搜档网
当前位置:搜档网 › 一类三次微分系统的异宿环分支

一类三次微分系统的异宿环分支

一类三次微分系统的异宿环分支
一类三次微分系统的异宿环分支

常微分方程习题及答案

第十二章 常微分方程 (A) 一、是非题 1.任意微分方程都有通解。( ) 2.微分方程的通解中包含了它所有的解。( ) 3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( ) 4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( ) 5.微分方程0ln =-'x y x 的通解是()C x y += 2ln 2 1 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( ) 7.xy y x y +='33不是一阶线性微分方程。( ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。( ) 9. 221xy y x dx dy +++=是可分离变量的微分方程。( ) 二、填空题 1.在横线上填上方程的名称 ①()0ln 3=-?-xdy xdx y 是 。 ②()()022=-++dy y x y dx x xy 是 。 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。 ⑤02=-'+''y y y 是 。 2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。 4.x x y cos 2sin -=''的通解是 。 5.124322+=+'+'''x y x y x y x 是 阶微分方程。 6.微分方程()06 ='-''?y y y 是 阶微分方程。 7.y 1 = 所满足的微分方程是 。

8.x y y 2='的通解为 。 9. 0=+x dy y dx 的通解为 。 10.()2511 2+=+-x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()012=+-'y x y x 的通解为 。 12.3阶微分方程3x y ='''的通解为 。 三、选择题 1.微分方程()043 ='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2 2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。 A .3 B .5 C .4 D . 2 3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。 A .x y 2= B .2x y = C .x y 2-= D . x y -= 4.微分方程3 23y y ='的一个特解是( )。 A .13+=x y B .()3 2+=x y C .()2 C x y += D . ()3 1x C y += 5.函数x y cos =是下列哪个微分方程的解( )。 A .0=+'y y B .02=+'y y C .0=+y y n D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。 A .通解 B .特解 C .是方程所有的解 D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。 A .1+=x e y B .x e y 2= C .2 2x e y ?= D . x e y ?=3 8.微分方程x y y sin =+''的一个特解具有形式( )。 A .x a y sin *= B .x a y cos *?= C .()x b x a x y cos sin *+= D . x b x a y sin cos *+= 9.下列微分方程中,( )是二阶常系数齐次线性微分方程。

动力学主要仿真软件

车辆动力学主要仿真软件 I960年,美国通用汽车公司研制了动力学软件DYNA主要解决多自由度 无约束的机械系统的动力学问题,进行车辆的“质量一弹簧一阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的谨生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAM 软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR刚性积分算法,采用稀疏矩阵技术提高计算效率° 1977年,美国Iowa大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLF早在20世纪70年代,Willi Kort tm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA1984),以及最终享誉业界的SIMPAC( 1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MED YN软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACI软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPAC嗽件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACI算法技术的优势,成功地将控制系统和多体计算技术结合起来,发

偏微分方程理论的归纳与总结

偏微分方程基本理论的归纳与总结 偏微分方程是储存自然信息的载体,自然现象的深层次性质可以通过数学手段从方程中推导出来.最为一种语言,微分方程在表达自然定律方面比文字具有更强的优越性.微分方程是一个庞大的体系,它的基本问题就是解的存在性和唯一性.该学科的主要特征是不存在一种可以统一处理大多数偏微分方程的适定性问题的普适的方法和理论.这是与常微分方程有显著差异的地方.这种特性使得我们将方程分为许多种不同类型,这种分类的依据主要来自数学与自然现象这两个方面.从数学的角度,方程的类型一般总是对应于一些普遍的理论和工具.换句话讲,如果能建立一个普遍性的方法统一处理一大类方程问题,那么这个类型就被划分出来.而从自然现象的角度,我们又可以根据不同的运动类型以及性质将方程进行分类.当然这两种方式常常不能截然区分,通常它们是相互关联的,这就造成方程的概念有许多重叠现象. 根据数学的特征,偏微分方程主要被分为五大类,它们是: (1)线性与拟微分方程,研究这类方程的主要工具是Fourier分析方法; (2)椭圆型方程,它的方法是先验估计+泛函分析手段; (3)抛物型方程,主要是Galerkin方法,算子半群,及正则性估计; (4)双曲型方程,对应于Galerkin方法; (5)一阶偏微分方程,主要工具是数学分析方法. 从自然界的运动类型出发,偏微分方程可分为如下几大类: (1)稳态方程(非时间演化方程); (2)耗散型演化方程,这类方程描述了时间演化过程中伴有能量损耗与补充的自然运动.相变与混沌是它们的主要内容; (3)保守系统,如具有势能的波方程.该系统控制的运动是与外界隔离的,及无能量输入,也无能量损耗.行波现象与周期运动是它们的主要特征; (4)守恒律系统,这类方程是一阶偏微分方程组,它们与保守系统具有类似的性质,可视为物质流的守恒.激波行为是由守恒律系统来控制. 下面具体来介绍三类经典方程: 三类典型方程:椭圆型方程,抛物型方程,双曲型方程,即偏微分方程模型的建立,解问题的解法以及三类典型方程的基本理论. 关于三类典型方程定解问题的解题方法,它们主要是分离变量法、积分变换法、特征线法、球面平均法、降维法和Green 函数方法. 关于三类典型方程的基本理论——极值原理和能量估计,并由此给出了解的唯一性和稳定性的相关结论. 具体来说,关于二阶线性椭圆形方程,我们研究它的古典解和弱解.前者主要介绍了基本解、调和函数的基本性质、Green 函数、极值原理、最大模估计、能量方法和变分原理;而后者的研究则需要知道Sobolev空间的相关知识再加以研究;关于二阶线性抛物型方程,主要研究它的Fourier 变换、特殊的求解方法、基本解、方程式和方程组的最大值原理以及最大模估计、带有非经典边界条件和非局部项的方程式的最大值原理及能量方法;关于二阶线性双曲型方程,主要研究初值问题的求解方法、初值问题的能量不等式与解的适定性、以及混合问题的能量模估计与解的适定性. 椭圆、抛物和双曲这三类线性偏微分方程解的适定性问题,它们分别以拉普拉斯方程、热传导方程和波动方程作为代表.具体地说,对于某些规则的求解区域试图求出满足特定线性偏微分方程和定解条件的具体解,这就决定了存在性问题;再利用方程本身所具有的特殊性质,将证明所求解是唯一的,也就解决了唯一性问题;关于连续依赖性问题,需要在不同函数空

高等数学微分方程练习题

(一)微分方程的基本概念 微分方程:含未知函数的导数或微分的方程,称为微分方程、 微分方程的阶:微分方程所含未知函数的最高阶导数或微分的阶数称为微分方程的阶数、 1、不就是一阶微分方程. A、正确 B、不正确 2、不就是一阶微分方程. A、正确 B、不正确 一阶线性微分方程:未知函数及其导数都就是一次的微分方程d ()() d y P x y Q x x +=称为一阶 线性微分方程、 微分方程的解:如果一个函数代入微分方程后,方程两边恒等,则称此函数为微分方程的解、通解:如果微分方程的解中所含独立任意常数C的个数等于微分方程的阶数,则此解称为微分方程的通解、 特解:在通解中根据附加条件确定任意常数C的值而得到的解,称为特解、 1、就是微分方程的解. A、正确 B、不正确 2、就是微分方程的解. A、正确 B、不正确 3、就是微分方程的通解. A、正确 B、不正确 4、微分方程的通解就是( ). A、 B、 C、 D、

(二)变量可分离的微分方程:()()dy f x g y dx = 一阶变量可分离的微分方程的解法就是: (1)分离变量:1221()()()()g y f x dy dx g y f x =;(2)两边积分:1221()()()()g y f x dy dx g y f x =?? 左边对y 积分,右边对x 积分,即可得微分方程通解、 1、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 2、微分方程的通解就是( ). A 、 B 、 C 、 D 、 3、微分方程的通解就是( ). A 、 B 、 C 、 D 、 4、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 5、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 6、微分方程的通解( ). A 、 B 、 C 、 D 、 7、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 8、 x y dy e dx -=就是可分离变量的微分方程. A 、正确 B 、不正确

二次微分方程的通解

教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将 y e rx 代入方程 y py qy 0 得 (r 2 pr q )e rx 0 由此可见 只要r 满足代数方程r 2 pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2 pr q 0叫做微分方程y py qy 0的特征方程 特征方程 的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无 关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0 )()2(121111=++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的 两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关 的实数形式的解 函数y 1e ( i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e ( i )x e x (cos x i sin x ) y 1y 22e x cos x ) (2 1cos 21y y x e x +=βα y 1y 22ie x sin x ) (21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为

第七章 微分方程经典例题

第七章 微分方程 例7 有高为1米的半球形容器,水从它的底部小孔流出,小孔横截面积为1平方厘米. 开始时容器内盛满了水, 求水从小孔流出过程中容器里水面的高度h (水面与孔口中心间的距离)随时间t 的变化规律. 解 由力学知识得,水从孔口流出的流量为 62.0dt dV Q ?== 孔口截面面积 重力加速度 ,12cm S = .262.0dt gh dV =∴ ① 设在微小的时间间隔],,[t t t ?+水面的高度由h 降至,h h ?+则,2dh r dV π-= ,200)100(100222h h h r -=--= .)200(2dh h h dV --=∴π ② 比较①和②得: ,262.0)200(2dt gh dh h h =--π 即为未知函数得微分方程. ,)200(262.03dh h h g dt --- =π ,1000==t h ,1015 14 262.05?? = ∴g C π 所求规律为 ).310107(265.45335h h g t +-?= π 例10 求解微分方程 .2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=222 2y xy x xy y dx dy ,1222 ? ?? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得? ? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1 )2ln(23)1ln(C x u u u +=----

微分方程练习题基础篇答案

常微分方程基础练习题答案 求下列方程的通解 1.dy xy dx = 分离变量 dy xdx y =,2 2x y Ce =,C 为任意常数 2.0xydx = 分离变量 dy y = ,y =C 任意常数 3.ln 0xy y y '-= 分离变量 1 ln dy dx y y x =,x y Ce = 224.()()0xy x dx x y y dy ++-= 分离变量 22 11ydy xdx y x =+-,22 (1)(1)y x C +-= 2 5.(25)dy x y dx =++ 令25u x y =++则2du dy dx dx =+,22du dx u =+ 1x C =+ 6.dy x y dx x y +=-,原方程变为11y dy x y dx x + =-,令y u x =,dy du u x dx dx =+,代入得22111u du dx u x -=+ 2arctan ln u u x C -=+ , y u x = 回代得通解 2arctan ln y y x C x x =++ 7.0xy y '-= 方程变形为0dy y dx x =+=,令y u x = dx x = arctan ln u x C =+, y u x = 回代得通解arctan ln y y x C x x =++ 8.ln dy y x y dx x =,方程变形为ln dy y y dx x x =,令y u x =,(ln 1)du dx u u x =-,1 Cx u e +=,1Cx y xe +=

9.24dy xy x dx +=,一阶线性公式法222(4)2xdx xdx x y e xe dx C Ce --??=+=+? 210.2dy y x dx x -=,一阶线性公式法112 3(2)dx dx x x y e x e dx C x Cx -??=+=+? 2211.(1)24x y xy x '++=,方程变形为2 222411x x y y x x '+=++一阶线性公式法3 2 14()13 y x C x =++ 212.(6) 20dy y x y dx -+=,方程变形为312dx x y dy y -=-一阶线性公式法2312y y Cy =+ 2 13.3y xy xy '-=,方程变形为2113dy x x y dx y -=伯努利方程,令12,dz dy z y y dx dx --==-代入方程得 3dz xz x dx +=-一阶线性公式法再将z 回代得23 2 113x Ce y -=- 411 14. (12)33 dy y x y dx +=-,方程变形为4 3 1111(12)33dy x y dx y +=-伯努利方程,令 34, 3dz dy z y y dx dx --==-代入方程得21dz z x dx -=-,一阶线性公式法再将z 回代得3121x Ce x y =-- 15.560y y y '''++=,特征方程为2560r r ++=,特征根为122,3r r =-=-,通解 2312x x y C e C e --=+ 16.162490y y y '''-+=,特征方程为2 162490r r -+=,特征根为1,23 4 r =,通解 34 12()x y C C x e =+

偏微分方程理论学习-USTC

偏微分方程理论学习 一. 偏微分方程发展简介 1. 常微分方程 十七世纪微积分创立之后,常微分方程理论立刻就发展起来,当时应用常微分方程,解决几何与理学中的新问题。结果是在天体理学中不仅能得到并解释早先已经知晓的那些事实,而且得到了性的发现(例如,海王星的发现就是在对微分方程分析的基础上作出的)。 2. 偏微分方程 偏微分方程的研究要晚得多,对物理学中出现的偏微分方程研究在十八世纪中叶导致了分析学的一个新的分支------数学物理方程的建立。 J.达朗贝尔(D’Alembert )(1717-1783)、L.欧拉(Euler )(1707-1783)、D.伯努利(Bernoulli )(1700-1782)、J.拉格朗日(Lagrange )(1736-1813)、P.拉普拉斯(Laplace )(1749-1827)、S.泊松(Poisson )(1781-1840)、J.傅里叶(Fourier )(1768-1830)等人的工作为这一学科分支奠定了基础。它们在考察具体的数学物理问题中,所提出的思想与方法,竟适用于众多类型的微分方程,成为十九世纪末偏微分方程一般理论发展的基础。 十九世纪,偏微分方程发展的序幕是由法国数学家傅里叶拉开的,他于1822年发表的《热的解析理论》是数学史上的经典文献之一。傅里叶研究的主要是吸热或放热物体内部任何点处的温度随空间和时间的变化规律。在对物体的物理性状作出一定的限制(如均匀、各向同性)后,他根据物理原理推导出了三维空间的热传导方程 其中k 是一个参数,其值依赖于物体的质料。傅里叶当时解决的是如下特殊的热传导问题:设所考虑的物体为两端保持在温度0度、表面绝热且无热流通过的柱轴。在此情形下求解上述热传导方程,因为柱轴只涉及一维空间,所以这个问题也就是求解偏微分方程 ??? ????<<=>==??=??,0),()0,(,0,0),(,0),0(T T 222l x x f x T t t l T t T x k x , 其中后面两项分别是边界条件和初始条件。傅里叶为解这个方程用了分离变量法,他得到满足方程和边界条件的级数解为 为了满足初始条件,必须有

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

微分方程例题选解

微分方程例题选解 1. 求解微分方程3ln (ln )0,|2 x e x xdy y x dx y =+-==。 解:原方程化为 x y x x dx dy 1ln 1=+, 通解为 ?+? ?=-]1[ln 1ln 1C dx e x e y dx x x dx x x ?+=]ln [ln 1C dx x x x ]ln 21[ln 12C x x += 由e x =,23=y ,得1=C ,所求特解为 11 ln ln 2 y x x = +。 2. 求解微分方程22'0x y xy y -+=。 解:令ux y =,u x u y '+=',原方程化为 2 u u u x u -='+, 分离变量得 dx x u du 1 2 =-, 积分得 C x u +=ln 1 , 原方程的通解为 ln x y x C = +。 3. 求解微分方程dy y y x dx xy x )()(3223+=-。 解:此题为全微分方程。下面利用“凑微分”的方法求解。 原方程化为 03 2 2 3 =---dy y ydy x dx xy dx x , 由 dy y ydy x dx xy dx x 3 2 2 3 --- 42222441 )(2141dy dy x dx y dx -+-= )2(41 4224y y x x d --=, 得 0)2(4 224=--y y x x d , 原方程的通解为 C y y x x =--4 2 2 4 2。 注:此题也为齐次方程。 4. 求解微分方程2''1(')y y =+。 解:设y p '=,则dx dp y ='',原方程化为 21p dx dp +=, 分离变量得 dx p dp =+2 1,积分得 1arctan C x p +=, 于是 )tan(1C x p y +==', 积分得通解为 12ln cos()y x C C =-++。 5. 求解微分方程''2'20y y y -+=。 解:特征方程为 0222 =--r r ,特征根为 i r ±=1, 通解为12(cos sin )x y e C x C x =+。

常微分方程基本概念习题附解答

§1.2 常微分方程基本概念习题及解答 1.dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2 x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=| )1(|ln 1+x c 3.dx dy =y x xy y 32 1++ 解:原方程为:dx dy =y y 21+31x x + y y 21+dy=3 1x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c

另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0 解:原方程为: dx dy =-y x y x +- 令 x y =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x ||-2)(1x y - 则令 x y =u dx dy =u+ x dx du 211 u - du=sgnx x 1dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32 +=0 解:原方程为:dx dy =y e y 2e x 3

浅谈微分方程的起源与发展史

浅谈微分方程的起源与发展史 摘要:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布尼茨和伯努利从几何和力学问题上解决的问题。这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。虽然这些特殊的技术只适用于相对较少的情况下,但是他们可以解决许多微分方程在力学和几何中的问题,所以,他们的研究具有非常重要的现实意义。这些特殊的方法和问题,将有助于我们解决很多问题。 引言:很多的科学问题是需要人们根据事物的变化率来确定事物的特征。比如,我们可以 试着用已知的速度或加速度来计算粒子的位置,又比如,一些放射性物质可能是已知的衰变率,这就要求我们在一个给定的时间内确定材料的总量。通过这些例子,我们可以发现,如果知道自变量、未知函数以及函数的导数(或者微分)组成的关系式,得到的就是微分方程。最后再通过微分方程求出未知函数。 关键字:微分方程起源发展史 一、微分方程的思想萌芽 微分方程就是联系着自变量,未知函数以及其导数的关系式。微分方程理论的发展是跟随着微积分理论的建立发展起来的,一般地,客观世界的时间要服从一定的客观规律,这种连接,用数学语言表达,即是抽象为微分方程,一旦获得或研究的解决方案是明确的空气动力学行为,变量之间的规律是一目了然的。例如在物体运动中,唯一的计算就与瞬间速度之间有着紧密的联系,其结果往往形成一个微分方程,一旦求出解或研究清楚气动力学行为,就明确的掌握了物体的运动规律。 1.1微分方程的起源:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布 尼茨和伯努利从几何和力学问题上解决的问题。这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。 1.2微分方程在实际问题中的应用:运用微分方程理论解决一些实际问题,即根 据生物学,物理学,化学,几何学等学科的实际问题及相关知识建立微分方程,讨论该方程解的性质,并由所得的解或解的性质反过来解释该实际过程。物质运动和它的变化规律在数学上是用函数关系描述的,但是在实际问题中往往不能直接写出反映运动规律的函数,却比较容易建立这些变量与他们的导数之间的关系式,即微分方程。只有一个自变量的微分方程称为常微分方程,简称微分方程。 例1 传染病模型 传染病(瘟疫)经常在全世界各地流行,假设传染病传播期间其他地区的总 x,在t时的健康人数为)(t y,染病人数不变,为常数n,最开始的染病人数为 人数为)(t x。 因为总人数为常数n

高数(下)要点(含微分方程)——自己整理的

第六章 微分方程 一、一阶微分方程 1、一阶线性方程 )()(x Q y x P dx dy =+ ])([)()(C dx e x Q e y dx x P dx x P +?? =?-通解 2、伯努利方程 )1,0()()(d d ≠=+n y x Q y x P x y n ).()(d d 1111x Q y x P x y n n n =+?---令.1n y z -= 二、可降阶的高阶方程 1.)()(x f y n = n 次积分 2. )',("y x f y = 不显含y 令)('x p y =,化为一阶方程 ),('p x f p =。 3. )',("y y f y = 不显含自变量 令)('y p y =,dy dp p dx y d =22,化为一阶方程。 三、线性微分方程 )()()()(1)1(1)(x f y x a y x a y x a y n n n n =+'+++-- , 0)(≡x f 时称为齐次的,0)(≡/x f 称为非齐次的。 1.二阶线性齐次线性方程 0)()(=+'+''y x Q y x P y (1) 如果函数)(1x y 与)(2x y 是方程(1)的两个解, 则 )()(2211x y C x y C y += 也是(1)的解,其中21,C C 是任意常数。 如果)(1x y 与)(2x y 是方程(1)的两个线性无关的特解, 则 )()(2211x y C x y C y += (21,C C 是任意常数)是(1)的通解. 两个函数)(1x y 与)(2x y 线性无关的充要条件为

C x y x y ≡/) () (21(常数) 2.二阶线性非齐次线性方程 设 )(*x y 是二阶线性非齐次线性方程 )()()(x f y x Q y x P y =+'+'' 的一个特解,)(x Y 是它对应的齐次方程(1)的通解,则 )()(*x y x Y y += 是该方程 的通解. 设)(* 1x y 与 )(*2x y 分别是二阶线性非齐次方程 )()()(1x f y x Q y x P y =+'+'' 与 )()()(2x f y x Q y x P y =+'+'' 的两个特解。则+ )(* 1x y )(* 2x y 是 )()()()(21x f x f y x Q y x P y +=+'+'' 的特解。(叠加原理) 3.二阶线性常系数齐次方程 0'"=++qy py y 特征方程02 =++q pr r ,特征根 ,r r 4.二阶线性常系数非齐次方程 i) 如果 x m e x P x f λ)()(=, 则二阶线性常系数非齐次方程具有形如 x m k e x Q x y λ)(*= 的特解。 其中,)(x P m 是 m 次多项式, )(x Q m 也是系数待定的m 次多项式; 2,1,0=k 依照λ为特征根的重数而取值. i) 如果 []x x P x x P e x f n l x ωωλsin )(cos )()(+=, 则二阶线性常系数非齐次方程的特解可设为 [] x x R x x R e x y m m x k ωωλsin )(cos )() 2()1(*+=

常微分方程习题集

《常微分方程》测试题1 一、填空题30% 1、形如的方程,称为变量分离方程, 这里.分别为x.y的连续函数。 2、形如-的方程,称为伯努利方 程,这里的连续函 数.n 3、如果存在常数-对于所 有函数称为在R 上关于满足利普希兹条件。 4、形如-的方程,称为 欧拉方程,这里 5、设的某一解,则它的 任一解- 。 二、计算题40% 1、求方程 2、求方程的通解。 3、求方程的隐式解。 4、求方程 三、证明题30% 1.试验证=是方程组x=x,x=,在任何不包含原点

的区间a上的基解矩阵。 2.设为方程x=Ax(A为n n常数矩阵)的标准基解矩阵(即(0)=E),证 明: (t)=(t- t)其中t为某一值.<%建设目标%> 《常微分方程》测试题 2 一、填空题:(30%) 1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的 微分方程是. 2、方程的通解中含有任意常数的个数为. 3、方程有积分因子的充要条件为. 4、连续是保证对满足李普希兹条件的条件. 5、方程满足解的存在唯一性定理条件的区域是. 6、若是二阶线性齐次微分方程的基本解组,则它 们(有或无)共同零点. 7、设是方程的通解,则 . 8、已知是二阶齐次线性微分方程的一个非零解,则与 线性无关的另一解 . 9、设是阶常系数齐次线性方程特征方程的K重根,则该方程相应于的K个线 性无关解是 .

10、线性微分方程组的解是的基本解组的充要条件是 . 二、求下列微分方程的通解:(40%) 1、 2、 3、 4、 5、求解方程. 三、求初值问题的解的存在区间,并求第二次近似解,给 出在解的存在区间的误差估计.(10分) 四、求解微分方程组 满足初始条件的解.(10%)五、证明题:(10%) 设,是方程

二次微分方程的通解

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程: 方程 y ''+py '+qy =0 称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数. 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解. 我们看看, 能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程 y ''+py '+qy =0 得 (r 2+pr +q )e rx =0. 由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解. 特征方程: 方程r 2+pr +q =0叫做微分方程y ''+py '+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出. 特征方程的根与通解的关系: (1)特征方程有两个不相等的实根r 1、r 2时, 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解. 这是因为, 函数x r e y 11=、x r e y 22=是方程的解, 又 x r r x r x r e e e y y )(212121-==不是常数. 因此方程的通解为 x r x r e C e C y 2121+=. (2)特征方程有两个相等的实根r 1=r 2时, 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微

微分方程例题

1. 求下列微分方程的通解: (1)x e y dx dy -=+; 解 )()()(C x e C dx e e e C dx e e e y x x x x dx x dx +=+?=+???=-----??. (2)xy '+y =x 2+3x +2; 解 原方程变为x x y x y 231++=+'. ])23([1 1C dx e x x e y dx x dx x +??++?=?- ])23([1])23([12C dx x x x C xdx x x x +++=+++=?? x C x x C x x x x +++=+++=22331)22331(1223. (3)y '+y cos x =e -sin x ; 解 )(cos sin cos C dx e e e y xdx x dx +???=?-- )()(sin sin sin sin C x e C dx e e e x x x x +=+?=---?. (4)y '+y tan x =sin 2x ; 解 )2sin (tan tan C dx e x e y xdx xdx +???=?- )2sin (cos ln cos ln C dx e x e x x +?=?- ?+?=)cos 1cos sin 2(cos C dx x x x x =cos x (-2cos x +C )=C cos x -2cos 2x . (5)(x 2-1)y '+2xy -cos x =0; 解 原方程变形为1 cos 12 22-=-+'x x y x x y . )1cos (12212 22C dx e x x e y dx x x dx x x +??-?=?--- )(sin 1 1])1(1cos [112222C x x C dx x x x x +-=+-?--=?. (6)23=+ρθ ρd d ; 解 )2(33C d e e d d +???=?-θρθθ )2(33C d e e +=?-θθθ θθθ3333 2)32(--+=+=Ce C e e .

(完整word版)微分方程稳定性理论简介

第五节 微分方程稳定性理论简介 这里简单介绍下面将要用到的有关内容: 一、 一阶方程的平衡点及稳定性 设有微分方程 ()dx f x dt = (1) 右端不显含自变量t ,代数方程 ()0f x = (2) 的实根0x x =称为方程(1)的平衡点(或奇点),它也是方程(1)的解(奇解) 如果从所有可能的初始条件出发,方程(1)的解()x t 都满足 0lim ()t x t x →∞ = (3) 则称平衡点0x 是稳定的(稳定性理论中称渐近稳定);否则,称0x 是不稳定的(不渐近稳定)。 判断平衡点0x 是否稳定通常有两种方法,利用定义即(3)式称间接法,不求方程(1)的解()x t ,因而不利用(3)式的方法称直接法,下面介绍直接法。 将()f x 在0x 做泰勒展开,只取一次项,则方程(1)近似为: 0'()()dx f x x x dt =- (4) (4)称为(1)的近似线性方程。0x 也是(4)的平衡点。关于平衡点0x 的稳定性有如下的结论: 若0'()0f x <,则0x 是方程(1)、(4)的稳定的平衡点。 若0'()0f x >,则0x 不是方程(1)、(4)的稳定的平衡点 0x 对于方程(4)的稳定性很容易由定义(3)证明,因为(4)的一般解是 0'()0()f x t x t ce x =+ (5) 其中C 是由初始条件决定的常数。

二、 二阶(平面)方程的平衡点和稳定性 方程的一般形式可用两个一阶方程表示为 112212 () (,)()(,) dx t f x x dt dx t g x x dt ?=??? ?=?? (6) 右端不显含t ,代数方程组 1212 (,)0 (,)0f x x g x x =?? =? (7) 的实根0012 (,)x x 称为方程(6)的平衡点。记为00 012(,)P x x 如果从所有可能的初始条件出发,方程(6)的解12(),()x t x t 都满足 101lim ()t x t x →∞ = 20 2lim ()t x t x →∞ = (8) 则称平衡点00 012(,)P x x 是稳定的(渐近稳定);否则,称P 0是不稳定的(不渐 近稳定)。 为了用直接法讨论方法方程(6)的平衡点的稳定性,先看线性常系数方程 11112 22122 () ()dx t a x b x dt dx t a x b x dt ?=+??? ?=+?? (9) 系数矩阵记作 1122a b A a b ??=???? 并假定A 的行列式det 0A ≠ 于是原点0(0,0)P 是方程(9)的唯一平衡点,它的稳定性由的特征方程 det()0A I λ-= 的根λ(特征根)决定,上方程可以写成更加明确的形式: 2120()det p q p a b q A λλ?++=? =-+??=? (10) 将特征根记作12,λλ,则

相关主题