搜档网
当前位置:搜档网 › 计算古典概型的概率的基本步骤

计算古典概型的概率的基本步骤

计算古典概型的概率的基本步骤

计算古典概型的概率的基本步骤

(1)计算所求事件A所包含的基本事件个数m;

(2)计算基本事件的总数n;

(3)应用公式()m

P A

n

=计算概率.

古典概型的概率公式:

()A

P A=包含的基本事件的个数

基本事件的总数

.应用公式的关键在于准确计算事件A

所包含的基本事件的个数和基本事件的总数.

要点诠释:

古典概型的判断:如果一个概率模型是古典概型,则其必须满足以上两个条件,有一条不满足则必不是古典概型.如“掷均匀的骰子和硬币”问题满足以上两个条件,所以是古典概型问题;若骰子或硬币不均匀,则每个基本事件出现的可能性不同,从而不是古典概型问题;“在线段AB上任取一点C,求AC>BC的概率”问题,因为基本事件为无限个,所以也不是古典概型问题.

第1 页共1 页

概率计算方法

概率计算方法

概率计算方法 在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)=的结果数 随机事件所有可能出现果数 随机事件可能出现的结.其中P(必然事件)=1,P (不可能事件)=0;0

摸一个球,请用画树状图法,求两次摸到都是白球的概率. 解析:⑴设蓝球个数为x 个 . 由题意得2 1 1 22=++x ∴x=1 答:蓝球有1个 (2)树状图如下: ∴ 两次摸到都是白球的概率 =6 1 122=. 说明:解有关的概率问题首先弄清:①需要关注的是发生哪个或哪些结果.②无论哪种都是机会均等的. 本题是考查用树状图来求概率的方法,这种方法比较直观,把所有可能的结果都一一罗列出来,便于计算结果. 黄 白2白1蓝 黄白1蓝黄白2

四.列表法 例4 (07山西)如图3,有四张编号为1,2,3,4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上. (1)从中随机抽取一 张,抽到的卡片是眼睛的概率是多少? (2)从四张卡片中随机抽取一张贴在如图4所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率. 1 2 3 图 图3

概率计算方法全攻略

概率计算方法全攻略 在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)= 的结果数 随机事件所有可能出现果数 随机事件可能出现的结.其中P(必然事件)=1,P (不可能事件) =0;0

最全的遗传概率计算方法(高中生物)

全:遗传概率的计算方法(高中生物) 概率是对某一可能发生事件的估计,是指总事件与特定事件的比例,其范围介于0和1之间。相关概率计算方法介绍如下: 一、某一事件出现的概率计算法 例题1:杂合子(Aa)自交,求自交后代某一个体是杂合体的概率。 解析:对此问题首先必须明确该个体是已知表现型还是未知表现型。(1)若该个体表现型为显性性状,它的基因型有两种可能:AA和Aa。且比例为1∶2,所以它为杂合子的概率为2/3。(2)若该个体为未知表现型,那么该个体基因型为AA、Aa和aa,且比例为1∶2∶1,因此它为杂合子的概率为1/2。正确答案:2/3或1/2 二、亲代的基因型在未肯定的情况下,其后代某一性状发生的概率计算法 例题2:一对夫妇均正常,且他们的双亲也都正常,但双方都有一白化病的兄弟,求他们婚后生白化病孩子的概率是多少 解析:(1)首先确定该夫妇的基因型及其概率由前面例题1的分析可推知该夫妇均为Aa的概率为2/3,AA的概率为1/3。(2)假设该夫妇为Aa,后代患病的概率为1/4。(3)最后将该夫妇均为Aa的概率(2/3×2/3)与假设该夫妇均为Aa情况下生白化病患者的概率1/4相乘,其乘积1/9,即为该夫妇后代中出现白化病患者的概率。正确答案:1/9 三、利用不完全数学归纳法 例题3:自交系第一代基因型为Aa的玉米,自花传粉,逐代自交,到自交系第n代时,其杂合子的几率为。 解析:第一代 Aa 第二代 1AA 2Aa 1aa 杂合体几率为 1/2 第三代纯 1AA 2Aa 1aa 纯杂合体几率为(1/2)2 第n代杂合体几率为(1/2)n-1 正确答案:杂合体几率为(1/2)n-1 四、利用棋盘法

正态概率图normalprobability plot

正态概率图(normal probability plot) 方法演变:概率图,分位数-分位数图( Q- Q) 概述 正态概率图用于检查一组数据是否服从正态分布。是实数与正态分布数据之间函数关系的散点图。如果这组实数服从正态分布,正态概率图将是一条直线。通常,概率图也可以用于确定一组数据是否服从任一已知分布,如二项分布或泊松分布。 适用场合 ·当你采用的工具或方法需要使用服从正态分布的数据时; ·当有50个或更多的数据点,为了获得更好的结果时。 例如: ·确定一个样本图是否适用于该数据; ·当选择作X和R图的样本容量,以确定样本容量是否足够大到样本均值服从正态分布时; ·在计算过程能力指数Cp或者Cpk之前; ·在选择一种只对正态分布有效的假设检验之前。

实施步骤 通常,我们只需简单地把数据输入绘图的软件,就会产生需要的图。下面将详述计算过程,这样就可以知道计算机程序是怎么来编译的了,并且我们也可以自己画简单的图。 1将数据从小到大排列,并从1~n标号。 2计算每个值的分位数。i是序号: 分位数=(i-0.5)/n 3找与每个分位数匹配的正态分布值。把分位数记到正态分布概率表下面的表A.1里面。然后在表的左边和顶部找到对应的z值。 4根据散点图中的每对数据值作图:每列数据值对应个z值。数据值对应于y轴,正态分位数z值对应于x轴。将在平面图上得到n个点。

5画一条拟合大多数点的直线。如果数据严格意义上服从正态分布,点将形或一条直线。将点形成的图形与画的直线相比较,判断数据拟合正态分布的好坏。请参阅注意事项中的典型图形。可以计算相关系数来判断这条直线和点拟合的好坏。 示例 为了便于下面的计算,我们仅采用20个数据。表5. 12中有按次序排好的20个 值,列上标明“过程数据”。 下一步将计算分位数。如第一个值9,计算如下: 分位数=(i-0.5)/n=(1-0.5)/20=0.5/20=0.025同理,第2个值,计算如下: 分位数=(i-0.5)/n=(2-0.5)/20=1.5/20=0.075可以按下面的模式去计算:第3个分位数=2.5÷20,第4个分位数=3 5÷20 以此类推直到最后1个分位数=19. 5÷20。 现在可以在正态分布概率表中查找z值。z的前两 个阿拉伯数字在表的最左边一列,最后1个阿拉伯数 字在表的最顶端一行。如第1个分位数=0. 025,它 位于-1.9在行与0.06所在列的交叉处,故z=- 1.96。用相同的方式找到每个分位数。 如果分位数在表的两个值之间,将需要用插值法进行求解。例如:第4个分位数为0.

古典概型的特征和概率计算公式

高中数学必修(3)导学案 2013-2014学年第二学期高一年级班姓名编写者使用时间2018-6-23 课题:§3.2.1 古典概型的特征和概率计算公式 1 课时学习目标: 1、知识与技能 (1)正确理解基本事件的概念,准确求出基本事件及其个数; (2)正确理解古典改性的两个特征; (3)掌握古典概型的概率计算公式,会用列举法计算一些随机事件所含的基本事件数及其事件发生的概率. 2、过程与方法 鼓励学生通过实践、观察、类比,归纳总结出古典概型的概率计算公式,提高学生利用数学知识解决实际问题的能力. 3、情感态度与价值观 通过各种有趣的,贴近学生生活的素材,进一步培养学生用随机的观点认识世界,激发学生学习数学的热情和兴趣. 学习重点:理解古典概型的含义及其概率的计算公式. 学习难点:计算试验的所有可能结果数以及某事件所包含的结果数. 基础达标: 1、古典概型 (1)定义:具有以下两个特征的的数学模型称为古典概型(古典的概率模型). ①试验的所有可能结果,每个试验只出现其中的结果. ②每一个试验结果出现的可能性. (2)基本事件 试验的称为基本事件. 2、随机事件A的概率 对于古典概型,通常试验中的某一事件A是由组成.如果试验的所有可能结果(基本事件)数为n,随机事件A包含的基本事件数为m,那么事件A的概率规定为P(A)=.合作交流: 1、判断下列事件是否为古典概型. (1)在适宜的条件下种下一粒种子观察它是否发芽; (2)射击运动员向一靶心进行射击,射中与射不中; (3)向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的; (4)如果袋内装有n个不同的球,现从中依次有放回摸球,每次摸一个; (5)如果袋内装有n个不同的球,现从中依次无放回摸球,每次摸一个. 2、一个口袋装有大小相同的1个白球和与它编有不同号码的3个黑球,从中摸出2个 球.求: (1)找出所有基本事件;(2)事件“摸出2个黑球”包括多少个基本事件? 3、袋中装有6个形状完全相同的小球,其中4个白球,2个红球,从袋中任意取出两球, 求下列事件的概率. (1)A:取出的两球都是白球;(2)B:取出的两球一个是白球,另一个是红球. 思考探究: 1、在标准化的考试中既有单选题,又有多选题,多选题是从A、B、C、D四个选项中选出所有的正确答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么? 2、使用古典概型概率的计算公式时应注意些什么?

概率计算方法全攻略

概率计算方法全攻略

概率计算方法全攻略 在新课标实施以来,中考数学试题中加大了 统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)=的结果数 随机事件所有可能出现果数随机事件可能出现的结.其中P(必然事件)=1,P (不可能事件)=0;0

解析:⑴设蓝球个数为x 个 . 由题意得2 1122=++x ∴x=1 答:蓝球有1个 (2)树状图 如下: ∴ 两次摸到都是白球的概率 =6 112 2=. 说明:解有关的概率问题首先弄清:①需要关注的是发生哪个或哪些结果. ②无论哪种都是机会均等的 . 本题是考查用树状图来求概率的方法,这种方法比较直观,把所有可能的结果都一一罗列出来,便于计算结果. 四.列表法 例4 (07山西)如图3,有四张编号为1,2,3,4的卡 片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上. (1)从中随机抽取一张,抽到的卡片是眼睛的黄白2蓝白2白1蓝黄白1蓝黄白2

高中数学 第三章 概率 3_2_1 古典概型的特征和概率计算公式教案 北师大版必修31

2.1 古典概型的特征和概率计算公式 整体设计 教学分析 本节课是高中数学(必修3)第三章“概率”的第二节“古典概型”的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的.古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位.学好古典概型可以为其他概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题.概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象.适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例.使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神.三维目标 1.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,正确理解古典概型的两大特点;树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养学生用随机的观点来理性地理解世界,使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神. 2.鼓励学生通过观察、类比,提高发现问题、分析问题、解决问题的能力,归纳总结出古典概型的概率计算公式,掌握古典概型的概率计算公式;注意公式:P(A)=事件A包含的可能结果数 的使用条件——古典概型,体现了化归的重要思想.掌握列举法,试验的所有可能结果数 学会运用分类讨论的思想解决概率的计算问题,增强学生数学思维情趣,形成学习数学知识的积极态度. 重点难点 教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率. 教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数. 课时安排 1课时 教学过程 导入新课 思路1.(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件.

7.第七讲 概率与统计——古典概型与概率可乘

第七讲概率与统计——古典概型与概率可乘 知识点汇总: 例题练习: 1、一枚硬币连抛4次,求恰有2次正面的概率。 【举一反三】 一枚硬币连抛3次,至少有一次正面向上的概率______。 2、某列车有4节车厢,现有6个人准备乘坐。设每一位乘客进入每节车厢的可能性是相等的,则这6位乘客进入各节车厢的人数恰好为0、1、2、3的概率为多少 3、某小学六年级有6个班,每个班各有40名学生。现要在6个班中随机选出2个班参加电视台的现场娱乐活动,活动中有1次抽奖活动,抽取4名幸运观众。那么六年级学生小宝成为幸运观众的概率为________。 【举一反三】 学校门口经常有小贩搞摸奖活动。某小贩在一只黑色口袋里装有颜色不同的50只小球,其中红球1只,黄球2只,绿球10只,其余为白球。搅拌均匀后,每2元摸1个球,奖品的情况标注在球上(如图)。如果花4元钱,同时摸2个球,那么获10元奖品的概率为______。 4、A、B、C、D、E、F六人抽签推选代表,公正人一共制作了六枚外表一样的签,其中只有一枚刻着“中”,六人照字母顺序先后抽签,抽完不放回,谁抽到“中”字,即被选为代表。那么这六人被抽中的概率分别为多少?

5、甲、乙、丙三人投篮,投进的概率分别是: ⑴现三人各投篮一次,求三人都没进的概率; ⑵现三人各投篮一次,求至少两人投进的概率; 小试牛刀 1.阿奇一次掷出了6枚硬币,结果恰有3枚硬币正面朝上的概率是多少? 2.三个人乘同一辆火车,火车有十节车厢,则至少有两个人上同一节车厢的概率是多少? 3.中关村小学五年级有6个班,每个班各有30名学生。现要在6个班中随机选出2个班参加植树活动,活动中发现树苗不够,抽取4名去取树苗。那么五年级学生中小李被抽中的概率为多少? 4.有编号为1、2、3、4的四个人准备抽签决定谁参加公益活动,公证人制作了外表一样的四枚签,其中一枚刻着“去”,四人照字母顺序先后抽签,抽完不放回,谁抽到“去” 字,即可以参加。那么这四人谁被抽中的概率最大?

概率计算方法总结3

概率计算方法总结 在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)= 的结果数 随机事件所有可能出现果数 随机事件可能出现的结.其中P(必然事件)=1,P (不可能事 件)=0;0

古典概型的特征和概率计算公式

《古典概型的特征和概率计算公式》说课稿(1) 《古典概型的特征和概率计算公式》说课稿 一、教材分析: 《古典概型的特征和概率计算公式》是北师大版普通高中课程标准试验教科书数学必修3第三章第二节第一小节的内容。本节课内容是在学生已经学习了随机事件概率的概念基础上的延续和拓展。古典概型是一种特殊的数学模型,它的引入避免了大量的重复试验,而且得到的是概率的精确值。它也为后面学习几何概型在思路上做了一个铺垫,在教材中起着承前启后的作用。同时,学习本节课的内容,能够大大激发学生学习数学、应用数学的兴趣。因此本节知识在概率论中占有相当重要的地位。 由于在这节课之前,教材中并没有安排排列组合知识,所以这节课的重点我认为不是“如何计算”,而是让学生通过生活中的实例与数学模型,来理解古典概型的两个特征,让学生初步学会把一些实际问题转化为古典概型。所以我设计了这节课的重点和难点为: 1.重点:理解古典概型及其概率计算公式 2.难点:古典概型的判断 二、教学目标分析: 基于上述我对教材的地位和内容的剖析,根据新课程标准中发展学生数学应用意识的基本理念,结合学生已有的知识结构与心理特征,我制定了以下的教学目标: 知识与技能: 1.通过试验理解基本事件的概念和特点; 2.在数学建模过程中,抽象出古典概型的两个基本特征,推导概率的计 算公式; 3.掌握用列举法和分类讨论法解决概率的计算问题。 过程与方法: 通过模拟试验让学生理解古典概型的特征,观察类比各个试验,让学生归纳总结出古典概型公式。 情感态度与价值观:

1.用现实意义的实例,激发学生的学习兴趣,培养学生勇于探索、善 于发现的创新精神,发展学生的数学应用意识; 2.经历公式的推导过程,体验由特殊到一般的归纳推理的数学思想方 法,在探究活动中形成锲而不舍的钻研精神和科学态度; 3.培养学生“理论来源于实践并应用于实践”的辩证思想。 三、教法与学法分析: 数学是一门培育人的思维,发展人的思维的主要学科,因此,在教学中,基于这节课的特点我主要采用引导发现法和问题式教学法教学,运用多媒体等手段构造数学模型,激发学生学习兴趣,引导学生进行观察讨论、归纳总结。鼓励学生自做自评。 五、教学过程分析: (一)提出问题,引入新课 课前,老师已布置学生分组完成2个试验: ① 掷一枚质地均匀的硬币试验 ② 掷一枚质地均匀的骰子的试验。 各组学生展示模拟试验方法,并汇总试验结果,教师汇总并提出问题: ①两个试验的结果分别有几个? 设计意图:引出基本事件的概念。 ②在掷骰子的试验中,随机试验“出现偶数点”可以由哪些基本事件 组成? 设计意图:这一环节主要采用学生思考讨论,教师引导和学生归纳的方法,鼓励学生用自己的语言描述基本事件的特点。一方面激发学生的学习兴趣,另一方面,通过分析,加深对事件与基本事件关系的认识,为引出古典概型定义做好铺垫。 (二)思考交流,形成概念 例1.从字母a、b、c、d中任意取出两个不同的字母, ①在这个试验中,有哪些基本事件?(ab、ac、ad、bc、bd、 cd)

概率计算公式

概率计算公式 加法法则 P(A ∪ B)=P(A)+P(B) -P(AB 条件概率 当P(A)>0 ,P(B|A)=P(AB)/P(A) 乘法公式 P(AB)=P(A)×P(B|A)=P(B)P(A|B)× 计算方法 “排列组合”的方法计算 记法 P(A)=A 加法法则 定理 :设 A 、 B 是互不相容事件(AB=φ), P(AB)=0. 则 P(A ∪ B)=P(A)+P(B)-P(AB)=p(A)+P(B) 推论 1:设 A1 、 A2 、?、 An 互不相容,则:P(A1+A2+...+ An)= P(A1) +P(A2) +?+P(An)推论 2:设 A1 、 A2 、?、 An 构成完备事件组,则:P(A1+A2+...+An)=1 推论 3: P(A)=1-P(A') 推论 4:若 B 包含 A ,则 P(B-A)= P(B)-P(A) 推论 5(广义加法公式): 对任意两个事件 A 与 B,有 P(A∪ B)=P(A)+P(B)-P(AB) 折叠条件概率 条件概率 :已知事件 B 出现的条件下 A 出现的概率,称为条件概率,记作:P(A|B) 条件概率计算公式: 当P(A)>0 ,P(B|A)=P(AB)/P(A) 当P(B)>0 ,P(A|B)=P(AB)/P(B) 折叠乘法公式 P(AB)=P(A)×P(B|A)=P(B)P(A|B)× 推广 :P(ABC)=P(A)P(B|A)P(C|AB) 折叠全概率公式 设: 若事件 A1 , A2 ,?, An 互不相容,且 A1+A2+?+An=Ω,则称 A1 ,A2 ,?, An 构成一个完备事件组。 全概率公式的形式如下 : 以上公式就被称为全概率公式。

古典概型教案

3.2.1古典概型(第一课时) 周口市第一高级中学:李惠 教学目标:(1)理解古典概型及其概率计算公式, (2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。 教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率. 教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数. 教学过程: 导入:故事引入 探究一 试验: (1)掷一枚质地均匀的硬币的试验 (2)掷一枚质地均匀的骰子的试验 上述两个试验的所有结果是什么 一.基本事件 1.基本事件的定义: 随机试验中可能出现的每一个结果称为一个基本事件 2.基本事件的特点: (1)任何两个基本事件是互斥的 (2)任何事件(除不可能事件)都可以表示成基本事件的和。 例1、从字母a ,b ,c ,d 中任意取出两个不同的字母的试验中,有几个基本事件分别是什么 探究二:你能从上面的两个试验和例题1发现它们的共同特点吗 二.古典概型 (1)试验中所有可能出现的基本事件只有有限个;(有限性) (2)每个基本事件出现的可能性相等。(等可能性) 我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。 思考:判断下列试验是否为古典概型为什么 (1).从所有整数中任取一个数 (2).向一个圆面内随机地投一个点,如果该点落在圆面内任意一点都是等可能的。 (3).射击运动员向一靶心进行射击,这一试验的结果只有有限个,命中10环,命中9环,….命中1环和命中0环(即不命中)。 (4).有红心1,2,3和黑桃4,5共5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张. 探究三 随机抛掷一枚质地均匀的骰子是古典概型吗每个基本事件出现的概率是多少出现偶数点的概率是多少 三.古典概型概率公式 对于古典概型,事件A 的概率为:P(A)=基本事件的总数包含的基本事件个数A =n m 古典概型的解题步骤 1、判断是否为古典概型,如果是,准确求出基本事件总个数n; 2、求出事件A 包含的基本事件个数m. 3、P(A)=m/n 四.公式的应用

2.1古典概型的特征和概率计算公式

§3.2.1 古典概型学案 学习目标:(1)理解古典概型及其概率计算公式; (2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。 学习重点:理解古典概型的概念及利用古典概型求解随机事件的概率. 学习难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含 的基本事件的个数和试验中基本事件的总数. 学习过程: 一.复习旧知 1.什么是随机事件? 2.什么是互斥事件? 当事件A 、B 互斥时:___________)(=B A P Y ; 3.概率是怎样定义的? 一般地,如果随机事件A 在n 次试验中发生了m 次,当试验的次数n 很大时,我们可 以将事件A 发生的频率()n f A 作为事件A 发生的概率的近似值,___)()(=≈A f A P n 二.预习课本P125-128,并回答以下问题: 1.试验一:掷一枚质地均匀的硬币一次,观察可能出现几种结果? 试验二:掷一颗均匀的骰子一次,观察可能出现几种结果? 我们把试验中可能出现的每一个随机事件称为__________. 2.问题:(1)在一次试验中,会同时出现 “1点” 与 “2点” 这两个基本事件吗? (2)事件“出现偶数点”包含哪几个基本事件?事件“出现的点数不大于4”呢? 从以上两个问题归纳出基本事件的特点: (1)任何两个基本事件都是_________; (2)任何事件(除不可能事件)都可以表示成_________________. 3. 从a ,b,c,d 中任意取出两个不同字母的实验中,有几个基本事件?分别是什么? 三.新课探究 1.古典概型 问题:试验一、二中每个基本事件出现的可能性是多大? 观察对比,发现上述两个试验的共同特点: (1)试验中所有可能出现的基本事件只有___________; (2)每个基本事件出现的可能性___________________. 我们将具有这两个特点的概率模型称为_______________. 例:判断下列是否为古典概型?为什么? (1)同时抛掷两枚质地均匀的硬币; (2)如图,某同学随机地向一靶心进行射击,这一试验的结果只有有限个: 命中10环、命中9环……命中5环和不中环。 【归纳总结】 2.古典概型的概率 在上面的掷骰子的试验中,事件A “出现偶数点”发生的概率是多少?

概率计算方法

概率计算方法 在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)= 的结果数 随机事件所有可能出现果数 随机事件可能出现的结.其中P(必然事件)=1,P (不可能事件) =0;0

正态分布概率公式(部分)

Generated by Foxit PDF Creator ? Foxit Software https://www.sodocs.net/doc/de6693519.html, For evaluation only.
图 62正态分布概率密度函数的曲线 正态曲线可用方程式表示。 n 当 →∞时,可由二项分布概率函数方程推导出正态 分布曲线的方程:
fx= (61 ) () .6
式中: x—所研究的变数; fx —某一定值 x出现的函数值,一般称为概率 () 密度函数 (由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某 一区间的概率, 不能计算变量取某一值, 即某一点时的概率, 所以用 “概率密度” 一词以与概率相区分),相当于曲线 x值的纵轴高度; p—常数,等于 31 .4 19……; e— 常数,等于 2788……; μ 为总体参数,是所研究总体 5 .12 的平均数, 不同的正态总体具有不同的 μ , 但对某一定总体的 μ 是一个常数; δ 也为总体参数, 表示所研究总体的标准差, 不同的正态总体具有不同的 δ , 但对某一定总体的 δ 是一个常数。 上述公式表示随机变数 x的分布叫作正态分布, 记作 N μ ,δ2 ), “具 ( 读作 2 平均数为 μ,方差为 δ 的正态分布”。正态分布概率密度函数的曲线叫正态 曲线,形状见图 62。 (二)正态分布的特性
1、正态分布曲线是以 x μ 为对称轴,向左右两侧作对称分布。因 =

数值无论正负, 只要其绝对值相等, 代入公式 61 ) ( .6 所得的 fx 是相等的, () 即在平均数 μ 的左方或右方,只要距离相等,其 fx 就相等,因此其分布是 () 对称的。在正态分布下,算术平均数、中位数、众数三者合一位于 μ 点上。

正态分布概率公式(部分)

图 6-2 正态分布概率密度函数的曲线 正态曲线可用方程式表示。当n→∞时,可由二项分布概率函数方程推导出正态分布曲线的方程: f(x)= (6.16 ) 式中: x —所研究的变数; f(x) —某一定值 x 出现的函数值,一般称为概率密度函数(由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某一区间的概率,不能计算变量取某一值,即某一点时的概率,所以用“概率密度”一词以与概率相区分),相当于曲线 x 值的纵轴高度; p —常数,等于 3.14 159 ……; e —常数,等于 2.71828 ……;μ为总体参数,是所研究总体的平均数,不同的正态总体具有不同的μ,但对某一定总体的μ是一个常数;δ也为总体参数,表示所研究总体的标准差,不同的正态总体具有不同的δ,但对某一定总体的δ是一个常数。 上述公式表示随机变数 x 的分布叫作正态分布,记作 N( μ , δ2 ) ,读作“具平均数为μ,方差为δ 2 的正态分布”。正态分布概率密度函数的曲线叫正态曲线,形状见图 6-2 。 (二)正态分布的特性 1 、正态分布曲线是以 x= μ为对称轴,向左右两侧作对称分布。因的数值无论正负,只要其绝对值相等,代入公式( 6.16 )所得的 f(x) 是相等的,即在平均数μ的左方或右方,只要距离相等,其 f(x) 就相等,因此其分布是对称的。在正态分布下,算术平均数、中位数、众数三者合一位于μ点上。

2 、正态分布曲线有一个高峰。随机变数 x 的取值范围为( - ∞,+ ∞ ),在( - ∞ ,μ)正态曲线随 x 的增大而上升,;当 x= μ时, f(x) 最大;在(μ,+ ∞ )曲线随 x 的增大而下降。 3 、正态曲线在︱x-μ︱=1 δ处有拐点。曲线向左右两侧伸展,当x →± ∞ 时,f(x) →0 ,但 f(x) 值恒不等于零,曲线是以 x 轴为渐进线,所以曲线全距从 -∞到+ ∞。 4 、正态曲线是由μ和δ两个参数来确定的,其中μ确定曲线在 x 轴上的位置 [ 图 6-3] ,δ确定它的变异程度 [ 图 6-4] 。μ和δ不同时,就会有不同的曲线位置和变异程度。所以,正态分布曲线不只是一条曲线,而是一系列曲线。任何一条特定的正态曲线只有在其μ和δ确定以后才能确定。 5 、正态分布曲线是二项分布的极限曲线,二项分布的总概率等于 1 ,正态分布与 x 轴之间的总概率(所研究总体的全部变量出现的概率总和)或总面积也应该是等于 1 。而变量 x 出现在任两个定值 x1到x2(x1≠x2)之间的概率,等于这两个定值之间的面积占总面积的成数或百分比。正态曲线的任何两个定值间的概率或面积,完全由曲线的μ和δ确定。常用的理论面积或概率如下: 区间μ ± 1 δ面积或概率 =0.6826 μ ± 2 δ =0.9545 μ ± 3 δ=0.9973 μ± 1.960δ=0.9500 μ ±2.576 δ =0.9900

概率论与数理统计练习题随机事件与古典概型

概率论与数理统计练习题 第一次 随机事件与古典概型 一.填空 1. 设S 为样本空间,A,B,C 是任意的三个随机事件,根据概率的性质,则(1)P(A )=_______;(2)P(B-A)=P(B A )=_______;(3)P(A U B U C)= _____; 2. 设A,B,C 是三个随机事件,试以A ,B ,C 的运算来表示下列事件:(1)仅有A 发生_______;(2)A ,B ,C 中至少有一个发生_______;(3)A ,B ,C 中恰有一个发生_______;(4)A ,B ,C 中最多有一个发生_______;(5)A ,B ,C 都不发生_______;(6)A 不发生,B ,C 中至少有一个发生_______; 3. A,B,C 是三个随机事件,且p(A)=p(B)=p(C)=1/4, P(AC)=1/8;P(AB)=P(BC)=0,则A ,B ,C 中至少有一个发生的概率为: _______;A ,B ,C 中都发生的概率为: _______;A ,B ,C 都不发生的概率为: _______; 4. 袋中有n 只球,记有号码 1,2,3,…………n . (n>5) 则事件(1)任意取出两球,号码为1,2的概率为_______;(2)任意取出三球,没有号码为1的概率为_______;(3) 任意取出五球,号码1,2,3中至少出现一个的概率为_______; 5. 从一批由此及彼5件正品,5件次品组成的产品中,任意取出三件产品,则其中恰有一件次品的概率为_______; 二.某码头只能容纳一只船,现预知将独立来到两只船,且在24小时内各时刻来到的可能性都相同,如果他们需要的停靠时间分别为3小时与4小时,试求有一只船要在江中等待的概率? 三.已知A ,B 两个事件满足条件P(AB)=P(A B ),且P(A)=p; 求P(B). 第二次 条件概率 乘法公式 全概率公式 贝叶斯公式 一.填空 1. 条件概率的计算公式P(B|A)= _______;乘法公式P(AB)= _____; 2. 12,,,n A A A 为样本空间S 的一个事件组,若 12,,,n A A A 两两互斥,且 1 2 n A A A =S,则对S 中的事件B 有全概率公式_______; 3. 设B 为样本空间S 的一个事件, 123,,A A A 为样本空间 S 的一个事件组,且满足:(1) 123,,A A A 互不相容,且P(i A )>0 (I=1,2,3) ; (2) S=1 23A A A 则贝叶斯公式为___; 4 两事件A,B 相互独立的充要条件为_______; 5 已知在10只晶体管中,有2只次品,在其中取两次,每次随机地取一只,做不放回抽样,则(1) 两只都是正品的概率为_______;(1)一只正品,一只为次品的概率为_______;(3)两只都为次品的概率为_______;(4)第二次取出的是次品的概率_______; 二.某工厂有甲,乙,丙3个车间,生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,3 个车间中产品的废品率分别为5%,4%,2%,求全厂产品的废品率。 已知男人中有5%的是色盲患者,女人中有0.25%是色盲患者,今从男女人数相等的人群中随机挑选一人,恰好是色盲患者。问此人是男人的概率。 三.一个机床有1/3的时间加工零件A ,其余时间加工零件B ;加工A 时,停车的概率为0.3,加工B 时停

概率论正态分布计算实验报告

概率论实验报告 电子3班 一、实验目的 1.掌握正态分布的有关计算 2.掌握正态分布在实际问题中的应用 3掌握数据分析的一些方法和MATLAB软件在概率计算中的应用 4.掌握正态总体均值(参数)的置信区间的计算方法 二、实验内容 问题一:某公司准备通过考试招收320人,其中正式工280人,临时 工40人,报考人数1821人,考试满分为400分。考后知平均分μ=166分,360分以上有31人。甲的分为256分,问他可否被录取?可否 聘为正式工? 问题二:从一批火箭推力装置中抽取10个进行试验,测得燃烧时间为: 50.7 54.9 54.3 44.8 42.2 69.8 53.4 66.1 48.1 34.1 设燃烧时间~N(μ,2σ),取1-α=0.9,求μ和2σ的置信区间。 三、实验任务及结果 问题一: 分析: (1). 已知条件考试平均成绩μ=166,P(x>=360)=31/1821;

由于x只服从正态分布而不服从标准正态分布,故先标准化。 即X=(x-μ)/σ~N(0,1)。则有: P{X<=(360-166)/σ}=1-31/1821; 据此由函数σ=(360-166)/norminv(1790/1821,0,1)可求出考试成绩方差σ。 (2).至此,又b=P{X<=(256-166)/σ},可由函数b=1-normcdf(a,0,1)求得 (3).近似排名num=1821*b,根据排名可知甲能否被录取。程序: %假设考试成绩服从正态分布% P1=1-31/1821 %正态分布表% z1=norminv(P1,0,1) %可求得参数? % o=(360-166)/z1 a=(256-166)/o %由正态分布表% p2=normcdf(a,0,1) rank=1821*(1-p2) a=rank if a<280 mystring='zhengshiyuangong'; elseif 280320 mystring='NO!'; end y=mystring 实验结果:P1 =0.9830 z1 = 2.1195 o = 91.5305 a =0.9833

概率算法统计

复数、算法、统计 1.复数32(1)i i +=( ) B.-2 C .2i D.2i - 2.若复数(a 2-3a+2)+(a-1)i 是纯虚数,则实数a 的值为( ) B.2 或2 3.复数11 212i i + -+-的虚部是( ) A .15i B .15 C .15i - D .15 - 4.在复平面内,复数sin 2cos2z i =+对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.若复数z 满足(2)z i z =- (i 是虚数单位),则z= . 6.右图中的程序框图. 若输入m =4,n =6, 则输出 a = ,i =___. (注:框图中的赋值符号“=”也可以写成“←”或“:=”) 7.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松 树苗的数量为( ) A .30 B .25 C .20 D .15 8.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量。产品数量的分组区间为:[)[)[)[)[)95,85,85,75,75,65,65,55,55,45,由此得到频率分布直方图如右图,则这20名工人中一天生产该产品数量在[)75,55的人数是 _. 9.从某项综合能力测试中抽取100人的成绩,统计如表,则 这100人成绩的标准差为( ) A .3 B . 2105 C .3 D .8 5 技巧点拨 1.(文2理2)已知),(2R b a i b i i a ∈+=+,其中i 为虚数单位,则=+ b a (A )-1 (B )1 (C )2 (D )3 *2.(理5)已知随机变量ξ服从正态分布),0(2σN ,若023.0)2(=>ξP ,则=≤≤-)22(ξP (A ) (B ) (C ) (D ) 3.(文6) 在某项体育比赛中一位同学被评委所打出的分数如 下:90 89 90 95 93 94 93;去掉一个最高分和一个最低分后,所剩数据的平均值 为和方差分别为 (A ) 92,2 (B )92 , (C ) 93,2 (D )93, 4.(理6)样本中共有五个个体,其值分别为3,2,1,0,a ,若该样本的平均值为 1,则样本方差为 题 第8文理13

概率—古典概型

概率——古典概型 一、知识梳理 1.基本事件的特点 (1)任何两个基本事件是互斥的. (2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型 具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1)试验中所有可能出现的基本事件. (2)每个基本事件出现的可能性. 3.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是; 如果某个事件A包括的结果有m个,那么事件A的概率P(A)=. 4.古典概型的概率公式:P(A)= 二、基础训练 1.有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面同 时投掷这两颗正四面体玩具, (1) 事件“下面出现点数相等”的概率为; (2) 事件“下面出现点数之和大于3”的概率为; (3) 事件“下面出现点数之积为偶数”的概率为.

2.(2008江苏)若将一颗质地均匀的骰子(一种各面上分别标有1、 2、3、4、5、6个点的正方体玩具),先后抛掷2次,则出现向上 的点数之和为4的概率是. 3.(2009江苏)现有5根竹竿,它们的长度(单位:m)分别为2.5, 2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长 度恰好相差0.3m的概率为. 4.(2010江苏)盒子中有大小相同的3只白球,1只黑球,若从中随 机地摸出两只球,两只球颜色不同的概率是. 5.(2011江苏)从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是. 6.(2010北京)从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是. 7. 已知向量a=(2,1),b=(x,y).若x∈{-1,0,1,2},y∈{-1,0,1}, 则向量a∥b的概率为. 8.(2009安徽)从长度分别为2、3、4、5的四条线段中任取3条, 则以这三条线段为边能构成三角形的概率为.

相关主题