ABC中,BD平分∠ABC,CD平分△ABC的外角∠ACE,BD、CD交与点D,图(1)(2)(3)∠A度数分别为40°,90°,126°,求各图∠D的度数。

(2)根据上述求解过程中,你能发现∠A与∠D的大小之间存在着什么规律吗?写出你的发现

(3)如图(4),∠A=96°,延长BC到D∠ABC与∠ACD的平分线交与A1,∠A1BC与∠A1CD

的角平分线交与A2,以此类推,∠A4BC与∠A4CD的角平分线交与A5,则∠A5=?

三角形三外角的平分线的反向延长线相交构成的三角形是什么形状

角平分线、等腰三角形性质及判定的应用--学生版

角平分线、等腰三角形性质及判定的应用 学校:___________姓名:___________班级:___________考号:___________ 一.选择题(共10小题) 1.如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,若DC=4,则DE=()A.3B.5C.4D.6 第1题第2题第3题第4题 2.如图所示,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=4,BC=9,则BD的长为()A.6B.5C.4D.3 3.如图,OC平分∠AOB,CM⊥OB于点M,CM=3,则点C到射线OA的距离为() A.5B.4C.3D.2 4.如图,Rt△ABC中,∠C=90°,用尺规作图法作出射线AE,AE交BC于点D,CD=2,P为AB上一动点,则PD的最小值为()A.2B.3C.4D.无法确定 5.如图,已知△ABC的周长是10,点O为∠ABC与∠ACB的平分线的交点,且OD⊥BC于D.若OD=2,则△ABC的面积是()A.20B.12C.10D.8 第5题第6题第7题第8题第9题 6.如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP=5,若点Q是射线OB上一点,OQ=4,则△ODQ的面积是() A.4B.5C.10D.20 7.如图,在△ABC中,∠C=90°,BD平分∠ABC,AB=12,CD=4,则△ABD的面积为() A.20B.24C.42D.48 8.如图,已知∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于点C,EG⊥OA于点G,若EC=,则OF长度是()A.2B.C.3D.2 9.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=6,那么PD=() A.3B.6C.8D.10 10.如图,已知点P到△ABC三边的距离相等,DE∥AC,AB=8.1cm,BC=6cm,△BDE的周长为()cm.A.12B.14.1C.16.2D.7.05 第10题第11题第12题 二.填空题(共8小题) 11.如图,AB∥CE,BF交CE于点D,DE=DF,∠F=30°,则∠B=. 12.如图,在△ABC中,AB=AC,∠C=70°,点D在AC上,BD=BC,则∠ABD的度数是° 13.如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=.

【精品】三角形角平分线专题讲解

【关键字】精品 二由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是笔直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 几何的证明在于猜想与尝试,但这种尝试与猜想是在一定的规律基本之上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地去猜想,按一定的规律去尝试。下面就几何中常见的定理所涉及到的辅助线作以介绍。 如图1-1,∠AOC=∠BOC,如取OE=OF,并连接DE、DF,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。 例1.如图1-2,AB//CD,BE平分∠BCD,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。 分析:此题中就涉及到角平分线,可以利用角平分线来构造全等三角形,即利用解平分线来构造轴对称图形,同时此题也是证明线段的和差倍分问题,在证明线段的和差倍分问题中常用到的方法是延长法或截取法来证明,延长短的线段或在长的线段长截取一部分使之等于短的线段。但无论延长还是截取都要证明线段的相等,延长要证明延长后的线段与某条线段相等,截取要证明截取后剩下的线段与某条线段相等,进而达到所证明的目的。

三角形角平分线专题讲解(精选.)

二由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 几何的证明在于猜想与尝试,但这 种尝试与猜想是在一定的规律基本之图1-1 B

上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地去猜想,按一定的规律去尝试。下面就几何中常见的定理所涉及到的辅助线作以介绍。 如图1-1,∠∠,如取,并连接、,则有△≌△,从而为我们证明线段、角相等创造了条件。 例1. 如图 1-2,,平分∠,平分∠, 点E 在上,求证:。 分析:此题中就涉及到角平分线, 可以利用角平分线来构造全等三角形,即利用解平分线来构造轴对称图形,同时此题也是证明线段的和差倍分问题,在证明线段的和差倍分问题中常用到的方法是延长法或截取法来证明,延长短的线段或在长的线段长截取一部分使之等于短的线段。但无论延长还是截取都要证明线段的相等,延长要证明延长后的线段与某条线段相等,截取要证明截取后剩下的线段与某条线段相等,进而达到所证明的目的。 简证:在此题中可在长线段上截取,再证明,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长与的延长线交于一点来证明。自已试一试。 例2. 已知:如图 1-3,2,∠∠,,求证⊥ 图1-2 D B C

初中数学三角形内外角平分线有关命题的证明及应用

三角形内外角平分线 一.命题的证明及应用 在中考常有及三角形内外角平分线有关的题目,若平时不注意总结是很难一下子解决的.下面来一起学习一下. 命题1 如图1,点D是△ABC两个内角平分线的交点,则∠D=90° +∠A. 证明:如图1: ∵∠1=∠,∠2=∠, ∴2∠1+2∠2+∠A=180°① ∠1+∠2+∠D=180°② ①-②得: ∠1+∠2+∠A=∠D③ 由②得: ∠1+∠2=180°-∠D④ 把③代入④得: ∴180°-∠D+∠A=∠D

∠D=90°+∠A. 点评利用角平分线的定义和三角形的内角和等于180°,不难证明. 命题2 如图2,点D是△ABC两个内角平分线的交点,则∠D=90°-∠A. 证明:如图2: ∵DB和DC是△ABC的两条外角平分线, ∴∠D=180°-∠1-∠2 =180°-(∠DBE+∠DCF) =180°-(∠A+∠4+∠A+∠3) =180°-(∠A+180°) =180°-∠A-90°

=90°-∠A; 点评利用角平分线的定义和三角形的一个外角等于及它不相邻两外角的和以及三角形的内角和等于180°,可以证明. 命题3 如图3,点E是△ABC一个内角平分线及一个外角平分线的交点,则∠E=∠A. 证明:如图3: ∵∠1=∠2,∠3=∠4, ∠A+2∠1=2∠4① ∠1+∠E=∠4② ①×代入②得: ∠E=∠A. 点评利用角平分线的定义和三角形的一个外角等于及它不相邻两外角的和,很容易证明.

命题4 如图4,点E是△ABC一个内角平分线BE及一个外角平分线CE的交点,证明:AE是△ABC的外角平分线. 证明:如图3: ∵BE是∠ABC的平分线,可得:EH=EF CE是∠ACD的平分线, 可得:EG=EF ∴过点E分别向AB、AC、BC所在的直线引垂线,所得的垂线段相等. 即EF=EG=EH ∵EG=EH ∴AE是△ABC的外角平分线. 点评利用角平分线的性质和判定能够证明. 应用上面的结论能轻松地解答一些相关的比较复杂的问题,下面来一起看. 例1如图5,PB和PC是△ABC的两条外角平分线. ①已知∠A=60°,请直接写出∠P的度数. ②三角形的三条外角平分线所在的直线形成的三角形按角分类属于什么三角形? 解析:①由命题2的结论直接得:∠P=90°-∠A=90°-×60°=60°

三角形中线与角平分线专题(二)

.. 三角形中线与角平分线专题(二) 1、三角形外角平分线的四个经典结论: 结论一:三角形任意两个角平分线的夹角与第三个角的数量关系 已知如图1,BP 平分∠ABC ,CP 平分∠ACB ,求∠P 与∠A 的数量关系. 01902P A ∠=+∠ 结论二:三角形任意两个角相邻的外角的平分线说夹角与第三个角的关系. 已知如图2,BP 平分外角CBE ∠,CP 平分外角BCF ∠,求P ∠与A ∠的数量关系. 01902P A ∠=-∠ 结论三:三角形中任意一个角平分线与另一个角外角平分线的夹角与第三个角的关系 如图,BP 平分ABC ∠,CP 平分外角ACD ∠,求P ∠与A ∠的数量关系. 12 P A ∠=∠ 结论四:结论三延伸 如图,CE BE 、分别平分ACD ABC ∠∠和,连结EA ,则EA 为HAC ∠的平分线 21A E F B C 2 1P B A C

.. 应用举例: 例1:在四边形ABCD 中,?=∠120D ,?=∠100A 、ABC ∠、ACB ∠的角平分线的交 与点E ,试求BEC ∠的度数. 例2:在ABC ?中,三个外角的平分线所在的直线相交构成 DEF ?,试判断DEF ?的形 状. 例3:如图3,在ABC ?中,延长BC 到D ,ABC ∠与ACD ∠的角平分线相较于1A 点, BC A 1∠与CD A 1∠的平分线交与2A 点,以此类推,若?=∠96A ,则=∠5A , =∠n A . 图三 图四 例4:点M 是ABC ?两个角的平分线的交点,点N 是ABC ?两个外角的平分线的交点, 如果∠CMB ∶∠CNB=3∶2,那么=∠CAB 例5:( 2011年省是中考题)△ABC 的外角∠ACD 的平分线CP 的角∠ABC 平分线BP 交于 点P ,若∠BPC=40°,则∠CAP=_______.

三角形角平分线部分经典题型

1.如图1所示,在△ABC中,∠A=90°,BD平分∠ABC,AD=2 cm,则点D到BC的距离为________cm. 图1图2 2.如图2所示,在RtΔABC中,∠C=90°,BD是∠ABC的平分线,交AC于D,若CD=n,AB=m,则ΔABD的面积是() A .mn 3 1 B. mn 2 1 C.mn D.2mn 3.如图,在△ABC中,∠C=900,BC=40,AD是∠BAC的平分线交BC于D,且DC∶ DB=3∶5,则点D到AB的距离是。 4.如图,已知BD是∠ABC的角平分线,CD是∠ACB的外角平分线,由D出发,作点D到BC、AC和AB的垂线DE、DF和DG,垂足分别为E、F、G,则DE、DF、DG的关系是。 5.如图,已知AB∥CD,O为∠A、∠C的角平分线的交点,OE⊥AC于E,且OE=2, 则两平行线间AB、CD的距离等于。 6.AD是△BAC的角平分线,自D向AB、AC两边作垂线,垂足为E、F,那么下列结论中错误的是( ) A、DE=DF B、AE=AF C、BD=CD D、∠ADE=∠ADF 7.到三角形三条边的距离都相等的点是这个三角形的() A.三条中线的交点B.三条高的交点 C.三条边的垂直平分线的交点D.三条角平分线的交点 8.已知△ABC中,∠A=80°,∠B和∠C的角平分线交于O点,则∠BOC= 。 9.如图,已知相交直线AB和CD,及另一直线EF。如果要在EF上找出与AB、CD距离相等的点,方法是,这样的点至少有个,最多有个。 3题图 D C B A z .. ..

z .. .. D C B A 10.如图所示,已知△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB ,交BC 于点D ,DE ⊥AB 于点E ,且AB =6 cm,则△DEB 的周长为( )。 A.9 cm B.5 cm C.6 cm D.不能确定 11.如图,AB //CD ,CE 平分∠ACD ,若∠1=250 ,那么∠2的度数是 . 12.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B .下列结论中不一定成立的是( ) A .PA PB = B .PO 平分APB ∠ C .OA OB = D .AB 垂直平分OP 13.如图,已知AC ∥BD 、EA 、EB 分别平分∠CAB 和∠ABD ,CD 过点E ,则AB 与AC+BD?相等吗?说明理由. 14、如图所示,已知AD 为等腰三角形ABC 的底角的平分线,∠C =90° 求证:AB =AC +CD . 15、如图,在四边形ABCD 中,BC>BA ,AD=DC,BD 平分∠ABC,求证:∠A+∠C=180° 16、如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE. 求证:△ACD ≌△CBE. O B A P A B C D E D C A B E

三角形中线与角平分线专题(二)

三角形中线与角平分线专题(二) 1、三角形外角平分线的四个经典结论: 结论一:三角形任意两个角平分线的夹角与第三个角的数量关系 已知如图1,BP 平分∠ABC ,CP 平分∠ACB ,求∠P 与∠A 的数量关系. 01902P A ∠=+∠ 结论二:三角形任意两个角相邻的外角的平分线说夹角与第三个角的关系. 已知如图2,BP 平分外角CBE ∠,CP 平分外角BCF ∠,求P ∠与A ∠的数量关系. 01902P A ∠=-∠ 结论三:三角形中任意一个角平分线与另一个角外角平分线的夹角与第三个角的关系 如图,BP 平分ABC ∠,CP 平分外角ACD ∠,求P ∠与A ∠的数量关系. 12 P A ∠=∠ 结论四:结论三延伸 如图,CE BE 、分别平分ACD ABC ∠∠和,连结EA ,则EA 为HAC ∠的平分线 21A E F B C 2 1P B A C

应用举例: 例1:在四边形ABCD 中,?=∠120D ,?=∠100A 、ABC ∠、ACB ∠的角平分线的交与点E ,试求BEC ∠的度数. 例2:在ABC ?中,三个外角的平分线所在的直线相交构成 DEF ?,试判断DEF ?的形状. 例3:如图3,在ABC ?中,延长BC 到D ,ABC ∠与ACD ∠的角平分线相较于1A 点,BC A 1∠与CD A 1∠的平分线交与2A 点,以此类推,若?=∠96A ,则=∠5A ,=∠n A . 图三 图四 例4:点M 是ABC ?两个角的平分线的交点,点N 是ABC ?两个外角的平分线的交点, 如果∠CMB ∶∠CNB=3∶2,那么=∠CAB 例5:( 2011年省是中考题)△ABC 的外角∠ACD 的平分线CP 的角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP=_______.

七年级数学下册 角平分线的性质教案

第3课时 角平分线的性质 1.经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理;(重点) 2.能运用角的平分线性质定理解决简单的几何问题.(难点) 一、情境导入 问题:在S 区有一个集贸市场P ,它建在公路与铁路所成角的平分线上,要从P 点建两条路,一条到公路,一条到铁路. 问题1:怎样修建道路最短? 问题2:往哪条路走更近呢? 二、合作探究 探究点一:角平分线的性质 【类型一】 利用角平分线的性质证明线段相等 如图,在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,∠FDC =∠BDE .试说明:(1)CF =EB ;(2)AB =AF +2EB . 解析:(1)根据角平分线的性质,可得点D 到AB 的距离等于点D 到AC 的距离,即DE =DC .再根据△CDF ≌△EDB ,得CF =EB ;(2)利用角平分线的性质可得△ADC 和△ADE 全等,从而得到AC =AE ,然后通过线段之间的相互转化进行求解. 解:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴DE =DC .∵在△CDF 和△EDB 中,∵?????∠C =∠DEB =90°,DC =DE ,∠FDC =∠BDE , ∴△CDF ≌△EDB (ASA).∴CF =EB ; (2)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴∠CAD =∠EAD ,∠ACD =∠AED =90°.在△ADC 和△ADE 中,∵?????∠CAD =∠EAD ,∠ACD =∠AED ,AD =AD , ∴△ADC ≌ △ADE (AAS),∴AC =AE ,∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB .

三角形 角平分线部分经典题型

1.如图1所示,在△ABC 中,∠A =90°,BD 平分∠ABC ,AD =2 cm ,则点D 到BC 的距离为________cm . 图1 图2 2.如图2所示,在Rt ΔABC 中,∠C =90°,BD 是∠ABC 的平分线,交AC 于D ,若CD =n ,AB =m ,则ΔABD 的面积是( ) A . B . C .mn D .2mn 3.如图,在△ABC 中,∠C =900 ,BC =40,AD 是∠BAC 的平分线交BC 于D ,且DC ∶DB =3∶5,则点D 到AB 的距离是 。 4.如图,已知BD 是∠ABC 的内角平分线,CD 是∠ACB 的外角平分线,由D 出发,作点D 到BC 、AC 和AB 的垂线DE 、DF 和DG ,垂足分别为E 、F 、G ,则DE 、DF 、DG 的关系是 。 5.如图,已知AB ∥CD ,O 为∠A 、∠C 的角平分线的交点,OE ⊥AC 于E ,且OE=2,则两平行线间AB 、CD 的距离等于 。 6.AD 是△BAC 的角平分线,自D 向AB 、AC 两边作垂线,垂足为E 、F ,那么下列结论中错误的是( ) A 、DE=DF B 、AE=AF C 、BD=CD D 、∠ADE=∠ADF 7.到三角形三条边的距离都相等的点是这个三角形的( ) A.三条中线的交点 B.三条高的交点 C.三条边的垂直平分线的交点 D.三条角平分线的交点 8.已知△ABC 中,∠A=80°,∠B 和∠C 的角平分线交于O 点,则∠BOC= 。 9.如图,已知相交直线AB 和CD ,及另一直线EF 。如果要在EF 上找出与AB 、CD 距离相等的点,方法是 ,这样的点至少有 个,最多有 个。 mn 31mn 2 13题图 D C B A

三角形角平分线性质资料讲解

三角形内角平分线定理 三角形任意两边之比等于它们夹角的平分线平分对边之比。即在ΔABC中,若AD是∠A的平分线,则 BD/DC=AB/AC 应用:不用计算即可将一条线段按要求分成任意比例三角形内角平分线内平分对边,所得的两条线段与这个角的两边对应成比例. 三角形外角平分线的性质定理: 三角形外角平分线平分对边,所得的两条线段与其内角的两边对应成比例,均可以用相似△证明. 角平分线性质定理 角平分线的性质: 1.角平分线可以得到两个相等的角。 2.角平分线上的点到角两边的距离相等。 3.三角形的三条角平分线交于一点,称作三角形内心。三角形的内心到三角形三边的距离相等。 4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。 证明 ●三角形内角平分线分对边所成的两条线段,和两条

邻边成比例. 即在三角形ABC中,当AD是顶角A的角平分线交底边于D时,BD/CD=AB/AC. 证明:如图,AD为△ABC的角平分线,过点D向边AB,AC分别引垂线DE,DF.则DE=DF. S△ABD:S△ACD=BD:CD 又因为S△ABD:S△ACD=[(1/2)AB×DE]:[(1/2)AC ×DF]=AB:AC 所以BD/CD=AB/AC. 1.角平分线可以得到两个相等的角。 角平分线,顾名思义,就是将角平分的射线。 如右图,若射线AD是角CAB的角平分线,则角CAD 等于角BAD。 2.角平分线线上的点到角两边的距离相等。 如右上图,若射线AD是∠CAB的角平分线,求证:

CD=BD ∵∠DCA=∠DBA ∠CAD=∠BAD AD=AD ∴△ACD≌△ABD ∴CD=BD 3.三角形的三条角平分线交于一点,称作三角形的内心。三角形的内心到三角形三边的距离相等。 这一条是第二条的引申,详细证明过程参照第二条和三角形内心。 4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。 如右下图,平面内任意一小于180度的∠MAN,AS 平分∠MAN,直线BC分别交射线AM、AN、AS于B、C、D,求证:AB/BD=AC/CD: 作BE=BD交射线AS于E,如图1: ∵BE=BD, ∴∠BED=∠BDE, ∴∠AEB=∠ADC 又∵∠BAE=∠CAD,

等腰三角形+角平分线

第一部分:知识点回顾 角平分线的性质及判定: 1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线; 2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离; 3、角平分线的判定定理:到角的两边的距离相等的点在角平分线上。 4.注意在证明中用到这两个定理,如何把文字叙述转化成数学符号: 例:如图 角的平分线的性质定理的几何语言: ∵OC是∠AOB的平分线,PD⊥OA于D,PE⊥OB于E, ∴PD=PE 角的平分线的判定定理的几何语言: ∵PD⊥OA于D,PE⊥OB于E,PD=PE ∴点P在∠AOB的平分线上 等腰三角形的性质及判定: 1.等腰三角形 有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角. 2.等腰三角形的性质和判定 性质1 等腰三角形的两个底角相等(简写成“等边对等角”) 性质2 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称为“三线合一”) 判定 (1)有两条边相等的三角形,叫做等腰三角形 (2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称为“等角对等边”) 3.等边三角形 三条边都相等的三角形叫做等边三角形. 4.等边三角形的性质 (1)等边三角形的三个内角都相等,并且每一个角都等于60°. (2)等边三角形是轴对称图形,共有三条对称轴. (3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合. 5.等边三角形有关判定 (1 )三条边都相等的三角形是等边三角形 (2)三个角都相等的三角形是等边三角形. (3)有一个角是60°的等腰三角形是等边三角形. 6.由对等边三角形推出的一个关于直角三角形的一个性质 在直角三角形中,如果有一个锐角等于30°,那么它对的直角边等于斜边的一半. 第二部分:典型例题

三角形内角平分线的性质定理的证明

三角形内角平分线的性质定理的证明 一、定理 三角形内角平分线分对边为两部分与两邻边成比例. 二、证明 已知:如图,2∠1∠=. 求证: BC AC BD AD =. 方法一:利用平行线作等比代换. 证明:作DE//BC ,DE 交AC 于点E ,则EC AE BD AD =.3∠2∠=,BC AC DE AE = 又2∠1∠=,∴3∠1∠=,于是DE=EC. ∴BC AC DE AE BD AD == 方法二:应用平行线分线段成比例定理,等比代换中辅以等量代换. 如图,作BE//DC ,BE 交AC 的延长线于点E ,则CE AC BD AD =,E ∠1∠=,3∠2∠=.

又2∠1∠=,得E ∠3∠=,于是 BC=CE , 则BC AC BD AD =. 方法三:进行逆推分析,若在AC 的延长线上作一个CE=BC ,则只要BE//DC. 延长AC 到点E ,使CE=BC ,连接BE ,则)(E ∠3∠21 3∠+=.又∠ACB 2 12∠=, ∠E ∠3∠+=ACB ,∴3∠2∠=,于是 BE//DC. 则CE AC BD AD ==BC AC . 证法4:如图20.改变△ADC 的一个内角的大小,把它改造为△AEC ,使之与△BDC 相似并作等量代换. 第一种情况:当BC AC ≠ 时,不妨设BC AC >,B CAB ∠∠<,以AC 为一边,在CAB ∠的同侧,作B CAE ∠∠=,AE 与CD 的延长线交于点E.又2∠1∠=,∴△ACE ∽△BCD. 则BC BD AC AE =,而E CA E B ∠∠-1∠-180∠-2∠-1804∠3∠=°=°==. ∴AE=AD ,于是 BC BD AC AD =,即BC AC BD AD =.

三角形角平分线部分经典题型.docx

1如图1所示,在△ ABC中,∠ A= 90°, BD平分∠ ABC AD= 2 Cm ,则点D到BC的距离为___________ cm. 2. 如图2所示,在Rt Δ ABC中,∠ C = 90°, BD是∠ ABC的平分线,交 AC于D,若CD = n, AB = m, 则Δ ABD的面积是() 1 1 A . -mn B. — mn C. mn D. 2mn 3 2 3. 如图,在△ ABC中,∠ C= 900, BC= 40, AD是∠ BAC的平分线交BC于D,且DC: DB= 3 : 5,则点D到AB的距离是________ 。 4. 如图,已知BD是∠ ABC的内角平分线,CD是∠ ACB的外角平分线,由D出发,作点D到 BC3题题图和AB 的垂线DE DF和DG垂足分别为 E F、G贝U DE DF、DG的关系是__________________________ 5. _________________________________ 如图,已知AB// CD O为∠ A∠ C的角平分线的交点, 则两平行线间AB CD的 距离等于______________________________ 。 6. AD是厶BAC的角平分线,自D向AB AC两边作垂线,垂足为E、F,那么下列结论中错误的是 () A DE=DF B 、AE=AF C、BD=CD D∠ ADE玄ADF 7. 到三角形三条边的距离都相等的点 是这个三角形的() A.三条中线的交点 E.三条高的交点 C.三条边的垂直平分线的交点 D.三条角平分线的交点 8. 已知△ ABC中,∠ A=80°,∠ B和∠ C的角平分线交于O点,则∠ BOC= ___ 。 9. 如图,已知相交直线AB和CD及另一直线EF。如果要在EF上找出与AB CD距离相等的点,方 法 是___________ ,这样的点至少有________ 个,最多有___ 个。 OEL AC于E,且0E=2

全等三角形与角平分线经典题型资料讲解

全等三角形与角平分线 一、知识概述 1、角的平分线的作法 (1)在∠AOB的两边OA、OB上分别截取OD、OE,使OD=OE. (2)分别以D、E为圆心,以大于1/2DE长为半径画弧,两弧交于∠AOB 内一点C. (3)作射线OC,则OC为∠AOB的平分线(如图) 指出:(1)作角的平分线的依据是三角形全等的条件——“SSS”. (2)角的平分线是一条射线,不能简单地叙述为连接. 2、角平分线的性质 在角的平分线上的点到角的两边的距离相等. 指出:(1)这里的距离是指点到角两边垂线段的长. (2)该结论的证明是通过三角形全等得到的,它可以独立作为证明两条线段相等的依据.即不需再用老方法——全等三角形. (3)使用该结论的前提条件是有角的平分线,关键是图中有“垂直”. 3、角平分线的判定 到角的两边的距离相等的点在角的平分线上. 指出:(1)此结论是角平分线的判定,它与角平分线的性质是互逆的. (2)此结论的条件是指在角的内部有点满足到角的两边的距离相等,那么

过角的顶点和该点的射线必平分这个角. 4、三角形的角平分线的性质 三角形的三条角平分线相交于一点,且这点到三角形三边的距离相等. 指出:(1)该结论的证明揭示了证明三线共点的证明思路:先设其中的两线交于一点,再证明该交点在第三线上. (2)该结论多应用于几何作图,特别是涉及到实际问题的作图题. 二、典型例题剖析 例1、如图所示,四边形ABCD中,AB=AD,AC平分∠BCD,AE⊥BC,AF⊥CD.求证:△ABE≌△ADF. 例2、如图所示,BE、CF是△ABC的高,BE、CF相交于O,且OA平分∠BAC.求证:OB=OC. 例3、如图,D为BC的中点,DE⊥DF,E、F分别在AB、AC边上,则BE+CF ()

(完整版)利用角平分线构造全等三角形

善于构造 活用性质 安徽 张雷 几何问题中,若出现角平分线这一条件时,可联想角平分线的特性,灵活利用角平分线的特性来解决问题. 1.显“距离”, 用性质 很多时候,题意中只给角平分线这个条件,图上并没有出现“距离”,而角平分线性质的运用又离不开这个“距离”,所以同学们应大胆地让“距离”现身(过角平分线上的一点向角的两边作垂线段) 例:三角形的三条角平分线交于一点,你知道这是为什么吗? 分析:我们知道两条直线是交于一点的,因此可以想办法证 明第三条角平分线通过前两条角平分线的交点. 已知:如图,△ABC 的角平分线AD 与BE 交于点I ,求证:点I 在∠ACB 的平分线上. 证明:过点I 作IH ⊥AB 、IG ⊥AC 、IF ⊥BC ,垂足分别是点 H 、G 、F . ∵点I 在∠BAC 的角平分线AD 上,且IH ⊥AB 、IG ⊥AC ∴IH=IG (角平分线上的点到角的两边距离相等) 同理 IH=IF ∴IG=IF (等量代换) 又IG ⊥AC 、IF ⊥BC ∴点I 在∠ACB 的平分线上(到一个角的两边的距离相等的点,在这个角的平分线上).即:三角形的三条角平分线交于一点. 【例2】已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,?它们交于点P ,PD ⊥BM 于D ,PF ⊥BN 于F . 求证:BP 为∠MBN 的平分线. 【分析】要证BP 为∠MBN 的平分线,只需证PD=PF ,而PA 、PC 为外角平分线,?故可过P 作PE ⊥AC 于E .根据角平分线性质定理有PD=PE ,PF=PE ,则有PD=PF ,故问题得证. 【证明】过P 作PE ⊥AC 于E . ∵PA 、PC 分别为∠MAC 与∠NCA 的平分线.且PD ⊥BM ,PF ⊥BN ∴PD=PE ,PF=PE,∴PD=PF 又∵PD ⊥BM ,PF ⊥BN,∴点P 在∠MBN 的平分线上, D C A E H I F G

三角形、角平分线及练习综述

三角形单元复习与巩固 知识网络 目标认知 学习目标 1.了解三角形的边、高、中线、角平分线的定义及性质; 2.掌握三角形的内角和及多边形的内角和公式; 3.通过三角形的内角和来确定三角形的外角和以及多边形的外角和; 4.会利用多边形的内角和公式求多边形的边数、角度数、外角度数等; 5.掌握多边形内角和性质的应用. 重点 三角形的三边关系,以及三角形内角和定理的综合应用. 难点 本章的难点是镶嵌问题,它综合运用到多边形内角和以及正多边形等知识. 知识要点梳理 知识点一:三角形的有关的概念 1.三角形定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形,组成三角形的线段叫做三角形的边,相邻两边上的公共点叫做三角形的顶点,相邻两边所组

成的角叫做三角形的内角,简称三角形的角. 注意:通过三角形的定义可知,三角形的特征有:①三条线段;②不在同一条直线上; ③首尾顺次连接. 这是判定是否是三角形的标准. 2.三角形的表示方法:“三角形”用符号“△”表示,顶点是A,B,C的三角形,记作“△ABC”,读作“三角形ABC”. 3.三角形的分类 4.三角形的三边关系 ①三边关系性质:三角形的任意两边之和大于第三边,任意两边之差小于第三边,三角形的三边关系反应了任意三角形边的限制关系. ②三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形. 当已知三角形两边长,可求第三边长的取值范围. 注意:①这里的“两边”指的是任意的两边. 对于“两边之差”它可能是正数,也可能是负数,一般地取“差”的绝对值;②三角形的三边关系是“两点之间,线段最短”的具体应用. 知识点二:三角形的高、中线、角平分线 1.三角形的高:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高. 注意: ①三角形的高线是一条线段; ②锐角三角形的三条高都在三角形内,三条高的交点也在三角形内部;钝角三角形有两条高落在三角形的外部,一条在三角形内部,三条高所在直线交于三角形外一点;直角三角形有两条高恰好是三角形的两条直角边,另一条在三角形的内部,它们的交点是直角的顶点. ③三角形的三条高交于一点,这一点叫做三角形的垂心. 2.三角形的中线:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线. 注意: ①三角形的中线是一条线段; ②三角形的每一条中线将三角形分成两个面积相等的三角形; ③三角形三条中线交于三角形内一点,这一点叫做三角形的重心.

三角形中线和角平分线在解题中的应用(整理八种方法)

解三角形题目的思考 文科:在△ABC 中,D 是BC 的中点,若AB=4,AC=1,∠BAC=60°,则AD=_______; 理科:在△ABC 中,D 在BC 上,AD 平分∠BAC ,若AB=3,AC=1,∠BAC=60°,则AD=_______; 常规解法及题根: (15年新课标2理科)?ABC 中,D 是BC 上的点,AD 平分∠BAC ,?ABD 是?ADC 面积的2倍。 (Ⅰ)求C B ∠∠sin sin ; (Ⅱ) 若AD =1,D C = 22求BD 和AC 的长. (15年新课标2文科)△ABC 中D 是BC 上的点,AD 平分∠BAC ,BD =2DC . (I )求sin sin B C ∠∠ ; (II )若60BAC ∠=o ,求B ∠. 重点结论:角平分线性质: (1)平分角 (2)到角两边距离相等 (3)线段成比率 中点性质与结论: (1)平分线段; (2)向量结论; (3)两个小三角形面积相等。 题目解法搜集: 解法1(方程思想):两边及夹角,利用余弦定理求第三边,然后在小三角形中求解; 在△ABC 中,D 在BC 上,AD 平分∠BAC ,若AB=3,AC=1,∠BAC=60°,则AD=_______; 解:在△ABC 中,222BC =AB +AC -2AB AC cos BAC=7∠g g ,则7 因为AD 平分∠BAC ,则AB BD AC DC = ,所以BD=37,DC=7; 在△ABD 中,设AD=x ,利用cos ∠BAD=cos30°=222 2AB AD BD AB AD +-g 即2 22373323x x +-??=?,解得x= 933344。 若在△ADC 中,设AC=m ,则273=1216x x +-,解得x=333。

三角形——角平分线专题训练

1 垂直平分线和角平分线专项练习 1、如图,Rt △ABC 的斜边AB 中点为E ,ED ⊥AB 交BC 于D ,且∠CA D ︰∠BAD =1︰7,求∠BAC 的度数。 2、如图,在△ABC 中,DE 垂直平分AB 于E,交AC 于D,若AB =AC =32,BC =21,求△BCD 的周长。 3、如图,在△ABC 中,∠BAC =α>90°,PM 、QN 分别垂直平分AB 、AC ,垂足分别为M 、N ,交BC 于P 、Q ,求∠PAQ 的度数。 4、已知在△ABC 中∠ABC 、∠ACB 的平分线交于点I ,过点I 作DE//BC ,分别交AB 、AC 于点D 、E 。AB=15cm ,AC=13cm,试求△ADE 的周长。 5、如图,AF 平分∠BAC ,P 是AF 上任一点,过P 向AB 、AC 作垂线PD 、PE ,D 、E 分别为垂足,连结DE ,求证:AF 垂直平分DE 。 6、如图,在△ABC 中,AD 为∠BAC 的平分线,FE 垂直平分AD ,E 为垂足,EF 交BC 的延长线于F ,求证:∠CAF =∠B A B C D E C A B D E A B C P Q M N A B C E P D F A B C D E F 3 2 1 I E D A B C

2 7、如图,在△ABC 中,∠ACB =90°,D 是BC 延长线上一点,BD 的垂直平分线交AB 于P ,PD 交AC 于E ,求证:点P 也在AE 的垂直平分线上。 9、如图,AD ⊥DC ,BC ⊥DC ,E 是DC 上一点,AE 平分∠DAB ,BE 平分∠ABC , 求证:AB=AD+BC。 10、如图,在等边△ABC 中,AE =CD ,AD 、BE 交于点P ,BQ ⊥AD 于Q ,求证:BP =2PQ 11、如图,已知△ABC 中,AB =AC ,F 在AC 上,在BA 的延长线上取AE =AF ,求证EF ⊥BC (用多种方法) 15、如图,已知△ABC 中,AB =AC ,∠A =100°,∠B 的平分线交AC 于D ,求证:AD +BD =BC 16、如图,已知△ABC 中,BC =AC ,∠C =90°,∠A 的平分线交BC 于D ,求证:AC +CD =AB A B C P D E F A C B D A C B D A B C D E A E B C D A B C D Q E P

三角形角平分线地结论及应用

浅议三角形角平分线的结论及应用 摘要: 一个角的平分线是一条射线,而三角形的角平分线是一条线段。本文主要谈两点:关于三角形的内、外角平分线的夹角的问题和关于三角形内、外角平分线的交点问题。 关于三角形的内、外角平分线的夹角问题:(1)三角形两内角平分线的夹角等于90度与三角形第三个内角的一半的和。(2)三角形两外角平分线的夹角等于90度与三角形第三个内角的一半的差。(3)三角形一个内角的平分线与一个外角平分线的夹角等于三角形第三个内角的一半(4)三角形两内角平分线的夹角与两外角平分线的夹角互补或相等。 关于三角形内外角平分线的交点问题:(5)三角形的三条内角平分线相交于一点,这点到三角形的三边的距离相等(6)三角形两外角平分线的交点到三角形三边所在的直线相等,并且这点在三角形第三个内角的平分线上等关键词:三角形角平分线夹角交点变式练习 一个三角形的角平分线不外乎就是内角的平分线和外角的角平分线。在学习过程中,教师要指导学生善于对三角形的角平分线的基本图形进行归纳,对角平分线的性质和结论做好总结,这样对以后知识的积累有很大的帮助,对解决复杂的几何证明题也更便捷。下面就三角形角平分线的相关结论逐一探讨。结论一:如图1、在△ABC中,∠ABC、∠ACB的角平分线的交与点D, 1∠A。 试探究:∠D=90°+ 2 解:∵BD、CD为角平分线 1∠ABC,(图1) ∴∠CBD= 2

1∠ACB。 ∠BCD= 2 在△BCD中:∠D=180°-(∠CBD+∠BCD) 1(∠ABC+∠ACB) =180°- 2 1(180°-∠A) =180°- 2 1∠A =90°+ 2 变式练习的题目有 (1)如图2、在△ABC中,∠ABC、∠ACB的角平分线的交与点D,∠D=100°,则∠A的度数是度。 1∠A。则∠A=2∠D―180°, 解:由结论1得知,∠D=90°+ 2 容易得出∠A=20°(图2) (2)如图3:在四边形ABCD中,∠D=120°,∠A=100° ∠ABC、∠ACB的角平分线的交与点E,试求∠BEC的度数。 解:∵∠A+∠ABC+∠ACB+∠D=360° 又∵∠D=120°,∠A=100° ∴∠ABC+∠ACB=140° ∵BE、CE分别是ABC、∠ACB的角平分线 ∴∠EBC+∠ECB=70°. (图3) ∴∠BEC=110°. 结论二、如图4,△ABC中,D为△ABC的两条外角平分线的交点,试探究: 1∠A ∠D=90°- 2 解:∵BD、CD为角平分线 1∠CBE ∴∠CBD= 2 1∠BCF(图4) ∠BCD= 2

角平分线的性质 知识点

角平分线的性质 一、本节学习指导 角平分线的性质有助于我们解决三角形全等相关题型。其实不仅仅是角平分线,还有三角形的中位线、高、中心都是解决三角形题目有效的途径。本节有配套免费学习视频。 二、知识要点 1、角平分线的定义:从一个角的顶点出发把一个角分成两个相等的角的射线叫做角的平分线。 如下图:OC平分∠AOB ∵OC平分∠AOB ∴∠AOC=∠BOC 2、角的平分线的性质:角平分线上的点到角的两边的距离相等。【重点】 如第一个图: ∵OC平分∠AOB(或∠1=∠2),PE⊥OA,PD⊥OB ∴PD=PE,此时我们知道△OPE≌△OPD(直角三角形斜边是OP即公共边,直角边斜边) 3、角的平分线的判定:角的内部到角的两边距离相等的点在角的平分线上。 如第一个图: ∵PE⊥OA,PD⊥OB,PD=PE ∴OC平分∠AOB(或∠1=∠2)

4、线段的中点的定义:把一条线段分成两条相等的线段的点叫做线段的中点。 如下图: ∵C是AB的中点 ∴AC=BC 5、垂直的定义:两条直线相交所成的四个角中有一个是直角,这两条直线互相垂直。 如图:【重点】 ∵AB⊥CD ∴∠AOC=∠AOD=∠BOC =∠BOD=90° 或∵∠AOC=90° ∴AB⊥CD 注意:要判断两条直线垂直,只要知道这两条相交直线所形成的四个角中的 一个角是直角就可以了。反过来,两条直线互相垂直,它们的四个交角都是直角。 6、全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。 ∵△ABC≌△A'B'C' ∴AB=A'B',BC=B'C',AC=A'C'; ∠A=∠A', ∠B=∠B', ∠C=∠C'

人教版八年级上册123角平分线的性质教案

角的平分线的性质(一) 教学目标 1、应用三角形全等的知识,解释角平分线的原理. 2.会用尺规作一个已知角的平分线. 教学重点 利用尺规作已知角的平分线. 教学难点 角的平分线的作图方法的提炼. 教学过程 Ⅰ.知识回顾 问题1:三角形中有哪些重要线段. 问题2:你能作出这些线段吗? Ⅱ.合作探究 思考:右图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗? 要说明AC是∠DAC的平分线,其实就是证明∠CAD=∠CAB. ∠CAD和∠CAB分别在△CAD和△CAB中,那么证明这两个三角形全等就可以了. 看看条件够不够 在△ABC和△ADC.因为 所以△ABC≌△ADC(SSS). 所以∠CAD=∠CAB. 即射线AC就是∠DAB的平分线. 这种平分角的方法告诉了我们一种作已知角的平 分线的方法。 作已知角的平分线的方法: 已知:∠AOB. 求作:∠AOB的平分线. 作法: (1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.

(2)分别以M、N为圆心,大于MN的长为半径作弧.两弧在∠AOB 内部交于点C. (3)作射线OC,射线OC即为所求. 议一议: 1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?2.第二步中所作的两弧交点一定在∠AOB的内部吗? 总结: 1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线. 2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB?的内部,也可能在∠AOB的外部,而我们要找的是∠AOB 内部的交点,?否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了. 3.角的平分线是一条射线.它不是线段,也不是直线,?所以第二步中的两个限制缺一不可. 4.这种作法的可行性可以通过全等三角形来证明. 思考 如图,任意画一角∠BAC,做出∠BAC的角平分线AP,在AP上任取一点O,过点O画出OA,OB的垂线,分别记垂足为E,D。测量OE,OD并作比较,你得到什么结论?在OP上再取几个点试试。 通过以上测量,你发现了角的平分线的什么性质? P Ⅲ.课堂精讲 我们猜想角的平分线有以下性质: 角平分线的性质:角平分线上的点到角的两边的距离相等. 下面,我们利用三角形全等证明这个性质。首先,要先分清其中的“已知”和“求证”。显然,已知为一的点在一个角的平分线上,要

相关主题