搜档网
当前位置:搜档网 › 邵革良-高性价比PFC电源设计及其电感技术

邵革良-高性价比PFC电源设计及其电感技术

无桥PFC电路说明

无桥P F C电路说明文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

氮化镓 (GaN)技术由于其出色的开关特性和不断提升的品质,近期逐渐得到了电力转换应 用的青睐。具有低寄生电容和零反向恢复的安全GaN可实现更高的开关频率和效率,从而 为全新应用和拓扑选项打开了大门。连续传导模式 (CCM)图腾柱PFC就是一个得益于GaN 优点的拓扑。与通常使用的双升压无桥PFC拓扑相比,CCM图腾柱无桥PFC能够使半导体 开关和升压电感器的数量减半,同时又能将峰值效率推升到95%以上。本文分析了AC交叉区域内出现电流尖峰的根本原因,并给出了相应的解决方案。一个750W图腾柱PFC原型 机被构造成具有集成栅极驱动器的安全GaN,并且展示出性能方面的提升。 关键字—GaN;PFC;图腾柱;数字控制 I.?简介 当按下智能手机上的一个按钮时,这个手机会触发一个巨大的通信网络,并且连接到数千 英里之外的数据中心。承载通信数据时的功耗是不可见的,而又大大超过了人们的想象。 世界信息通信技术 (ICT) 生态系统的总体功耗正在接近全球发电量的10% [1]。单单一个数据中心,比如说位于北卡罗来纳州的脸谱公司的数据中心,耗电量即达到40MW。另外还有两个位于美国内华达州和中国重庆的200MW数据中心正在建设当中。随着数据存储和通 信网络的快速增长,持续运行电力系统的效率变得越来越重要。现在比以前任何时候都需 要对效率进行空前的改进与提升。 几乎所有ICT生态系统的能耗都转换自AC。AC输入首先被整流,然后被升压至一个预稳 压电平。下游的DC/DC转换器将电压转换为一个隔离式48V或24V电压,作为电信无线系 统的电源,以及存储器和处理器的内核电压。随着MOSFET技术的兴起和发展,电力转换 效率在过去三十年间得到大幅提升。自2007年生效以来,Energy Star(能源之星)80 PLUS效率评价技术规范 [2] 将针对AC/DC整流器的效率等级从黄金级增加到更高的白金级,并且不断提高到钛金级。然而,由于MOSFET的性能限制,以及与钛金级效率要求有 关的重大设计挑战,效率的改进与提升正在变慢。为了达到96%的钛金级峰值效率,对于 高压线路来说,功率因数校正 (PFC) 电路效率的预算效率应该达到98.5%及以上,对于低压电路,这个值应该不低于96.4%。发展前景最好的拓扑是无桥PFC电路,它没有全波AC 整流器桥,并因此降低了相关的传导损耗。[3] 对于不同无桥PFC的性能评价进行了很好 的总结。这个性能评价的前提是,所使用的有源开关器件为MOSFET或IGBT。大多数钛金 级AC/DC整流器设计使用图6中所示的拓扑 [3],由两个电路升压组成。每个升压电路在 满功率下额定运行,不过只在一半AC线路周期内运行,而在另外周期内处于空闲状态。 这样的话,PFC转换器以材料和功率密度为代价实现了一个比较高的效率值 [4]。通常情 况下,由于MOSFET体二极管的缓慢反向恢复,一个图腾柱PFC无法在连续传导模式 (CCM) 下高效运行。然而,它能够在电压开关为零 (ZVS) 的变换模式下实现出色的效率值。数 篇论文中已经提到,PFC效率可以达到98.5%-99%。对于高功率应用来说,多个图腾柱升 压电路可以交错在一起,以提高功率水平,并且减少输入电流纹波。然而,这个方法的缺 点就是控制复杂,并且驱动器和零电流检测电路的成本较高。此外,因此而增加的功率组 件数量会产生一个低功率密度设计。因此,这个简单的图腾柱电路需要高效运行在CCM 下,以实现高功率区域,并且在轻负载时切换至具有ZVS的TM。通过使用这个方法,可以同时实现高效率和高功率密度。作为一款新兴半导体开关,氮化镓 (GaN) FET正在逐渐走向成熟,并且使此类应用成为可能。Transphorm公司已经在APEC 2013上展示了一款峰值效率达到99%的基于GaN的图腾柱CCM PFC [9]。[10-12] 还介绍了GaN器件出色的开关 特性,以及应用优势。为了更好地理解GaN特性,并且进一步解决应用中存在的顾虑,特 别是开关频率和交叉电流尖峰问题,这篇文章讨论了:II. GaN技术概述、III. 图腾柱CCM PFC控制、IV. 实验和V. 结论。 II. GaN技术概述

有源PFC校正基本原理详细解析

PFC开关电源功率因数校正原理 PFC开关电源功率因数校正原理 一、什么是功率因数补偿,什么是功率因数校正: 功率因数的定义为有功功率与视在功率的比值. 功率因素补偿:这项技术主要是针对因具有感性负载的交流用电器具的电压和电流不同相(图1)而引起的供电效率低下,提出的改进方法(由于感性负载的电流滞后所加电压,电压和电流的相位不同,使供电线路的负担加重,导致供电线路效率下降,这就要求在感性用电器具上并联一个性质相反的电抗元件.用以调整该用电器具的电压、电流相位特性.例如:当时要求所使用的40W日光灯必须并联一个4.75μF的电容器).用电容器并联在感性负载的两端,利用电容上电流超前电压的特性,用以补偿电感上电流滞后电压的特性,使总的特性接近于阻性,从而改善效率低下的方法叫做功率因数补偿(交流电的功率因数可以用电源电压与负载电流两者相位角的余弦函数值cosφ表示)。 图1 在具有感性负载中供电线路中电压和电流的波形 常规开关电源功率因数低是由于开关电源都是在整流后,用一个大容量的滤波电容使输出电压平滑,因此负载特性呈现容性.这就造成了交流220V在整流后,由于滤波电容的充、放电作用,在其两端的直流电压上出现略呈锯齿波的纹波.滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多.

图2 全波整流电压和AC输入电流波形 因为根据整流二极管的单向导电性,只有在AC线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC输入电压瞬时值低于滤波电容上的电压时,整流二极管因反向偏置而截止.也就是说,在AC线路电压的每个半周期内,只是在其峰值附近,二极管才会导通.虽然AC输入电压仍大体保持正弦波波形,但AC输入电流却呈高幅值的尖峰脉冲,如图2所示.这种严重失真的电流波形含有大量的谐波成份,引起线路功率因数严重下降. 在正半个周期内(180o),整流二极管的导通角大大小于180o,甚至只有30o~70o.由于要保证负载功率的要求,在极窄的导通角期间,会产生极大的导通电流,使供电电路中的供电电流呈脉冲状态.它不仅降低了供电的效率,更为严重的是,它在供电线路容量不足或电路负载较大时,会产生严重的交流电压波形畸变(图3),并产生多次谐波,从而干扰了其它用电器具的正常工作(这就是电磁干扰-EMI和电磁兼容-EMC问题)。 图3 正常供电电压波形和接入容性负载后电压波形畸变 二、怎样进行功率因数校正: 1、功率因数校正:(PFC) 我们目前使用的电视机,由于采用了高效的开关电源,而开关电源内部电源输入部分,无一例外的采用了二极管全波整流及滤波电路,如图4A所示,其电压和电流波形如图4B所示。

PFC电路的基本结构和工作原理

PFC电路的基本结构和工作原理 下图所示电路为加入PFC电路的基本结构和工作原理。通过比较,我们可以比较明确看出PFC电路在电源电路结构中的位置和作用。尽管PFC电路的具体形式繁多,不尽相同,工作模式也不一样(CCM电流连续型、DCM不连续型、CRM 临界型),但基本的结构大同小异,大部分都是采用升压的boost拓扑结构,因为这种电路形式优点比较多。这也是一种典型的升压开关电路,基本的思想就是前面说的把整流电路和大滤波电容分割,通过控制PFC开关管的导通使输入电流能跟踪输入电压的变化。工作原理并不复杂,彻底搞清楚这个基本电路的原理,就能触类旁通,给独立分析电路打下基础。在这个电路中.PFC电感L在MOS开关管0导通时储存能量,在开关管截止时.电感L上感应出右正左负的电压,将导通时储存的能量通过升压二极管Dl对大的滤波电容充电,输出能量,只不过其输入的电压是没有经过滤波的脉动电压。值得注意的是,平板电视大部分PFC电感L上大都并联着一个二极管D2,该二极管D2具有保护作用。 大家知道:PFC电路后面大的储能滤波电容C和PFC 电感L是串联的,由于电感L上的电流不能突变,就对大的滤波电容C的浪涌电流起了限制作用。

并联保护分流二极管D2.由于没有电感的限制作用,对滤波电容的冲击反而会更大,但它可以保护升压二圾管,特别是PFC开关管。Dl是快速恢复二极管(由于开关管是在电感电流不为零的时候关断的,需要承受更大的应力,要求二极管有极低甚至为零的反向恢复电流),承受浪涌电流的能力较弱。减小反向恢复电流和提高浪涌电压承载力是相互牵制的,而D2所采用的是普通的整流二极管,承受浪涌电流的能力很强,如1N5407的额定电流3A.浪涌电流可达200A。 该保护二极管D2表面上降低的是对PFC电感和升压二极管的浪涌冲击,但实际上还有一个重要的作用:保护PFC 开关管。 在开机的瞬间,滤波电容的电压尚未建立,由于要对大电容充电.通过PFC电感的电流相对比较大。如果在电源开关接通的瞬间是在正弦波的最大值时,对电容充电的过程中PFC电感L有可能会出现磁饱和的情况,此时PFC电路工作就麻烦了,在磁饱和的情况下,流过PFC开关管的电流就会失去限制,烧坏开关管。为防止悲剧发生,一种方法是对PFC 电路工作的工作时序加以控制,即当对大电容的充电完成以

开关电源PFC讲解

一、什么是PFC? PFC是电脑电源中的一个非常重要的参数,全称是电脑功率因素,简称为PFC,等于“视在功率乘以功率因素”,即:功率因素=实际功率/视在功率 功率因素:功率因数表征着电脑电源输出有功功率的能力。 功率是能量的传输率的度量,在直流电路中它是电压V和电流A和乘积。在交流系统里则要复杂些:即有部分交流电流在负载里循环不传输电能,它称为电抗电流或谐波电流,它使视在功率( 电压Volt乘电流Amps)大于实际功率。视在功率和实际功率的不等引出了功率因素,功率因素等于实际功率与视在功率的比值。 视在功率:即交流电压和交流电流的乘积,用公式表示为:S=UI。 上式中,S是额定输出功率,单位是VA(伏安),U是额定输出电压,单位是V,如220V、380V等;I是额定输出电流,单位是A。视在功率包括两部分:有功功率(P)和无功功率(Q),有功功率是指直接做功的部分。比如使灯发亮,使电机转动,使电子电路工作等。因为这个功率做功后都变成了热量,可以直接被人们感觉到,所以有些人就产生一个错觉,即把有功功率当成了视在功率,孰不知有功功率只是视在

功率的一部分,用式表示:P=SCOS0θ=UICOSθ=UI?F上式中,P是有功功率,单位是W(瓦),F=COSθ被称为功率因数,而θ是在非线性负载时电压电流不同相时的相位差。无功功率是储藏在电路中但不直接做功的那部分功率,用式表示:Q=Ssinθ=UIsinθ。上式中,Q为无功功率,单位是var(乏)。 对于计算机和其它一切靠直流电压工作的电子电路,离开无功功率是根本无法工作的。一般用户都认为计算机之类的设备只需要有功功率,而不需要无功功率。既然无功功率不做功,要它何用!于是他们当然就认为功率因数为1的电源最好。因为它能给出最大输出功率。然而,实际情况并非如此。假如有一台计算机,当交流市电输入后进行整流,就得到脉动直流电压,若不将脉动电压进行任何工,就直接提供给计算机电路,毫无疑问,电路根本无法正常工作。虽然这时计算机的功率因数接近于1,可这又有何用呢。为了让计算机电路能正常工作,必须向其提供平滑了的直流电压。这个“平滑”工作必须由接在计算机电源整流器后面的滤波电容器C来完成。这个滤波器就像一个水库,电容器里面必须储存足够数量的电荷,在整流半波之间的空白时,使电路上的工作电压仍不间断,能保持正常电平。换句话说,即使在两个脉动半波之间无输入电能时,UC的电压电平也无显著的变化,这个功能是靠电容器内的储能来实现的,储存在电容器内的这部分能量就是无功功率。所以说,计算机是靠无功功率的支持,才能保证电路正确运用有功功率实现正常运行的。

功率因数校正电路(pfc)电路工作原理及应用

功率因数校正(英文缩写是PFC)是 目前比较流行的一个专业术语。PFC 是在20世纪80年代发展起来的一项新技术,其背景源于离线开关电源的迅速发展和荧光灯交流电子镇流器的广泛应用。PFC 电路的作用不仅仅是提高线路或系统的功率因数,更重要的是可以解决电磁干扰(EMI)和电磁兼容(EMC)问题。 线路功率因数降低的原因及危害 导致功率因数降低的原因有两个,一个是线路电压与电流之间的相位角中,另一个是电流或电压的波形失真。前一个原因人们是比较熟悉的。而后者在电工学等书籍中却从未涉及。 功率因数(PF)定义为有功功率(P)与视在功率(S)之比值,即PF=P/S 。对于线路电压和电流均为正弦波波形并且二者相位角Φ时,功率因数PF 即为COS Φ。由于很多家用电器(如排风扇、抽油烟机等)和电气设备是既有电阻又有电抗的阻抗负载,所以才会存在着电压与电流之间的相位角Φ。这类电感性负载的功率因数都较低(一般为0.5-0.6),说明交流(AC)电源设备的额定容量不能充分利用,输出大量的无功功率,致使输电效率降低。为提高负载功率因数,往往采取补偿措施。最简单的方法是在电感性负载两端并联电容器,这种方法称为并联补偿。 PFC 方案完全不同于传统的“功率因数补偿”,它是针对非正弦电流波形而采取的提高线路功率因数、迫使AC 线路电流追踪电压波形的瞬时变化轨迹,并使电流与电压保持同相位,使系统呈纯电阻性的技术措施。 长期以来,像开关型电源和电子镇流器等产品,都是采用桥式整流和大容量电容滤波电路来实现AC-DC 转换的。由于滤波电容的充、放电作用,在其两端的直流电压出现略呈锯齿波的纹波。滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多。根据桥式整流二极管的单向导电性,只有在AC 线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC 输入电压瞬时值低于滤波电容上 的电压时,整流二极管因反向偏置而截止。也就是说,在AC 线路电压的每个半周期内,只是在其峰值附近,二极管才会导通(导通角约为70°)。虽然AC 输入电压仍大体保持正弦波波形,但AC 输入电流却呈高幅值的尖峰脉冲,如图l 所示。这种严重失真的电流波形含有大量的谐波成份,引起线路功率因数严重下降。若AC 输入电流基波与输入电压之间的位移角是Φ1,根据傅里叶分析,功率因数PF 与电流总谐波失真(度)THD 之间存在下面关系: 而是由二极管、电阻、电容和电感等无源元件组成。无源PFC 电路有很多类型,其中比较简单的无源PFC 电路由三只二极管和两只电容组成,如图2所示。这种无源PFC 电路的工作原理是:当50Hz 的AC 线路电压按正弦规律由0向峰值V m 变化的1/4周期内(即在0

开关电源功率因数校正PFC(非常好).pdf

开关电源功率因素校正(PFC)及其工作原理 什么是功率因数补偿,什么是功率因数校正: 功率因数补偿:在上世纪五十年代,已经针对具有感性负载的交流用电器具的电压和电流不同相(图1)从而引起的供电效率低下提出了改进方法(由于感性负载的电流滞后所加电压,由于电压和电流的相位不同使供电线路的负担加重导致供电线路效率下降,这就要求在感性用电器具上并联一个电容器用以调整其该用电器具的电压、电流相位特性,例如:当时要求所使用的40W日光灯必须并联一个4.75μF的电容器)。用电容器并连在感性负载,利用其电容上电流超前电压的特性用以补偿电感上电流滞后电压的特性来使总的特性接近于阻性,从而改善效率低下的方法叫功率因数补偿(交流电的功率因数可以用电源电压与负载电流两者相位角的余弦函数值cosφ表示)。 图1 在具有感性负载中供电线路中电压和电流的波形 而在上世纪80年代起,用电器具大量的采用效率高的开关电源,由于开关电源都是在整流后用一个大容量的滤波电容,使该用电器具的负载特性呈现容性,这就造成了交流220V在对该用电器具供电时,由于滤波电容的充、放电作用,在其两端的直流电压出现略呈锯齿波的纹波。滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多。根据整流二极管的单向导电性,只有在AC线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC输入电压瞬时值低于滤波电容上的电压时,整流二极管因反向偏置而截止。也就是说,在AC线路电压的每个半周期内,只是在其峰值附近,二极管才会导通。虽然AC输入电压仍大体保持正弦波波形,但AC输入电流却呈高幅值的尖峰脉冲,如图2所示。这种严重失真的电流波形含有大量的谐波成份,引起线路功率因数严重下降。 在正半个周期内(1800),整流二极管的导通角大大的小于1800甚至只有300-700,由于要保证负载功率的要求,在极窄的导通角期间会产生极大的导通电流,使供电电路中的供电电流呈脉冲状态,它不仅降低了供电的效率,更为严重的是它在供电线路容量不足,或电路负载较大时会产生严重的交流电压的波形畸变(图3),并产生多次谐波,从而,干扰了其它用电器具的正常工作(这就是电磁干扰-EMI和电磁兼容-EMC问题)。 图2

PFC电路详解

PFC技术整理文档 原文来自《郝铭-高端电视维修培训专家》https://www.sodocs.net/doc/dd17708938.html, 一、PFC是什么? 现在进行液晶电视机和等离子电视机电路分析时、故障维修时,都经常的提到“PFC电路”一词,这在早期的电视机中是没有的,早期维修电视机的师傅从来没有接触过的,但是PFC电路是目前液晶电视机和等离子电视机中不可缺少的电路。那么PFC到底是什么?是一项新技术?还是新电路? 先简单说说PFC的定义:PFC是英文的缩语;全称为“Power Factor Correction”,意思是“功率因数校正”; 功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。例如一台电源变压器的耗电量(输入功率)是100W,输出功率有90W,那么这台变压器的功率因数就是90W÷100W=0.9。一个电熨斗的耗电量是300W,使用时产生的热量也为300W,那么这只电熨斗的功率因数就是300W÷300W=1 基本上功率因素可以衡量电力被有效利用的程度,当功率因素值越大,代表其电力利用率越高。功率因数最大为1,不可能超过1。 这个衡量电力有效利用程度的指标,对于我们电视机的生产厂乃至电视机用户;有用吗?有必要吗?既然没有必要,电视机用户一般也没有计较过一台电视机是否充分的利用了所消耗的电量,那么电视机内部设置此电路增加了生产成本;其目的是为什么? 要回答以上的问题,我们先来了解一下什么是功率因数,什么原因造成功率因数低?为什么有的电器功率因数低,有的电器功率因素就不低?有什么方法来提高(校正)功率因数,怎么知道功率因素是否达到最高(1)。电视机的功率因数校正电路(PFC电路)是怎么回事?电视机的功率因数电路是要解决什么问题?要把这一系列的问题搞清楚才能有一个明确的认识。 要弄清楚什么是功率因素校正就必须弄清楚几个概念,这就是:有功功率、无功功率、视在功率(总功率)、功率因数; 1 有功功率: 任何电器设备工作时都要消耗电能并输出能量,例如我们的电饭锅、电熨斗、取暖的电热汀等,它们把消耗的电能转化成为热能,这些转化为热能的电功率都等于是做功了,就称为有功功率。同样一台电动机也消耗电能;使之旋转输出机械功率,这个输出的机械功率就是有功功率。一台电源变压器把220V的

开关电源PFC电容电感计算

4KW PFC 相关电容电感计算 1. 输入电容计算 参阅IR1153应用规格书2000W PFC 计算如下: 因为()()2L IN RMS MAX IN I sw IN RMS MIN I C k f r V π?=??? ,所以需要先求()IN RMS MAX I ,参阅IR1153应用 规格书2000W PFC 计算如下: 当P OUT =4000W 时,() ()400043480.92 O MAX IN MAX MIN P W P W η===; 因为一般需要对市电220VAC (﹣10%,+15%)变动范围内的PFC 运行情况进行确认是否存在异常,即198V~254VAC ,所以()198IN RMS MIN V V =。假设当PFC 在4000W

负载情况下运行功率因数cos φ为0.998,则: () ()()400022()0.921980.998 O MAX IN RMS MAX MIN IN RMS MIN P W I A V PF V η===??; ()()2231.1IN PEAK MAX IN RMS MAX I A A ===; 综上所述,高频输入电容计算如下所示: ()()2235% 3.12222.29%198L IN RMS MAX IN I sw IN RMS MIN I A C k uF f r V kHz V ππ?==?=??????; 所以一个标准的3.3uF 或者2.2uF ,630V 的聚酯(薄膜)电容可以选用。 2. 输出电容计算 参阅IR1153应用规格书2000W PFC 计算如下: 由计算公式:()22() 2O OUT MIN O O MIN P t C V V ???=- ,当P OUT =4000W 时,对于50Hz 的市电来讲, 20t ms ?=,380O V V =,()285O MIN V V =?,将各个参数代入得: ()2224000201601602533(380)(285)1444008122563175 OUT MIN W ms C uF V V ??====--,增加20%余量:() 25333166.25110.2 OUT MIN OUT TOL C uF C uF C ===-?-; 所以4个680uF /450V 的电容并联使用达2720uF 可以满足4000W PFC 的需要。

PFC电路的基本结构和工作原理

PFC电路的基本结构和工作原理 上图为未加入PFC电路的整流电路的原理方框图,下图为工作波形。由以上分析我们可以看出.未加入PFC电路的整流电路稳定工作以后,只有在市电电压的正负峰值附近二极管才导通,产生脉冲电流。造成离线电源功率因数降低的原因在于电流的导通角太小,在半个周期内远远小于180°,提高功率因数就要设法使电流的波形在整个周期内追踪电压的波形。 既然造成导通角太小的原因是整流器后面接人的大容量滤波电容,有源PFC电路基本思想就是在整流器和大容量滤波电容之间加入一级初级调整,把两者进行隔离,此PFC初级调整变换器输出一个基本稳定的DC电压,同时其输入电流能按照和市电一样的正弦规律变化。 下图所示电路为加入PFC电路的基本结构和工作原理。通过比较,我们可以比较明确看出PFC 电路在电源电路结构中的位置和作用。尽管PFC电路的具体形式繁多,不尽相同,工作模式也不一样(CCM电流连续型、DCM不连续型、CRM临界型),但基本的结构大同小异,大部分都是采用升压的boost拓扑结构,因为这种电路形式优点比较多。这也是一种典型的升压开关电路,基本的思想就是前面说的把整流电路和大滤波电容分割,通过控制PFC开关管的导通使输入电流能跟踪输入电压的变化。工作原理并不复杂,彻底搞清楚这个基本电路的原理,就能触类旁通,给独立分析电路打

下基础。在这个电路中.PFC电感L在MOS开关管0导通时储存能量,在开关管截止时.电感L上感应出右正左负的电压,将导通时储存的能量通过升压二极管Dl对大的滤波电容充电,输出能量,只不过其输入的电压是没有经过滤波的脉动电压。值得注意的是,平板电视大部分PFC电感L上大都并联着一个二极管D2,该二极管D2具有保护作用。 大家知道:PFC电路后面大的储能滤波电容C和PFC电感L是串联的,由于电感L上的电流不能突变,就对大的滤波电容C的浪涌电流起了限制作用。 并联保护分流二极管D2.由于没有电感的限制作用,对滤波电容的冲击反而会更大,但它可以保护升压二圾管,特别是PFC开关管。Dl是快速恢复二极管(由于开关管是在电感电流不为零的时候关断的,需要承受更大的应力,要求二极管有极低甚至为零的反向恢复电流),承受浪涌电流的能力较弱。减小反向恢复电流和提高浪涌电压承载力是相互牵制的,而D2所采用的是普通的整流二极管,承受浪涌电流的能力很强,如1N5407的额定电流3A.浪涌电流可达200A。 该保护二极管D2表面上降低的是对PFC电感和升压二极管的浪涌冲击,但实际上还有一个重要的作用:保护PFC开关管。 在开机的瞬间,滤波电容的电压尚未建立,由于要对大电容充电.通过PFC电感的电流相对比较大。如果在电源开关接通的瞬间是在正弦波的最大值时,对电容充电的过程中PFC电感L有可能会出现磁饱和的情况,此时PFC电路工作就麻烦了,在磁饱和的情况下,流过PFC开关管的电流就会失去限制,烧坏开关管。为防止悲剧发生,一种方法是对PFC电路工作的工作时序加以控制,即当对大电容的充电完成以后,再启动PFC电路:另一种比较简单的办法就是在PFC线圈到升压二极管上并联一只二极管旁路。启动的瞬间,给大电容的充电提供另一个支路,防止大电流流过PFC线圈造成饱和,过流损坏开关管,保护开关管,同时该保护二极管D2也分流了升压二极管D1上的电流,保护了升压二极管。另外,D2的加入使得对大电容充电过程加快.其上的电压及时建立,也能使PFC电路的电压反馈环路及时工作,减小开机时PFC开关管的导通时间.使PFC电路尽快正常工作。‘所以,综上所述,以上电路中二极管D2的作用是在开机瞬间或负载短路、PFC输出电压低于输入电压的非正常状况下给电容提供充电路径,防止PFC电感磁饱和对PFCMOS管造成的危险,同时也减轻了PFC电感和升压二极管的负担,起到保护作用。在开机正常工作以后,由于D2右面为B+ PFC输出电压,电压比左面高,D2呈反偏截止状态,对电路的工作没有影响,D2可选用可承受较大浪涌电流的普通大电流的整流二极管。在有些电源中,PFC后面的电容容量不大,也有的没有接入保护二极管D2,但如果PFC后面是使用大容量的滤波电容,此二极管是不能减少的,对电路的安全性有着重要的意义。

简述什么是PFC,PFC稳压开关电源是什么

简述什么是PFC,PFC稳压开关电源是什么 PFC的英文全称为Power Factor CorrecTIon,意思是功率因数校正,功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上功率因数可以衡量电力被有效利用的程度,当功率因数值越大,代表其电力利用率越高。 什么是PFC?PFC是电脑电源中的一个非常重要的参数,全称是电脑功率因素,简称为PFC,等于视在功率乘以功率因素,即:功率因素=实际功率/视在功率 功率因素:功率因数表征着电脑电源输出有功功率的能力。功率是能量的传输率的度量,在直流电路中它是电压V和电流A和乘积。在交流系统里则要复杂些:即有部分交流电流在负载里循环不传输电能,它称为电抗电流或谐波电流,它使视在功率(电压V olt乘电流Amps)大于实际功率。视在功率和实际功率的不等引出了功率因素,功率因素等于实际功率与视在功率的比值。 视在功率:即交流电压和交流电流的乘积,用公式表示为:S=UI。上式中,S是额定输出功率,单位是V A(伏安),U是额定输出电压,单位是V,如220V、380V等;I是额定输出电流,单位是A。视在功率包括两部分:有功功率(P)和无功功率(Q),有功功率是指直接做功的部分。比如使灯发亮,使电机转动,使电子电路工作等。因为这个功率做功后都变成了热量,可以直接被人们感觉到,所以有些人就产生一个错觉,即把有功功率当成了视在功率,孰不知有功功率只是视在功率的一部分,用式表示:P=SCOS0=UICOS =UIF上式中,P是有功功率,单位是W(瓦),F=COS 被称为功率因数,而是在非线性负载时电压电流不同相时的相位差。无功功率是储藏在电路中但不直接做功的那部分功率,用式表示:Q=Ssin=UIsin。上式中,Q为无功功率,单位是var(乏)。对于计算机和其它一切靠直流电压工作的电子电路,离开无功功率是根本无法工作的。一般用户都认为计算机之类的设备只需要有功功率,而不需要无功功率。既然无功功率不做功,要它何用!于是他们当然就认为功率因数为1的电源最好。因为它能给出最大输出功率。然而,实际情况并非如此。假如有一台计算机,当交流市电输入后进行整流,就得

家用电器稳压电源(PFC部分设计)

论文题目:家用电器稳压电源 --PFC部分设计 学生姓名: 所在院系:机电学院 所学专业:应用电子技术教育 导师姓名: 完成时间:2009年5月20日

摘要 随着信息技术的普及推广,电力用户对电能质量的要求日益提高,其中最基本的一条是电压的稳定和较的高功率因数。设计了基于UC3854芯片的一种有源电路功率因数校正电路方案。本文介绍了有源功率因数校正电路(APFC)的工作原理、电路分类,着重分析了电路的选择和设计。该系统采用平均电流模型,它通过脉宽调制输出的一连串脉冲信号来控制电路中开关晶体管的导通与截止,从而将输入电流与输出电压的相位重新调整到同相的状态,最终达到稳压和功率因数校正的目的。 关键词:交流稳压,功率因数校正PFC,UC3854

Regulated power supply design of household appliances --PFC Circuit Design Abstract With the rapid increase of industry and domestic consumption of electric power, power quality began to attract more and more attention. One of the basic rule of power quality and high power factor the stability of voltage. design based on UC3854 chip an active circuit power factor correction circuit program.This article introduce the active power factor correction (APFC) working principle, classification of circuit. focused on an analysis of the selection and design of circuits.The circuit model using the average current through the series of PWM output pulse signal to control circuit switching transistor turn-on and cut-off, so that the output voltage and input current phase of re-adjusted to the same state, and ultimately achieve the pre-regulator and the purpose of power factor correction. Key words: The AC constant voltage, Power factor correction PFC,U C3854

PFC和PWM开关电源控制器

PFC和PWM开关电源控制器 Micro Linear公司的8引脚封装功率因数校正(PFC)和脉冲宽度调制(PWM)电源控制器ML4803,为设计低输入电流谐波畸变的高品质开关电源(SMPS)提供一切所必需的功能,使其元件数量明显减少,成本降低。 根据IEC1000-3-2规范要求,SMPS必须采取谐波抑制措施。Bi-CMOS ML4803采用多项专利技术,将PFC与PWM控制器二合一集成到同一芯片上,并使二者同步化,把引脚由原先的至少16个减少到8个,成为目前引脚最少的PFC和PWM混合型IC。 ML4803采用先进的AC输入电流整形技术,内含平均电流(或峰值)升压型前沿P FC。ML4803的PFC控制器,由新发明的单引脚误差放大器、电流限制比较器、Vcc过压保护(OVP)比较器、欠压锁定(UVLO)电路、基准电压(VREF)、控制逻辑及驱动输出级电路等部分组成;ML4803的高效后沿电流型PWM控制器,主要包括PWM比较器、DC电流限制比较器与PFC公用的振荡器、控制逻辑及驱动输出级等电路。图1为ML4803的内部结构方框图。 ML4803-1的PFC与PWM控制器工作频率均为67kHz,而ML4802的PWM工作频率为PFC的2倍,即134kHz。ML4803的Vcc被箝位在17.5±0.8V,Vcc启动电流仅150μA,工作电流为2mA,欠压封锁门限为12±0.5V(滞后2.9±0.5V)。 ML4803的PFC控制器VEAO引脚为DC-DC升压变换器单引脚电压误差放大器输入,通过电压反馈环路强迫PFC输出调整到设定的DC电压值。当AC输入电压范围为85~256 V时,PFC升压变换器能输出恒定的±85V的DC电压。ISENSE引脚为电流感测输入,通过IC内电流限制比较器,迫使AC输入电流正比于AC输入电压的瞬时变化轨迹,保持正弦波波形,且与AC输入电压趋于同相位,因而可使系统功率因数达到0.99以上,几乎接近于1。PFC电路同时还执行峰值电流限制和过压保护功能,从而提高了系统的可靠性。 ML4803采用了Micro Linear公司的同步前沿/后沿(LETE)调制专利技术,可使PF C级输出纹波减小30%,从而可使用较小容量的电容,并能明显提高SMPS的效率。 ML4803可用作设计PCS、工作台、服务器和外部设备等高功率因数、低输入电流谐波失真的高品质SMPS。图2为用ML4803作为PFC与PWM控制器的典型应用电路。该S MPB适用于国际通用AC供电线路,AC输入电压范围从85V到270V,而无需选择开关。其输出功率为240W,DC输出电压是12V,线路功率因数高于0.99。 在图2中,置于桥式整流器BRI和电解电容C1之间的电感元件L2、开关Q2与Q5、升压二极管CR1及U1(ML4803)的PFC控制器等,组成有源PFC升压式预调整器。R3为电流感测电阻,其电流检测信号经R4和U1引脚3监控;PFC变换器的DC输出电压经R1 3、R12分压采样,通过U1引脚4监控,从而在AC输入端产生正弦电流波形,并在C1两端产生385V的DC输出电压。R24、R26、C11和R31等为U1的Vcc启动元件。当PFC 电路运行之后,L2的次级绕组则感生高频电压,并经CR8,CR15整流和C9、C21、C11等滤波,输出DC电压加至U1引脚Vcc,为U1提供工作电压和电流。U1引脚1输出驱动PF

电源没有pfc会有什么后果- 浅论pfc对电源的重要性

电源没有pfc会有什么后果? 浅论pfc对电源的重要性 本文主要是关于pfc的相关介绍,并着重对pfc的功能特点及优缺点进行了详尽的阐述。 pfcPFC的英文全称为“Power Factor Correction”,意思是“功率因数校正”,功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上功率因数可以衡量电力被有效利用的程度,当功率因数值越大,代表其电力利用率越高。功率因数是用来衡量用电设备用电效率的参数,低功率因数代表低电力效能。为了提高用电设备功率因数的技术就称为功率因数校正。 计算机开关电源是一种电容输入型电路,其电流和电压之间的相位差会造成交换功率的损失,此时便需要PFC电路提高功率因数。目前的PFC有两种,一种为被动式PFC(也称无源PFC)和主动式PFC(也称有源式PFC)。 被动式PFC 被动式PFC一般分“电感补偿式”和“填谷电路式(Valley Fill Circuit)” “电感补偿式”是使交流输入的基波电流与电压之间相位差减小来提高功率因数,“电感补偿式”包括静音式和非静音式。“电感补偿式”的功率因数只能达到0.7~0.8,它一般在高压滤波电容附近。 “填谷电路式”属于一种新型无源功率因数校正电路,其特点是利用整流桥后面的填谷电路来大幅度增加整流管的导通角,通过填平谷点,使输入电流从尖峰脉冲变为接近于正弦波的波形,将功率因数提高到0.9左右,显著降低总谐波失真。与传统的电感式无源功率因数校正电路相比,其优点是电路简单,功率因数补偿效果显著,并且在输入电路中不需要使用体积大重量沉的大电感器。 主动式PFC 而主动式PFC则由电感电容及电子元器件组成,体积小、通过专用IC去调整电流的波形,对电流电压间的相位差进行补偿。主动式PFC可以达到较高的功率因数──通常可达98%

3C认证与电源PFC

3C认证与电源PFC 最近需要用到220V转12V/10A的电源板,需要放置到产品里面,了解到这个如果产品要过3C认证的话,需要用到PFC电路,而用不用PFC电路是对成本有影响的。网上找到一个TI的关于PFC的介绍,觉得不错,总结如下。 什么是PFC? PFC的英文全称为“Power Factor Correction”,意思是“功率因数校正”,功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上功率因数可以衡量电力被有效利用的程度,当功率因数值越大,代表其电力利用率越高。 主动PFC的功率因数大概都在0.90以上,被动PFC在0.70-0.80,无PFC是0.5-0.6左右 什么时候需要用到PFC? 3C要求电源输入功率大于75瓦要测谐波电流.对PFC没有强制要求,但大功率电源前极不加PFC,谐波电流很难通过。 为什么要用PFC? 抑制高次谐波 输出稳压调压 AC-DC电路,其实从我们在上图这个电路里面可以看出,电网进来的是50Hz或60Hz 的交流电,就是直接把它整流滤波成直流就好。 如上图,二极管整流桥之后接了一个电容,右图红色的正弦波为电网进来的电压波形Vac,黑色的Vc为电容两端的电压,红色Iac为电网的输入电流,为什么是锯齿状的呢? AC输入的电源电压的时候,低于输出Vc 这个电压,实际上是没有电流往里面流的,等到这个电压开始超越后面电压的时候,通过这个二极管,就是直接给电容器大电流的灌封,所以电流瞬间就提升到很高,那么直接就灌进去了,灌进去之后随着电压继续往上涨,这个电容充电电压往上拉的时候,电流就会往下降了,那么达到最高电压点的时候,正弦波最高电压点等于充电充满了,那么下来就掉下来就没有电流了,所以必然会形成一个类似这样的三角形的锯齿波这样的东西。 对于电源适配器后级使用者来说,这个三角形的锯齿波其实并没什么影响,那为什么要加这个PFC电路呢?

PFC电路原理与分析

PFC电路原理与分析 引言 追求高品质的电力供需,一直是全球各国所想要达到的目标,然而,大量的兴建电厂,并非解决问题的唯一途径,一方面提高电力供给的能量,一方面提高电气产品的功率因数(Power factor)或效率,才能有效解决问题。有很多电气产品,因其内部阻抗的特性,使得其功率因数非常低,为提高电气产品的功率因数,必须在电源输入端加装功率因数修正电路(Power factor correction circuit),但是加装电路势必增加制造成本,这些费用到最后一定会转嫁给消费者,因此厂商在节省成本的考量之下,通常会以低价为重而不愿意让客户多花这些环保金,大多数的消费者,也因为不了解功率因数修正电路的重要性,只以为兴建电厂才是解决电力不足问题的唯一方案,这是大多数发展中国家电力供应的一大问题所在。功率因数的意义 电力公司经由输配电系统送至用户端的电力(市电)是电压100-110V/60Hz或200-240V/50Hz的交流电,而电气产品的负载阻抗有三种状况,包括电阻性、电容性、和电感性等,其中只有电阻性负载会消耗功率而产生光或热等能源转换,而容性或感性负载只会储存能量,并不会造成能量的消耗。在纯阻性负载状况下,其电压和电流是同相位的,而在电容性负载下,电流的相位是超前电压的,在电感性负载下电压又是超前电流相位的。这超前或滞后的相位角度直接影响了负载对能量的消耗和储存状况,因此定义了实功功率的计算公式: P=VICosθ θ为V和I和夹角,Cosθ的值介于0-1之间,此值直接影响了电流对负载作实功的状况,称之为功率因数(Power Factor,简称PF)。 为了满足消费者的需要,电力公司必须提供S=VI的功率,而消费者实际上只使用了P的功率值,有一部分能量做了虚功,消耗在无功功率上。PF值越大,则消耗的无功功率越小,电力公司需要提供的S值也越小,将可以少建很多电厂。功率因数修正器的结构 功率因数修正器的主要作用是让电压与电流的相位相同且使负载近似于电阻性,因此在电路设计上有很多种方法。其中依使用元件来分类,可分为被动式和主动式功因修正器两种。被动式功因修正器在最好状况下PF值也只能达

大功率电源PFC设计

率 PFC 计 Design of active high power PFC 1. PFC 电感(L)计算公式 1.1电路形式及输入数椐 C的基本电路形式如图1,并定义电感输入端电压为Vi ,电感输出电压为 VOUT 或记为V0。 假定:1/ PFC输出功率POUT=2200 w 2/ MOC管开关频率FSW=50Khz

3/ PFC电感输出电压VOUT=380V 并简称Vo 4/ PFC 电感最小输入电压VIN(mim)=90V (有效值) 5/ PFC 电感最大输入电压为VIN(max)=260V(有效值) 6/ 最大温升50℃ 7/ 电感效率为η1 =99% 8/ 整个调节装置效率为η2 =95% 1.2 PFC 电感L及输入电流Iin的计算公式 1.2.1电感基本表达式 根据电磁感应定律 VL=L×di/dt,当S导通时Vi=VL=Ldi/dt, L=Vi×dt/di (1) Vi是整流桥正输出电压也是PFC输入端电压, 当S关闭时 Vi=-L×di/dt+VO ,V0是PFC输出端电压。 L=(VO-Vi)×dt/di (2) 导通时dt=tON 关闭时dt=tOFF 1.2.2 导出占空比D与Vi和VO的关系 ∵式(1),(2)相等且△i都一样,得到: Vi×ton=(V0-Vi)×tOFF Vi×ton+Vi×tOFF=VO ×tOFF 即Vi×T=VO ×tOFF

tOFF/T=Vi/Vo ∵ D被定义为tON/T 则 tOFF/T=(T-ton)/T=1-D ∴D=1-tOFF/T=1-Vi/ VO=(VO-Vi)/VO 1.2.3导出由(PFC输入端未经滤波的)交流电压和PFC输出的直流电压所描述的电感表达式。 ∵Vi=√2×Vin(AC)min; T=1/F 由(1)知:L=(Vi×ton)/△I=[Vi×(D×T)]/ △I 又D=(VO-Vi)/VO ,得到 L=[(Vi×T)/△I]×D =[(Vi×T)/ △I]×(VO-Vi)/VO =[Vi×(VO-Vi)]/ △I·F·VO =[√2×Vin(AC)min·(V0-√2×Vin(AC)min)]/△I·F·V0 =[√2×Vin(AC)min.(1-√2×Vin(AC)min/V0)]/△I.F (3) 式中F单位Hz,L单位是享利。若×10-6就变成微享(μH)。 式(3) 就是临界电感的计算式。美国Metglas和南韩YuYu公司均使用该计算式计算临界电感。 1.2.4输入电流表达式 ∵PIn max=VIn(rms)min×IIn(rms)max

相关主题