搜档网
当前位置:搜档网 › 常微分方程的基本概念

常微分方程的基本概念

常微分方程的基本概念
常微分方程的基本概念

第十三章 常微分方程简介

本章介绍微分方程的有关概念及某些简单微分方程的解法。

微分方程是包含未知函数及其导数的方程。由微分方程能够求出未知函数的解析表达式,从而掌握所研究的客观现象的变化规律和发展趋势。因此,掌握这方面的知识,用之分析解决问题是非常重要的。

由于在大多数情况下,微分方程很难求出初等解(即解的形式是初等函数)。那么,就需要研究解的存在理论,借助计算机求出微分方程的数值解。

本章的内容,仅仅包含常微分方程的一些最初步的知识,特殊的一阶和部分二阶微分方程的初等解法;最后一节讨论微分方程的简单应用。

§1 常微分方程的基本概念

像过去我们研究其他许多问题一样,首先通过具体实际例子来引入微分方程的概念。 1.1 两个实例

例1.1 设某一平面曲线上任意一点),(y x 处的切线斜率等于该点处横坐标x 的2倍,且曲线通过点)2,1(,求该曲线的方程。

解 平面上的曲线可由一元函数来表示

设所求的曲线方程为)(x f y =,根据导数的几何意义,由题意得 x dx

dy

2=(这是一个含未知函数)(x f y =的导数的方程)。

另外,由题意,曲线通过点)2,1(,所以,所求函数)(x f y =还满足2|1==x y 。

从而得到 12 (1.1)|2(1.2)

x dy x dx y =ì??=?í??=??,。

为了解出)(x f y =,我们只要将(1.1)的两端积分,得

?+=+==C x C x xdx y 22

2

22,

我们说 C x y +=2对于任意常数C 都满足方程(1.1)。

再由条件(1.2),将2|1==x y 代入C x y +=2,即 C +=2121=?C 。 故所求曲线的方程为12+=x y 。

再看一个例子:

例1.2 设质点以匀加速度a 作直线运动,且0=t 时0,0v v s ==。求质点运 动的位移与时间t 的关系。

解 这是一个物理上的运动问题。 设质点运动的位移与时间的关系为

)(t s s =。

则由二阶导数的物理意义,知a t

d s d =22

,这是一个含有二阶导数的方程。 再由题意000

|0

|t t s v v ==ì=??í

?=??,因此,)(t S S =应满足问题 22

000 (1.3)|0|(1.4)t t d s a dt

s v v ==ì??=?í??==???,,。

要解这个问题,我们可以将(1.3)两边连续积分两次,即

1C at dt

ds

+=, (1.5) ??++=21C dt C tdt a s ,即 2122

C t C t a s ++=, (1.6) 其中21,C C 为任意常数。

由条件(1.4),因为0|0==t s ,代入(1.6),得02=C ;

再由00|v v t ==,代入(1.5),得01v C =。

故得 t v t a s 02

2

+= 为所求。 下面我们将通过分析这两个具体的例子,给出微分方程的一些基本概念。

1.2 微分方程的基本概念

总结所给出的两个具体的例子,我们看到:

(1) 例1.1的)1(式和例1.2 的)1(式都是含有未知函数的导数的等式(例1含一阶导数,例2含二阶导数);

(2) 通过积分可以解出满足这等式的函数;

(3) 所求函数除满足等式外,还满足约束条件(例1中的)2(式和例2 中的)2(式)

(初始条件:例1有一个初始条件,例2有两个初始条件)。 由此,我们得到如下的概念。 1 微分方程的概念

定义1.1 含有未知函数的导数(或微分)的方程称为微分方程。未知函数是一元函数的方程叫做常微分方程;未知函数是多元函数的方程,叫做偏微分方程。

注 (1) 方程中强调含有未知函数的导数。因此,它是反映未知函数、未知函数的导数与自变量之间关系的方程在微分方程中未知函数几自变量可以不单独出现,但必须出现未知函数的导数。

(2) 微分方程中的自变量由问题而定。如x dx dy 2=的自变量是x ,2at dt

ds

=的自变量是t ,

y x dy

dx

+=的自变量是y 。 (3) 微分方程中只含一个自变量的叫常微分方程。

例如,2233x y x y x y x ='+''+'''是常微分方程;x xe y =不是微分方程;

022222=??+??+??z

u

y u x u 是偏微分方程(本章不研究)

。 2 微分方程的阶

定义1.2 微分方程中出现的未知函数的最高阶导数的阶数叫做微分方程的阶。

例如,

x dx

dy

2=是一阶微分方程; a dt s

d =2

2是二阶微分方程; 2233x y x y x y x ='+''+'''是三阶微分方程; n x y ='是一阶微分方程;

一般地,0),,(='y y x F 是一阶微分方程的一般形式是

0),,,,()(='n y y y x F Λ, (1.7) 其中F 是个2+n 变量的函数。这里必须指出,在方程(1.7)中,)(n y 是必须出现的,而)1(,,,,-'n y y y x Λ等变量则可以不出现。例如n 阶微分方程

01)(=+n y

中,除)(n y 外,其他变量都没有出现。

如果能从方程(1.7)中解出最高阶导数,得微分方程

()(1)(,,,,)n n y f x y y y -¢=L 。 (1.8)

以后我们讨论的微分方程都是已解出最高阶导数的方程或能解出最高阶导数的方程,且(1.8)式右端的函数f 在所讨论的范围内连续。

3 微分方程的解

定义1.3 如果把某函数)(x y ?=代入微分方程,能使方程成为恒等式,那么称此函数为微分方程的解。确切地说,设函数)(x y ?=在区间I 上有n 阶连续导数,

如果在区间I 上,()

[,(),(),,()]0n F x x x x j j j ¢

oL ,那么函数)(x y ?=就叫做微分

方程(1.7)在区间I 上的解。

例如 ① C x y +=2是

x dx dy

2=的解; ② 12+=x y 也是x dx

dy

2=的解;

③ 2122C t C t a s ++=是2at dt ds

=的解;

④ t v at s 022+=也是2at dt

ds

=的解。 定义1.4(通解、特解) 如果微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解。确定了通解中任意常数,就得到了微分方程的特解。

如 ①,③是通解。②,④是特解。

注 (1) 微分方程的解有三种形式:显式解 )(x f y =或)(y g x =;隐式解

由方程0),(=y x ?确定的函数关系(通积分);参数方程形式的解 ()

()

x t y t j y ì=??í

?=??。 (2) 微分方程的通解:是指含有任意常数,且任意常数的个数与方程的阶数相同的解。

(3) 微分方程的通解也不一定能包含它的一切解。如0122=-+'y y 的通解为)sin(C x y +=,但1±=y 也是微分方程的解,但它不包含在通解中,因为无论

C 取何值都得不到1±=y 。

4 微分方程的初始条件

在例1.1中,当1=x 时2=y ,通常记为2|1==x y 或2)1(=f ; 在例1.2中,当0=t 时0=s 即0|0==t s ,当0=t 时0v dt

ds

=即00|v s t ='= 这些用来确定任意常数的条件为初始条件。

一般来说,一阶微分方程0),,(='y y x F 有一个初始条件00|y y x x ==; 二阶微分方程0),,,(='''y y y x F 有两个初始条件00|y y x x ==与10|y y x x ='=;

…………

n 二阶微分方程0),,,,()(='n y y y x F Λ有n 个初始条件。

5 初值问题

求微分方程满足初始条件的特解,称为初值问题。 如例1.1中的⑴、⑵;例1.2中的⑴、⑵。 一般一阶微分方程的初值问题记作

0(,,)0|x x F x y y y y =ì¢=??í?=??; (1.9) 二阶微分方程的初值问题记作

000

1

(,,,)0||x x x x F x y y y y y y y ==ì?ⅱ?=???

=í???¢=??? 。 (1.10) 6 微分方程解的几何意义

常微分方程的特解的图形为一条曲线,叫做微分方程的积分曲线; 微分方程的通解的图形是以C 为参数的曲线族,且同一自变量x 对应的曲线上的点处处切线的斜率相同。

初值问题(1.9)的解的几何意义是微分方程通过点),(00y x 的那条积分曲线。 初值问题(1.10)的解的几何意义是微分方程通过点),(00y x 且在该点的斜率为

1y 的那条积分曲线。

例1.3 验证:函数

kt C kt C x sin cos 21+= (1.11)

是微分方程

0222=+x k dt

x

d (1.12)

的解。

解 求出所给函数(1.10)的导数

,cos sin 21kt kC kt kC dt

dx

+-= (1.13)

)sin cos (sin cos 212

22122

2kt C kt C k kt C k kt C k dt

x d +-=--= 把 22dt

x

d 及 x 的表达式代入方程(1.11)得

)sin cos (212kt C kt C k +-+)sin cos (212kt C kt C k +0≡

函数(1.10)及其导数代入方程(1.11)后成为一个恒等式,因此函数(1.10)是微分方程(1.11)的解。

例1.4 已知函数(1.10)当 0k ≠ 时是微分方程(1.11)的通解,求满足初始条件

00

|,

0t t dx

x A dt ==== 的特解。

解 将条件“0t = 时,x A =”代入(1.10)式得

1C A =。

将条件“0t = 时,

0dx

dt

=”代入(1.12)式,得 20C =。

把12,C C 的值代入(1.10)式,就得所求的特解为

cos x A kt =。

练习13.1

1.选择题:

(1)微分方程

2

2

2e x

d y dy

y

dx

dx

++=是____________。

(A)齐次的;(B)线性的;(C)常系数的;(D)二阶的。

(2)微分方程

2

2

d y

y

dx

+=的通解是______________。

(A )sin y A x =; (B )cos y B x =; (C )sin cos y x B x =+; (D )sin cos y A x B x =+。 (3)下列方程中是一阶微分方程的有___________。

(A )2()20x y yy x ''-+=; (B )2457()5()0y y y x '''+-+= (C )2222()()0x y dx x y dy -++=; (D )0xy y y '''++=。 (4)下列等式中是微分方程的有___________。

(A )()u v uv uv '''+=; (B )e sin x y x '=+;

(C )(e )e x x

dy d y dx dx

++=; (D )340y y y '''++=。

2.填空题:

(1)方程2()369y y '++=是__________阶微分方程。 (2)方程ln xy y y '=的通解是_____________________。 (3)方程348y y y '''--=的通解是____________________。 (4)方程sin y x x ''=+的通解是_________________________。

(5)设1e x y =,2e x y x =+是线性微分方程()()y p x y q x '+=的两个特解, 则该方程的通解为____________________。

(6)函数21e x y =,22e x y x =所满足的二阶常系数齐次线性微分方程为________。

3.指出下列微分方程的阶数:

(1)02)(2=+'-'x y y y x ; (2) 0)(5)(6543=+-'+''x y y y ; (3) 022=+''+'''y x y y x ; (4) 0)()(2222=++-dy y x dx y x 。 4.验证微分方程后所列的函数是否为微分方程的解,是否是通解. (1) y y x 2=',25x y =; (2) 0)(2=+'-'-'y y x y y ,cx y =;

(3) 0=+''y y ,x x y cos 4sin 3-=; (4) 02=+'-''y y y ,x x y e =; (5) y x y y x -='-2)2(,c y xy x =+-22。

5.列车在平直线路上以20s m /的速度行驶;当制动时列车获得加速度

2/4.0s m -。问开始制动后多少时间列车才能停住,以及列车在这段时间里行驶

了多少路程?

6.确定函数关系式212()x y C C x e =+中所含的参数,使其满足初始条件

(0)0y =,(0)1y ¢

=。 7.设曲线上点(,)P x y 处的法线与x 轴的交点为Q ,且线段PQ 被y 轴平分,试确定该曲线满足的微分方程。

(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,

供参考,感谢您的配合和支持)

《常微分方程》期末试卷

《常微分方程》期末试卷(16) 班级 学号 姓名 得分 评卷人 一、填空题(每小题5分,本题共30分) 1.方程x x y x y e sin d d =+的任一解的最大存在区间必定是 . 2.方程04=+''y y 的基本解组是 . 3.向量函数组)(,),(),(21x x x n Y Y Y 在区间I 上线性相关的________________条件是在区间I 上它们的朗斯基行列式0)(=x W . 4.李普希兹条件是保证一阶微分方程初值问题解惟一的 条件. 5.n 阶线性齐次微分方程的所有解构成一个 维线性空间. 6.向量函数组)(,),(),(21x x x n Y Y Y 在其定义区间I 上线性相关的 条件是它们的朗斯基行列式0)(=x W ,I x ∈. 得分 评卷人 二、计算题(每小题8分,本题共40分) 求下列方程的通解 7. x y x y 2e 3d d =+ 8. 0)d (d )(3223=+++y y y x x xy x 9.0e =-'+'x y y 10.求方程x y y 5sin 5='-''的通解. 11.求下列方程组的通解. ???????+=+=y x t y y x t x 4d d d d 得分 评卷人 三、证明题(每小题15分,本题共30分)

12.设)(1x y ?=和)(2x y ?=是方程0)(=+''y x q y 的任意两个解,求证:它们的朗斯基行列式C x W ≡)(,其中C 为常数. 13.设)(x ?在区间),(∞+-∞上连续.试证明方程 y x x y sin )(d d ?= 的所有解的存在区间必为),(∞+-∞.

高等数学 简明二阶微分方程讲义

高等数学简明二阶微分方程讲义 作者:齐睿添 ————微分方程的理论帮助了很多工程学,物理学中实际 问题的解决 讨论0. 欧拉公式 欧拉公式在二阶线性齐次常系数方程通解的推导和其非齐次方程的自由项为三角函数时的求解过程中有重要的应用. 讨论1. 二阶常系数线性齐次微分方程 实际问题1. 如图,在水平光滑平面上有一物体在弹簧和阻尼器的牵拉下往复运动.阻力f的大小与物体运动速率成正比,阻力f的方向与速度方向相反(f=-cv).

物体的位置随时间如何变化? 设位置函数x=x(t) 已知: F弹=-kx,f=-cv 故由牛顿第二定律: 合力=-kx-cv=ma 即a+(c/m)v+(k/m)x=0 得到微分方程: 记 得到形如下式的方程(*) 这便是一个二阶常系数线性齐次微分方程. 其通解如下表所示: 特征方程

(上表的具体推导与证明详见教材P174-177) 可以发现其通解形式是符合物块运动的直观直觉的. 1)如果阻力很大,弹簧弹性弱,那么物块晃动两下很快就会停止. 这种情况下,列出方程的通解应是表中第一条或者第二条. 例如:取m=1kg, k=3, c=4, 一开始物块位置在+0.5m处, 给予它一个初速度-5 m/s. 我们依照数学习惯将时间(自变量)记为x, 将位置(因变量)记为y. 那么方程为: . 特征方程为,有两个不相等实根 通解为 把初值条件带入 求得 故该例的解为 图像

2)如果阻力很小,弹簧的弹性很强,那么物块将反复往返震荡,幅度随时间越来越小.这种情况下方程通解应是上表第三条. 例如: 取m=1kg,c=3,k=4,一开始物块位置在+0.5m处, 给予它一个初速度-5 m/s. 即为 带入初值条件 C_1=1/2, C_2=-17根号7/14 图像为

常微分方程知识点总结

常微分方程知识点总结 常微分方程知识点你学得怎么样呢?下面是的常微分方程知识 点总结,欢迎大家阅读! 微分方程的概念 方程对于学过中学数学的人来说是比较熟悉的;在初等数学中 就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和数之间的关系找出来,列出包含一个数或几个数的一个或者多个方程式,然后取求方程的解。 但是在实际工作中,常常出现一些特点和以上方程完全不同的 问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。 物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个的函数。 解这类问题的基本思想和初等数学解方程的基本思想很相似, 也是要把研究的问题中已知函数和函数之间的关系找出来,从列出的包含函数的一个或几个方程中去求得函数的表达式。但是无论在方程

的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。 在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示函数的导数以及自变量之间的关系的方程,就叫做微分方程。 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。 常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常 有力的工具。 牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星 的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。

(完整版)常微分方程发展简史——解析理论与定性理论阶段3常微分

第三讲 常微分方程发展简史——解析理论 与定性理论阶段 3、常微分方程解析理论阶段:19世纪 19世纪为常微分方程发展的解析理论阶段. 作为微分方程向复数域的推广, 微分方程解析理论是由Cauchy 开创的. 在Cauchy 之后,重点转向大范围的研究。 级数解和特殊函数 这一阶段的主要结果之一是运用幂级数和广义幂级数解法, 求出一些重要的二阶线性方程的级数解, 并得到极其重要的一些特殊函数. 常微分方程是17、18世纪在直接回答物理问题中兴起的. 在着手处理更为复杂的物理现象, 特别是在弦振动的研究中, 数学家们得到了偏微分方程. 用变量分离法解偏微分方程的努力导致求解常微分方程的问题. 此外, 因为偏微分方程都是以各种不同的坐标系表出的, 所以得到的常微分方程是陌生的, 并且不能用封闭形式解出. 为了求解应用分离变量法与偏微分方程后得到的常微分方程, 数学家们没有过分忧虑解的存在性和解应具有的形式, 而转向无穷级数的方法. 应用分离变量法解偏微分方程而得到的常微分方程中最重要的是Bessel 方程. 222 ()0x y xy x n y '''++-= 其中参数n 和x 都可以是复的. 对Bessel 来说, n 和x 都是实的. 此方程的特殊情形早在1703年Bernoulli Jacobi 给Leibnitz 的信中就已提到, 后来Bernoulli Daniel 、Euler 、Fourier 、Poisson 等都讨论过此问题. 对此方程的解的最早的系统研究是由Bessel 在研究行星运动时作出的. 对每个n , 此方程存在两个独立的基本解, 记作()n J x 和()n Y x , 分别称为第一类Bessel 函数和第二类Bessel 函数, 它们都是特殊函数或广义函数(初等函数之外的函数). Bessel 自1816年开始研究此方程, 首先给出了积分关系式 20 ()cos(sin ).2n q J x nu x u du ππ=-? 1818年Bessel 证明了()n J x 有无穷多个零点. 1824年, Bessel 对整数n 给出了递推关系式 11()2()()0n n n xJ x nJ x xJ x +--+= 和其他的关于第一类Bessel 函数的关系式. 后来又有众多的数学家(研究天体力学的数学家)独立地得到了Bessel 函数及其表达式和关系式. Bessel 为微分方程解析理论作出了巨大贡献。 解析理论中另一重要内容是Legendre 方程的级数解和Legendre 多项式方面的结果. 1784年, Legendre 研究了Legendre 方程2 (1)20x y xy y λ'''-++=, 给出了幂级数形式的解, 得到

常微分方程期末考试题大全东北师大

证明题: 设()x f 在[)+∞,0上连续,且()b x f x =+∞ →lim ,又0>a ,求证:对于方程 ()x f ay dx dy =+的一切解()x y ,均有()a b x y x =+∞→lim 。 证明 由一阶线性方程通解公式,方程的任一解可表示为 ()()?? ????+=?-x at ax dt e t f C e x y 0, 即 ()()ax x at e dt e t f C x y ?+= 。 由于b x f x =+∞ →)(lim ,则存在X ,当X x >时,M x f >)(。因而 ()dt e M dt e t f dt e t f x X at X at x at ??? +≥0 )( ())(0 aX ax X at e e a M dt e t f -+ = ? , 由0>a ,从而有()∞=?? ????+?+∞→x at x dt e t f C 0lim ,显然+∞=+∞ →ax x e lim 。 应用洛比达法则得 ()()ax x at x x e dt e t f C x y ?+=+∞ →+∞ →0 lim lim ()ax ax x ae e x f +∞→=lim ()a b a x f x ==+∞ →lim 。 证明题:线性齐次微分方程组x A x )(t ='最多有n 个线性无关的解,其中)(t A 是定义在区间b t a ≤≤上的n n ?的连续矩阵函数。 证 要证明方程组x A x )(t ='最多有n 个线性无关的解,首先要证明它有n 个线性无关的解,然后再证明任意1+n 个解都线性相关。

(完整版)常微分方程的大致知识点

= + ?x = + ?x = + ?x 常微分方程的大致知识点 (一)初等积分法 1、线素场与等倾线 2、可分离变量方程 3、齐次方程(一般含有 x 或 y 的项) y x 4、一阶线性非齐次方程 常数变易法,或 y = e ? a ( x )dx [? b (x )e -? a ( x )dx dx + C ] 5、伯努力方程 令 z = y 1-n ,则 dz = (1 - n ) y -n dy ,可将伯努力方程化成一阶线性非齐次或一阶线性齐次 dx 6、全微分方程 若?M ?y 若 ?M ?y dx = ?N ,则u (x , y ) = C ,(留意书上公式) ?x ≠ ?N ,则找积分因子,(留意书上公式) ?x f (x f ( y , (二)毕卡序列 x y 1 y 0 0 x f (x , y 0 )dx , y 2 y 0 0 x f (x , y 1 )dx , y 3 y 0 0 f (x , y 2 )dx ,其余类推 (三)常系数方程 1、常系数齐次L (D ) y = 0 方法:特征方程 7、可降阶的二阶微分方程 d 2 y = , dy ) ,令 dy = d 2 y p ,则 = dy dx 2 d 2 y = dx dy ) ,令 dx dy = p ,则 dx 2 d 2 y dx = p dp dx 2 dx dx dx 2 dy 8、正交轨线族

? ? dy 单的实根, , y = C e 1x + C e 2 x 1 2 1 2 单的复根1, 2 = ± i , y = e x (C cos x + C 2 sin x ) 重的实根 = = , y = (C + C x )e x 1 2 1 2 重的复根1, 2 = ± i ,3, 4 = ± i , y = e x [(C + C 2 x ) c os x + (C 3 + C 4 x ) sin x ] 2、常系数非齐次L (D ) y = 方法:三部曲。 f (x ) 第一步求L (D ) y = 0 的通解Y 第二步求L (D ) y = f (x ) 的特解 y * 第三步求L (D ) y = f (x ) 的通解 y = Y + y * 如何求 y * ? 当 f (x ) = P m (x )e x 时, y * = x k Q (x )e x 当 f (x ) = P m (x )e ux cos vx + Q (x )e ux sin vx 时, y * = x k e ux (R (x ) cos vx + S m (x ) sin vx ) 当 f (x ) 是一般形式时, y * = ? x W (x ,) f ()d ,其中 W(.)是郎斯基行列式 x 0 W () (四)常系数方程组 方法:三部曲。 第一步求 dX dt = A (t ) X 的通解, Φ(t )C 。利用特征方程 A - I = 0 ,并分情况讨论。 第二步求 dX dt 第三步求 dX dt = A (t ) X + f (t ) 的特解, Φ(t )?Φ-1 (s ) f (s )ds ,(定积分与不定积分等价) = A (t ) X + f (t ) 的通解, Φ(t )C + Φ(t )?Φ-1 (s ) f (s )ds (五)奇点与极限环 ? dx = ax + b y dt ? ? = cx + dy 1、分析方程组? dt 的奇点的性质,用特征方程: A - I = 0 特征方程的根有 3 种情况:相异实根、相异复根、相同实根。第一种情况:相异实根,1 ≠ 2 1 1 m m m

《常微分方程》期末模拟试题

《常微分方程》模拟练习题及参考答案 一、填空题(每个空格4分,共80分) 1、n 阶线性齐次微分方程基本解组中解的个数恰好是 n 个。 2、一阶微分方程 2=dy x dx 的通解为 2=+y x C (C 为任意常数) ,方程与通过点(2,3)的特解为 2 1=-y x ,与直线y=2x+3相切的解是 2 4=+y x ,满足条件3 3ydx =?的解为 22=-y x 。 3、李普希兹条件是保证一阶微分方程初值问题解惟一的 必要 条件。 4、对方程 2()dy x y dx =+作变换 =+u x y ,可将其化为变量可分离方程,其通解为 tan()=+-y x C x 。 5、方程过点共有 无数 个解。 6、方程 ''2 1=-y x 的通解为 42 12122=-++x x y C x C ,满足初始条件13|2,|5====x x y y 的特解为 4219 12264 =-++x x y x 。 7、方程 无 奇解。 8、微分方程2260--=d y dy y dx dx 可化为一阶线性微分方程组 6?=??? ?=+??dy z dx dz z y dx 。 9、方程 的奇解是 y=0 。 10、35323+=d y dy x dx dx 是 3 阶常微分方程。 11、方程 22dy x y dx =+满足解得存在唯一性定理条件的区域是 xoy 平面 。 12、微分方程22450d y dy y dx dx --=通解为 512-=+x x y C e C e ,该方程可化为一阶线性微分方程组 45?=??? ?=+??dy z dx dz z y dx 。 2 1d d y x y -=)1,2 (πx x y x y +-=d d y x y =d d

常微分方程考研讲义第六章非线性微分方程与稳定性

第六章 非线性微分方程和稳定性 [教学目标] 1. 理解解的稳定性、零解稳定性及零解渐进稳定性的概念。 2. 掌握平面初等奇点的分类方法。 3. 了解拟线性近似决定微分方程组的稳定性及用李雅谱若夫第二方法判别稳定性的方法。 4. 了解周期解和极限环的概念。 [教学重难点] 奇点的分类与相应零解的稳定性。 [教学方法] 讲授,实践。 [教学内容] 解的稳定性定义,相平面、相轨线与相图;平面自治系统的性质,奇点的分类及相应零解的稳定性;拟线性近似,李雅谱若夫第二方法判别稳定性,周期解和极限环的概念。 [考核目标] 1.奇点的分类及相应零解的稳定性。 2.李雅谱若夫第二方法判别稳定性。 3.会求周期解和极限环。 §1 相平面、相轨线与相图 把xoy 平面称为平面自治系统 ???==) ,(),(y x Q y y x P x && (6.1) 的相平面. 把(6.1)式的解(),()x x t y y t ==在xoy 平面上的轨迹称为(6.1)式的轨线或相轨线. 轨线族在相平面上的图象称为(6.1)式的相图. 注意:在上述概念中,总是假设(6.1)式中的函数(,),(,)P x y Q x y 在区域)(||,|:|+∞≤<

(6.1)式的解(),()x x t y y t ==在相平面上的轨线,正是这个解在(,,)t x y 三维空间中的积分曲线在相平面上的投影. 下面讨论二阶线性系统???????+=+=y a x a dt dx y a x a dt dx 22211211 (6.2) 奇点(0,0)附近轨线的分布:上述系统写成向量形式为方程组)0(det d d ≠=A AX X t 它存在线性变换TX X =~,可化成标准型X J X ~d ~d =t 由A 的特征根的不同情况,方程的奇点可能出现四种类型:结点型,鞍点型,焦点型,中心型. 1.结点型 如果在某奇点附近的轨线具有如图5-1的分布情形,我们就称这奇点为稳定结点.因此,当μ<λ<0时,原点O 是 ?????==y t y x t μλd d d dx (6.3) (5.4)式的稳定结点. 图 6-1 图 6-2 如果在某奇点附近的轨线具有如图5-2的分布情形,我们就称这奇点为不稳定结点.因此,当μ>λ>0时,原点O 是(5.4)的不稳定结点. 如果在奇点附近的轨线具有如图5-3和图5-4的分布,就称这奇点为临界结点 .

常微分方程的大致知识点

常微分方程的大致知识点Last revision on 21 December 2020

常微分方程的大致知识点 (一)初等积分法 1、线素场与等倾线 2、可分离变量方程 3、齐次方程(一般含有x y y x 或的项) 4、一阶线性非齐次方程 常数变易法,或])([)()(?+??=-C dx e x b e y dx x a dx x a 5、伯努力方程 令n y z -=1,则dx dy y n dx dz n --=)1(,可将伯努力方程化成一阶线性非齐次或一阶线性齐次 6、全微分方程 若x N y M ??=??,则C y x u =),(,(留意书上公式) 若 x N y M ??≠??,则找积分因子,(留意书上公式) 7、可降阶的二阶微分方程 ),(22dx dy x f dx y d =,令dx dy dx y d p dx dy ==22,则 ),(22dx dy y f dx y d =,令dy dp p dx y d p dx dy ==22,则 8、正交轨线族 (二)毕卡序列 ?+=x x dx y x f y y 0),(001,?+=x x dx y x f y y 0),(102,?+=x x dx y x f y y 0),(203,其余类推 (三)常系数方程 1、常系数齐次0)(=y D L 方法:特征方程 单的实根21,λλ,x x e C e C y 2121λλ+= 单的复根i βαλ±=2,1,)sin cos (21x C x C e y x ββα+= 重的实根λλλ==21,x e x C C y λ)(21+= 重的复根i βαλ±=2,1,i βαλ±=4,3,]sin )(cos )[(4321x x C C x x C C e y x ββα+++=

常微分方程讲义和作业

第四章 常微分方程与数学模型 微积分最主要的应用可能就是微分方程了,在物理学、力学、工程技术、经济学和管理科学等实际问题中具有广泛的应用。 一、什么是微分方程 例1:含有未知函数的导数或微分的方程称为微分方程,例如 ()dy u x dx =,其中()y f x =为未知函数,()u x 为已知函数。满足上述方程的函数()y f x =称为微分方程的 解。求下列微分方程满足所给条件的解: (1) 2(2)dy x dx =-,20x y ==; (2)2232d x dt t =, 11t dx dt ==,11t x ==。 二、分离变量法 ※例2:求微分方程y xy '=的通解。 解: 变形为: dy xy dx =, 分离变量:1 dy xdx y =(此时漏掉解0y =), 两边同时积分: 1 dy xdx y =??, 得:211ln 2 y x C =+, 2 2111122 x C x C y e e e +==, 从而221 112 2 2x x C y e e C e =±=,其中12C C e =±,为任意非零常数, 但0y =亦是方程的解,统一起来,方程的通解为:

212 x y Ce =,C 为任意常数。 上述求解过程比较繁琐,由于经常出现,为方便计,从分离变量后开始将求解过程简写为: 两边同时积分: 1 dy xdx y =??, 得:21ln ln 2 y x C =+, 从而 2 211ln 2 2 x x C y e e Ce == 这个过程严格说是有问题的,但比较简洁,又能得到正确的结果,所以常被采用。 例3:(1)牛顿冷却定律指出:如果物体和周围环境之间的温度相差不是很大的话,物体冷 却速度与温差成正比(同样可用于加热的情况)。命()T t 表示在时刻t 物体的温度,c T 表示周围环境的温度(假定是常数),建立微分方程并求解,得出()T t 的变化规律。 (2)清晨,警察局接到报案,街头发现一具死尸,6:30时测量体温为18℃,7:30时再测一次为16℃,室外温度为10℃(假定不变),人正常体温为37℃,请估计被害人何时死亡?(死亡时刻记为0t ,则0()37T t =,时刻6:30计算时看成6.5) 例4:人口预测 记时刻t 的人口为()P t ,当考察一个国家或一个较大地区的人口时,()P t 是一个很大的整数,为了利用微积分这一数学工具,将()P t 视为连续、可微函数.记初始时刻(0)t =的人口为0P ,假设人口增长的速度(即增长率)与t 时刻的人口数量()P t 成正比,利用下表中数据为20世纪世界人口建模,增长率是多少,建立的模型与数据相符合吗? 解:设比例系数为μ(即增长率),则()P t 满足的微分方程为: 0,(0)dP P P P dt μ==. 解出 0()t P t P e μ= , 表明人口将按指数规律随时间无限增长(0μ>).上式称为人口指数增长模型,也称为马尔

2018年电大第三版常微分方程答案知识点复习考点归纳总结参考

习题1.2 1.dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1 +x c 3.dx dy =y x xy y 321++ 解:原方程为:dx dy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0 解:原方程为:

dx dy =- y x y x +- 令x y =u 则dx dy =u+x dx du 代入有: -1 12++u u du=x 1 dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x ||-2)(1x y - 则令x y =u dx dy =u+ x dx du 211u - du=sgnx x 1 dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32+=0 解:原方程为:dx dy =y e y 2e x 3 2 e x 3-3e 2y -=c. 9.x(lnx-lny)dy-ydx=0 解:原方程为: dx dy =x y ln x y 令 x y =u ,则dx dy =u+ x dx du

常微分方程期末考试练习题及答案

一,常微分方程的基本概念 常微分方程: 含一个自变量x,未知数y及若干阶导数的方程式。一般形式为:F(x,y,y,.....y(n))=0 (n≠0). 1. 常微分方程中包含未知函数最高阶导数的阶数称为该方程的阶。如:f(x)(3)+3f(x)+x=f(x)为3阶方程。 2.若f(x)使常微分方程两端恒等,则f(x)称为常微分方程的解。 3.含有独立的任意个常数(个数等于方程的阶数)的方程的解称为常微分方程的通解。如常系数三阶微分方程F(t,x(3))=0的通解的形式为:x(t)=c1x(t)+c2x(t)+c3x(t)。 4.满足初值条件的解称为它的特解(特解不唯一,亦可能不存在)。 5.常微分方程之线性及非线性:对于F(x,y,y,......y(n))=0而言,如果方程之左端是y,y,......y(n)的一次有理式,则次方程为n阶线性微分方程。(方程线性与否与自变量无关)。如:xy(2)-5y,+3xy=sinx 为2阶线性微分方程;y(2)+siny=0为非线性微分方程。 注:a.这里主要介绍几个主要的,常用的常微分方程的基本概念。余者如常微分方程之显隐式解,初值条件,初值问题等概念这里予以略去。另外,有兴趣的同学不妨看一下教材23页的雅可比矩阵。 b.教材28页第八题不妨做做。 二.可分离变量的方程 A.变量分离方程

1.定义:形如 dx dy =f (x)φ(y)的方程,称为分离变量方程。这里f (x ),φ(x )分别是x ,y 的连续函数。 2.解法:分离变量法? ? +=c dx x f y dy )()(?. (*) 说明: a 由于(*)是建立在φ(y )≠0的基础上,故而可能漏解。需视情况补上φ(y )=0的特解。(有时候特解也可以和通解统一于一式中) b.不需考虑因自变量引起的分母为零的情况。 例1.0)4(2=-+dy x x ydx 解:由题意分离变量得:04 2=+-y dy x dx 即: 0)141(41=+--y dy dx x x 积分之,得:c y x x =+--ln )ln 4(ln 4 1 故原方程通解为:cx y x =-4)4( (c 为任意常数),特 解y=0包含在通解中(即两者统一于一式中)。 *例2.若连续函数f (x )满足 2 ln )2 ()(20 +=? dt t f x f x ,则f (x )是? 解:对给定的积分方程两边关于x 求导,得: )(2)('x f x f = (变上限求积分求导) 分离变量,解之得:x Ce x f 2)(= 由原方程知: f (0)=ln2, 代入上解析式得: C=ln2, B.可化为分离变量方程的类型。 解决数学题目有一个显而易见的思想:即把遇到的新问题,结合已知

常微分方程考研讲义阶微分方程解的存在定理

第三章一阶微分方程解的存在定理 [教学目标] 1.理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练近似解的 误差估计式。 2.了解解的延拓定理及延拓条件。 3.理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的证明。[教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法

微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。 例如方程 过点(0,0)的解就是不唯一,易知0y =是方程过(0,0)的解,此外,容易验证,2y x =或更一般地,函数 都是方程过点(0,0)而且定义在区间01x ≤≤上的解,其中c 是满足01c <<的任一数。 解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性和唯一性。另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义;如果存在不唯一,不能确定所求的是哪个解。而解的存在唯一性定理保证了所求解的存在性和唯一性。 1.存在性与唯一性定理: (1)显式一阶微分方程 ),(y x f dx dy = (3.1)

常微分方程解题方法总结.doc

常微分方程解题方法总结 来源:文都教育 复习过半, 课本上的知识点相信大部分考生已经学习过一遍 . 接下来, 如何将零散的知 识点有机地结合起来, 而不容易遗忘是大多数考生面临的问题 . 为了加强记忆, 使知识自成 体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴, 他强调读 书要“由薄到厚、由厚到薄”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 P ( x)dx P ( x) dx dy Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程 解法:令 u y1 n,有 du (1 n) y n dy , dy P( x) y Q( x) y n(n≠0,1)代入得到du (1 n) P(x)u (1 n)Q(x) dx dx 求解特征方程:2 pq 三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程 y p x y q x y f ( x) (1)两个不等实根:1, 2 通解: y c1 e 1x c2 e 2x (2) 两个相等实根:1 2 通解: y c1 c2 x e x (3) 一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为 y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解 y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x]

常微分方程期末历年考试(B)

广西师范大学漓江学院试卷 课程名称:常微分方程课程序号:开课院系:理学系 任课教师: 年级、专业:07数学考试时间:120分钟 考核方式:闭卷 ■ 开卷 □试卷类型:A 卷□B 卷■ 一、填空题(本大题共10小题,每小题3分,共30分) (请在每小题地空格中填上正确答案,错填、不填均无分). 1、当_______________时,方程(,)(,)0M x y dx N x y dy +=称为恰当方程. 2、求(,)dy f x y dx =满足00()y x y =地解等价于求积分方程地连续解. 3、函数组t t t e e e 2,,-地朗斯基行列式值为. 4、二阶齐次线性微分方程地两个解)(),(21x y x y 为方程地基本解组充分必要条件是. 5、若矩阵A 具有n 个线性无关地特征向量n v v v ,,,21Λ,它们对应地特征值分别为n λλλΛ,,21,那么常系数线性方程组Ax x ='地一个基解矩阵)(t Φ=. 6、方程tan dy x y dx =地所有常数解是. 7、如果存在常数0L >,使得不等式对于所有12,),(,)x y x y R ∈(都成立,称函数),(y x f 在R 上关于y 满足利普希茨条件,其中L 为利普希茨常数. 8、)()(x Q y x P dx dy += 称为一阶线性方程,它有积分因子 ?-dx x P e )( ,其通解为 _________ . 9、方程22y x dx dy +=定义在矩形域R:-222,2≤≤-≤≤y x 上,则经过点(0,0)地解地存在区间是. 10、若(),()t t Φψ是齐次线性方程组()X A t X '=地基解矩阵,则()t Φ与()t ψ具有关系. 年 级 : 专 业: 装订密封线 考 生 答 题 不 得 出 现 红 色字 迹 , 除 画 图 外 , 不 能 使用 铅笔答 题;答题 留 空 不 足 时 , 可 写到 试卷 背面 ;请 注意 保 持试 卷完 整.

常微分方程期末试题知识点复习考点归纳总结参考

期末考试 一、填空题(每空2 分,共16分)。 1.方程22d d y x x y +=满足解的存在唯一性定理条件的区域是 . 2. 方程组 n x x x R Y R Y F Y ∈∈=,),,(d d 的任何一个解的图象是 维空间中的一条积分曲线. 3.),(y x f y '连续是保证方程),(d d y x f x y =初值唯一的 条件. 4.方程组???????=-=x t y y t x d d d d 的奇点)0,0(的类型是 5.方程2)(2 1y y x y '+'=的通解是 6.变量可分离方程()()()()0=+dy y q x p dx y N x M 的积分因子是 7.二阶线性齐次微分方程的两个解)(1x y ?=,)(2x y ?=成为其基本解组的充要条件是 8.方程440y y y '''++=的基本解组是 二、选择题(每小题 3 分,共 15分)。 9.一阶线性微分方程 d ()()d y p x y q x x +=的积分因子是( ). (A )?=x x p d )(e μ (B )?=x x q d )(e μ (C )?=-x x p d )(e μ (D )?=-x x q d )(e μ 10.微分方程0d )ln (d ln =-+y y x x y y 是( ) (A )可分离变量方程 (B )线性方程 (C )全微分方程 (D )贝努利方程 11.方程x (y 2-1)d x+y (x 2-1)d y =0的所有常数解是( ). (A) 1±=x (B)1±=y

(C )1±=y , 1±=x (D )1=y , 1=x 12.n 阶线性非齐次微分方程的所有解( ). (A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程222+-='x y y ( )奇解. (A )有一个 (B )有无数个 (C )只有两个 (D )无 三、计算题(每小题8分,共48分)。 14.求方程22 2d d x y xy x y -=的通解 15.求方程0d )ln (d 3=++y x y x x y 的通解 16.求方程2 221)(x y x y y +'-'=的通解

第5章 定性和稳定性理论简介(常微分方程)

第5章定性和稳定性理论简介 在十九世纪中叶,通过Liouville等人的工作,人们已经知道绝大多数微分方程不能用初等积分法求解.这个结果对微分方程理论的发展产生了极大的影响,使微分方程的研究发生了一个转折.既然初等积分法有着不可克服的局限性,那么是否可以不求微分方程的解,而从微分方程本身来推断其性质呢?定性理论和稳定性理论正是在这种背景下发展起来的.前者由法国数学家Poincare(1854-1912)在19世纪80年代所创立,后者由俄国数学家Liapunov(1857-1918)在同年代所创立.它们共同的特点就是在不求出方程解的情况下,直接根据微分方程本身的结构与特点,来研究其解的性质.由于这种方法的有效性,近一百多年以来它们已经成为常微分方程发展的主流.本章对定性理论和稳定性理论的一些基本概念和基本方法作一简单介绍. 第一讲§5.1 稳定性(Stability)概念(5课时) 一、教学目的:理解稳定、渐近稳定和不稳定的概念;掌握零解的稳 定、渐近稳定的概念;学会判定一些简单微分方程零 解的稳定和渐近稳定性。 二、教学要求:理解稳定、渐近稳定和不稳定的概念;掌握简单微分 方程零解的稳定和渐近稳定性的判定。 三、教学重点:简单微分方程零解的稳定和渐近稳定性的判定。 四、教学难点:如何把一般解的稳定性转化为零解的稳定性。 五、教学方法:讲练结合教学法、提问式与启发式相结合教学法。 六、教学手段:传统板书与多媒体课件辅助教学相结合。 七、教学过程:

1.稳定性的定义 考虑微分方程组 (,)dx f t x dt = (5.1) 其中函数(,)f t x 对n x D R ∈?和(,)t ∈-∞+∞连续,对x 满足局部Lipschitz 条件。 设方程(5.1)对初值01(,)t x 存在唯一解01(,,)x t t x ?=,而其它解记作00(,,)x x t t x = 。 现在的问题是:当01x x -很小是,差 0001(,,)(,,) x t t x t t x ?-的变化是否也很小?本章向量1 2 (,,,)T n x x x x = 的范数取 1 221n i i x x =?? = ? ?? ∑。 如果所考虑的解的存在区间是有限区间,那么这是解对初值的连续依赖性,在第二章的定理2.7已有结论。现在要考虑的是解的存在区间是无穷区间,那么解对初值不一定有连续依赖性,这就产生了Liapunov 意义下的稳定性概念。 定义 5.1 如果对于任意给定的0 ε>和00t ≥都存在0(,)0 t δδε=>, 使得只要 01x x δ -<,就有 0001(,,)(,,)x t t x t t x ?ε -< 对一切0t t ≥成立,则 称(5.1)的解01(,,)x t t x ?=是稳定的。否则是不稳定的。 定义5.2 假定01(,,)x t t x ?=是稳定的,而且存在11(0)δδδ<≤,使得只要 011x x δ-< ,就有 0001l i m ((,,) (,,))0t x t t x t t x ?→∞ -= ,则称 (5.1)的解01(,,)x t t x ?=是渐近稳定的。 为了简化讨论,通常把解01(,,)x t t x ?=的稳定性化成零解的稳定性问题.下面记00()(,,) x t x t t x =01()(,,)t t t x ??=作如下变量代换. 作如下变量代 换.

常微分方程基本知识点

常微分方程基本知识点 第一章 绪论 1. 微分方程的概念(常微分与偏微),什么是方程的阶数,线性与非线性,齐次与非齐次,解、特解、部分解和通解的概念及判断! (重要) 例:03)(22=-+y dx dy x dx dy (1阶非线性); x e dx y d y =+22sin 。 2.运用导数的几何意义建立简单的微分方程。(以书后练习题为主) (习题1,2,9题) 例:曲线簇cx x y -=3满足的微分方程是:__________. 第二章 一阶方程的初等解法 1.变量分离方程的解法(要能通过适当的变化化成变量分离方程);(重要) 2.齐次方程的解法(变量代换);(重要) 3.线性非齐次方程的常数变易法; 4.分式线性方程、贝努利方程、恰当方程的概念及判断(要能熟练的判断各种类型的一阶方程)(重要); 例题:(1).经变换_____y c u os =___________后, 方程1cos sin '+=+x y y y 可化为___线性_____方程; (2).经变换_____y x u 32-=____________后, 方程1 )32(1 '2+-=y x y 可化为____变量分离__方程; (3).方程0)1(222=+-dy e dx ye x x x 为:线性方程。

(4).方程221 'y x y -=为:线性方程。 5.积分因子的概念,会判断某个函数是不是方程的积分因子; 6.恰当方程的解法(分项组合方法)。(重要) 第三章 一阶方程的存在唯一性定理 1.存在唯一性定理的内容要熟记,并能准确确定其中的h ; 2.会构造皮卡逐步逼近函数序列来求第k 次近似解!(参见书上例题和习题 3.1的1,2,3题) 第四章 高阶微分方程 1.n 阶线性齐次(非齐次)微分方程的概念,解的概念,基本解组,解的线性相关与线性无关,齐次与非齐次方程解的性质; 2.n 阶线性方程解的Wronskey 行列式与解的线性相关与线性无关的关系; 3.n 阶线性齐次(非齐次)微分方程的通解结构定理!!(重要) 4.n 阶线性非齐次微分方程的常数变易法(了解); 5.n 阶常系数线性齐次与非齐次微分方程的解法(Eurler 待定指数函数法确定基本解组),特解的确定(比较系数法、复数法);(重要) 例题:t te x x 24=-'',确定特解类型? (习题4.2相关题目) 6.2阶线性方程已知一个特解的解法(作线性齐次变换)。(重要) 7.其他如Euler 方程、高阶方程降阶、拉普拉斯变换法等了解。

相关主题