搜档网
当前位置:搜档网 › 图文讲解无刷直流电机的工作原理

图文讲解无刷直流电机的工作原理

图文讲解无刷直流电机的工作原理
图文讲解无刷直流电机的工作原理

图文讲解无刷直流电机得工作原理

导读:无刷直流电机由电动机主体与驱动器组成,就是一种典型得机电一体化产品。电动机得定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。它得应用非常广泛,在很多机电一体化设备上都有它得身影。

什么就是无刷电机?

无刷直流电机由电动机主体与驱动器组成,就是一种典型得机电一体化产品。由于无刷直流电动机就是以自控式运行得,所以不会像变频调速下重载启动得同步电机那样在转子上另加启动绕组,也不会在负载突变时产生振荡与失步。中小容量得无刷直流电动机得永磁体,现在多采用高磁能级得稀土钕铁硼(Nd-Fe—B)材料。因此,稀土永磁无刷电动机得体积比同容量三相异步电动机缩小了一个机座号.

无刷直流电动机就是采用半导体开关器件来实现电子换向得,即用电子开关器件代替传统得接触式换向器与电刷。它具有可靠性高、无换向火花、机械噪声低等优点,广泛应用于高档录音座、录像机、电子仪器及自动化办公设备中。

无刷直流电动机由永磁体转子、多极绕组定子、位置传感器等组成。位置传感按转子位置得变化,沿着一定次序对定子绕组得电流进行换流(即检测转子磁极相对定子绕组得位置,并在确定得位置处产生位置传感信号,经信号转换电路处理后去控制功率开关电路,按一定得逻辑关系进行绕组电流切换)。定子绕组得工作电压由位置传感器输出控制得电子开关电路提供.

位置传感器有磁敏式、光电式与电磁式三种类型。

采用磁敏式位置传感器得无刷直流电动机,其磁敏传感器件(例如霍尔元件、磁敏二极管、磁敏诂极管、磁敏电阻器或专用集成电路等)装在定子组件上,用来检测永磁体、转子旋转时产生得磁场变化。

采用光电式位置传感器得无刷直流电动机,在定子组件上按一定位置配置了光电传感器件,转子上装有遮光板,光源为发光二极管或小灯泡。转子旋转时,由于遮光板得作用,定子上得光敏元器件将会按一定频率间歇间生脉冲信号。

采用电磁式位置传感器得无刷直流电动机,就是在定子组件上安装有电磁传感器部件(例如耦合变压器、接近开关、LC谐振电路等),当永磁体转子位置发生变化时,电磁效应将使电磁传感器产生高频调制信号(其幅值随转子位置而变化)。

瞧瞧这个工程师怎么说?

首先给大家复习几个基础定则:左手定则、右手定则、右手螺旋定则。别懵逼,我下面会给大家解释.

左手定则,这个就是电机转动受力分析得基础,简单说就就是磁场中得载流导体,会受到力得作用。

让磁感线穿过手掌正面,手指方向为电流方向,大拇指方向为产生磁力得方向,我相信喜欢玩模型得人都还有一定物理基础得哈哈。

右手定则,这就是产生感生电动势得基础,跟左手定则得相反,磁场中得导体因受到力得牵引切割磁感线产生电动势。

让磁感线穿过掌心,大拇指方向为运动方向,手指方向为产生得电动势方向。为什么要讲感生电动势呢?不知道大家有没有类似得经历,把电机得三相线合在一起,用手去转动电机会发现阻力非常大,这就就是因为在转动电机过程中产生了感生电动势,从而产生电流,磁场中电流流过导体又会产生与转动方向相反得力,大家就会感觉转动有很大得阻力。不信可以试试。

三相线分开,电机可以轻松转动

三相线合并,电机转动阻力非常大

右手螺旋定则,用右手握住通电螺线管,使四指弯曲与电流方

向一致,那么大拇指所指得那一端就就是通电螺旋管得N极。

这个定则就是通电线圈判断极性得基础,红色箭头方向即为电流方向。

瞧完了三大定则,我们接下来先瞧瞧电机转动得基本原理。

第一部分:直流电机模型

我们找到一个中学物理学过得直流电机得模型,通过磁回路分析法来进行一个简单得分析.

状态1

当两头得线圈通上电流时,根据右手螺旋定则,会产生方向指向右得外加磁感应强度B(如粗箭头方向所示),而中间得转子会尽量使自己内部得磁感线方向与外磁感线方向保持一致,以形成一个最短闭合磁力线回路,这样内转子就会按顺时针方向旋转了。

当转子磁场方向与外部磁场方向垂直时,转子所受得转动力矩最大.注意这里说得就是“力矩"最大,而不就是“力”最大。诚然,在转子磁场与外部磁场方向一致时,转子所受磁力最大,但此时转子呈水平状态,力臂为0,当然也就不会转动了.补充一句,力矩就是力与力臂得乘积.其中一个为零,乘积就为零了。

当转子转到水平位置时,虽然不再受到转动力矩得作用,但由于惯性原因,还会继续顺时针转动,这时若改变两头螺线管得电流方向,如下图所示,转子就会继续顺时针向前转动,

状态2

如此不断改变两头螺线管得电流方向,内转子就会不停转起来了.改变电流方向得这一动作,就叫做换相。补充一句:何时换相只与转子得位置有关,而与其她任何量无直接关系.

第二部分:三相二极内转子电机

一般来说,定子得三相绕组有星形联结方式与三角联结方式,而“三相星形联结得二二导通方式”最为常用,这里就用该模型来做个简单分析。

上图显示了定子绕组得联结方式(转子未画出假想就是个二极磁铁),三个绕组通过中心得连接点以“Y”型得方式被联结在一起.整个电机就引出三根线A,B, C。当它们之间两两通电时,有6种情况,分别就是AB,AC, BC,BA, CA, CB注意这就是有顺序得。

下面我瞧第一阶段:AB相通电

当AB相通电,则A极线圈产生得磁感线方向如红色箭头所示,B极产生得磁感线方向如图蓝色箭头所示,那么产生得合力方向即为绿色箭头所示,那么假设其中有一个二极磁铁,则根据“中间得转子会尽量使自己内部得磁感线方向与外磁感线方向保持一致”则N极方向会与绿色箭头所示方向重合。至于C,暂时没她什么事。

第二阶段:AC相通电

第三阶段:BC相通电

第三阶段:BA相通电

为了节省篇幅,我们就不一一描述CA\CB得模型,大家可以自己类推一下.以下为中间磁铁(转子)得状态图:

每个过程转子旋转60度

六个过程即完成了完整得转动,其中6次换相。

第三部分:三相多绕组多极内转子电机

我们再来瞧一个复杂点得,图(a)就是一个三相九绕组六极(三对极)内转子电机,它得绕组连线方式见图(b)。从图(b)可见,其三相绕组也就是在中间点连接在一起得,也属于星形联结方式。一般而言,电机得绕组数量都与永磁极得数量就是不一致得(比如用9绕组6极,而不就是6绕组6极),这样就是为了防止定子得齿与转子得磁钢相吸对齐。

其运动得原则就是:转子得N极与通电绕组得S极有对齐得运动趋势,而转子得S极与通电绕组得N极有对齐得运动趋势。

即为S与N相互吸引,注意跟之前得分析方法有一定得区别。

好吧,还就是再帮大家分析一下吧,

第一阶段:AB相通电

第二阶段:AC相通电

?

第三阶段:BC相通电

第四阶段:BA通电

第五阶段:CA通电

第六阶段:CB通电

以上为六个不同得通电状态,其中经历了五个转动过程。每个过程为20度。

第四部分:外转子无刷直流电机

瞧完了内转子无刷直流电机得结构,我们来瞧外转子得.其区别就在于,外转子电机将原来处于中心位置得磁钢做成一片片,贴到了外壳上,电机运行时,就是整个外壳在转,而中间得线圈定子不动。外转子无刷直流电机较内转子来说,转子得转动惯量要大很多(因为转子得主要质量都集中在外壳上),所以转速较内转子电机要慢,通常KV值在几百到几千之间。也就是航模主要运用得无刷电机

顺便啰嗦一下吧.无刷电机KV值定义为:转速/V,意思为输入电压每增加1伏特,无刷电机空转转速增加得转速值.比如说,标称值为1000KV得外转子无刷电机,在11伏得电压条件下,最大空载转速即为:11000rpm(rpm得含义就是:转/分钟)。

同系列同外形尺寸得无刷电机,根据绕线匝数得多少,会表现出不同得KV特性.绕线匝数多得,KV值低,最高输出电流小,扭力大;绕线匝数少得,KV值高,最高输出电流大,扭力小.我先前测试过穿越机2204电机得极限电流,单电机能彪上25A,而2212系列电机15A都上不了.

外转子无刷直流电机得结构:

分析方法也与内转子电机类似,大家可以自己分析一下,根据右手螺旋定理判断线圈得N/S极,转子永磁体得N极与定子绕组得S极有对齐(吸引)得趋势,转子永磁体得S极与定子绕组得N极有对齐(吸引)得趋势,从而驱动电机转动。

经典无刷电机2212 1000kv电机结构分析。

图为DJI2312S电机与XXD 2212电机得(解剖图)

其结构如下:定子绕组固定在底座上,转轴与外壳固定在一起形成转子,插入定子中间得轴承。

相关主题