搜档网
当前位置:搜档网 › sg355芯片

sg355芯片

sg355芯片
sg355芯片

SG3525芯片

SG3525 是一款功能齐全、通用性强的单片集成 PWM 芯片。由基准电压调整器、振荡器、误差放大器、比较器、锁存器、欠压锁定电路、闭锁控制电路、软起动电路、输出电路构成(图一)。因其外围电路简单,故将SG3525集成电路应用于各类开关电源、斩波器的控制具有较高的性价比。

图一、SG3525内部结构

一、SG3525的主要特点

其主要特点为:输出级采用推挽输出,双通道输出,占空比0一50%可调,每一通道的驱动电流最大值可达200mA,灌拉电流峰值可达500mA。可直接驱动功率MOS管,工作频率高达500KHz,具有欠压锁定、过压保护和软启动等功能。该芯片内部电路由基准电压源、振荡器、误差放大器、PWM比较器与锁存器、分相器、欠压锁定输出驱动级,软启动及关断电路等组成。可正常工作的温度范围是0—70C°,基准电压为5.1士1%,工作电压范围很宽,为8V 到35V。

二、SG3525引脚端子的功能

SG3525采用16端双列直插DIP封装,各引脚端子(图二)功能如下:(1) INV.Input(反相输入端1):误差放大器的反相输入端,此端通常与9脚构成负反馈。

(2) SYNC(同步端3):振荡器外接同步信号输入端。该端接外部同步脉冲信号可实现与外电路同步。

图二、SG3525引脚

(3) OSCoutPut(同步输出端4):同步脉冲输出。作为多个芯片同步工作时使用。如不需多个芯片同步工作时,3脚和4脚悬空。

(4) CT(振荡电容端5):振荡电容接至5脚,另一端直接接至地端。其取值范围为0.001uF到0.luF。正常工作时,在CT两端可以得到一个从0.7V 到3.6V变化的锯齿波。

(5) RT(振荡电阻端6):振荡电阻一端接至6脚,另一端直接接至地端。RT 的阻值决定了内部恒流值对CT充电,其取值范围为2KΩ到150KΩ,RT 和CT越大充电时间越长,反之则充电时间短。

(6) Discharge(放电端7):CT的放电由5、7两端的死区电阻RD决定。

把充电和放电回路分开,有利于通过死区电阻来调节死区时间,使死区时间调节范围更宽。其取值范围为0Ω到500Ω。放电电阻RD和CT越大放电时间越长,反之则放电时间短。

(7) Csoft— start(软启动端8):比较器的反相端即软启动器控制端8,端8可外接软启动电容,该电容由内部的50uA恒流源充电。

(8) Comp (补偿端9):在误差放大器输出端9脚与误差放大器反相输入端1脚间接电阻与电容,构成PI调节器,补偿系统的幅频、相频响应特性。(9) Shutdown(关断端10):10端为PWM锁存器的一个输入端,一般在10端接入过流检测信号。当脚10电压大于0.7V时,芯片将进行限流操作,当脚10电压超过1.4V时,将使PWM锁存器关断,直至下一个时钟周期才能够恢复。

(10)outPutA,0utPutB(脉冲输出端11、14):输出末级采用推挽输出电路,驱动场效应功率管时关断速度更快11脚和14脚相位相差180°,拉电流和灌电流峰值达200mA。由于存在开闭滞后,使输出和吸收间出现重迭导通"在重迭处有一个电流尖脉冲,持续时间约为100ns。可以在推挽输出

电路电压输入端VC 处接一个约0.1uf 的电容滤去电压尖峰。

(11) Ground(接地端12):该芯片上的所有电压都是相对于Ground 而言,即是功率地也是信号地。在实验电路中,由于接入误差放大器反向输入端的反馈电压也是相对与12脚而言,所以主回路和控制回路的接地端应相连。

(12) Vc(推挽输出电路电压输入端13):作为推挽输出级的电压源,提高输出级输出功率。可以和15脚共用一个电源,也可用更高电压的电源。电压范围是4.5V 一35V 。

(13) VCC(芯片电源端15):直流电源从15脚引入分为两路:一路作为内部逻辑和模拟电路的工作电压:另一路送到基准电压稳压器的输入端,产生5.1士1%的内部基准电压。如果该脚电压低于门限电压(8V),该芯片内部电路锁定, 停止工作(基准源及必要电路除外)使之消耗的电流降至很小(约2mA)。另外,该脚电压最大不能超过35V,使用时应该外接一个旁路电容到Ground 端。

(14) Vref(基准电压端16):基准电压端16脚的电压由内部控制在5.1士1%"可以分压后作为误差放大器的参考电压。

三、推荐工作条件

四、振荡器振荡频率的确定

内部振荡器的振荡频率主要取决于6脚外接的定时电阻Rt ,5脚外接的定时电容Ct 和放电电阻Rd (连接于5脚与7脚之间的电阻)的大小。 振荡频率计算公式为1(0.73)

T T D f C R R =+ 采用推挽输出时,输出频率是振荡频率的一半,采用单端输出时输出频率等

于振荡频率。

五、SG3525的主要功能

1、欠压锁定功能

基准电压调整器的输入电压为 15 脚的输入电压VC,当 VC低于 8 V 时,基准电压调整器的输出精度值就得不到保证,由于设置了欠压锁定电路,当出现欠压时,欠压锁定器输出一个高电平信号,再经过或非门输出转化为一个低电平信号输出到 T1和 T5的基极,晶体管 T1和 T5关断,SG3525 的13 脚输出为VC,11 脚和 14 脚无脉冲输出,功率驱动电路输出至功率场效应管的控制脉冲消失,变换器无电压输出,从而实现欠压锁定保护的目的。

2、软起动功能

软起动功能的实现主要由 SG3525 内部的晶体管T3、外接电容 C3及锁存器来实现的。当出现欠压或者有过流故障时,欠压锁定器的高电平传到 T3晶体管基极,T3导通为 8 引脚的外接电容 C3提供放电的途径,C3经 T3放电到零电压后,限制了比较器的PWM 脉冲电压输出,使 PWM 比较器输出为高电平,PWM 高电平经 PWM 锁存器输出至或非门仍为恒定的逻辑高电平,晶体管 T1和 T5关断,封锁输出。当故障消除后,欠压锁定器输出恢复为低电平正常值,T3截止,C3电容由 50 μA 电流源缓慢充电,C3充电对PWM 比较器和 PWM 锁存器的输出产生影响,同时对两个或非门的输出脉冲产生影响,其结果是使输出脉冲由窄缓慢变宽,只有 C3充电结束后,脉冲宽度不受 C3充电的影响。这种软起动方式,可使系统主回路电机及功率场效应管承受过大的冲击浪涌电流。

软起时间(2.5/50)

电容电压达到2.5V所需要的时间。

t V uA C

3、占空比调节

将采样到的电压反馈到 SG3525 的 1 脚,通过 9 脚的输出与5 脚锯齿波相比较产生PWM。电路如下:

采用叠加方式进行计算,当Uref=0时,由虚短虚断可知

1

8

7

56

11

()||

in O

U U

R R

SC SC =-

+

7

56 1

8

11

()||

O in

R

SC SC

U U

R

+

=-

当Uin=0时,

2

87

856

111 ||()||

ref O ref

U U U

R R

SC SC SC

-

=

+

7

56

2

8

8

11

()||

(1)

1

||

O ref

R

SC SC

U U

R

SC

+

=+

所以

77

5656 12

8

8

8

1111

()||()||

(1)

1

||

O O O ref in

R R

SC SC SC SC

U U U U U

R

R

SC

++

=+=+-

但是无法将其化成输出比输入的形式......

如果按照上图计算则

经化简得到

从上面可以看出,它有一个零点两个几点,其频率分别为

欲使闭环稳定,其相位裕度必须为正,通常要求相位裕度大于40°,幅值裕度应为正,一个良好的系统一般要求有6~10dB的裕度。

穿越频率fc(crossover frequency):增益曲线穿越0dB线的频率点

相位裕量phase margin):相位曲线在穿越频率处的相位和-180度之间的相位差

增益裕量(Gain margin):增益曲线在相位曲线达到-180度的频率处对应的增益

R1=R8=10K,R2=R7=200K,C1=C5=10-6F,C2=C6=10-9F代入计算得增益为零计算或通过画伯德图得到穿越频率约为3

Hz,

1.610

生物芯片的研究与开发

生物芯片的研究与开发 1.分子印章法DNA芯片原位合成技术: 结合组合化学合成与软光刻微印刷技术的原理,采用成熟的寡核苷酸固相合成工艺,在预先制作的弹性印章上实现空间寻址的核酸原位合成:将不同的寡核苷酸(或多肽)合成试剂涂抹在凹凸不平的印章表面并将其压印到基片特定位点进而进行偶联固定。开发出高密度基因芯片设计软件,并成功制备位点尺寸为30微米的高宽比(大于25)分子印章;建立了一套用于高密度基因芯片制备装置,并成功将软光刻原位合成应用到DNA芯片和肽核酸芯片的制备中。合成偶联效率大于97%,25个碱基的寡核苷酸正确率大于70%。制备出65536/cm2阵列的寡核酸芯片,杂交结果表明该芯片能够有效区分单碱基错配序列。获得美国专利1项,中国专利2项,并有5项中国专利处于二审中。在Laingmur,中国科学等杂志上发表论文16篇。该技术已通过省科学技术厅鉴定。如能建立分子印章法批量化生产的寡核苷酸微阵列芯片的原位合成试生产线,制备出高质量、标准化、低成本的寡核苷酸微阵列芯片来检测与分析基因表达谱、 基因突变体、免疫反应、受体结合、蛋白质结合、药物分子等非核酸类的分子识别/结合领域,其应用将遍及生物、医学的各领域,如基因组研究、SNP检测、STR检测、肿瘤研究、药理学研究、药物靶标研究、药物毒性研究、病原体研究、医学诊断、病理学组织研究、微生物与发酵研究等.该芯片技术获得了中国发明专利和美国专利,并被Nature Biotechnology 推荐。 2.管盖基因芯片及其检测系统: 管盖基因芯片是将基因探针固定在特制的管盖表面,与置杂交贮液池的图1 基于软光刻技术的高密度基因芯片制备装置。自行研制的用于高密度基因芯片 制备的实验装置(左图);表面亲水处理的PDMS分子印章的电镜照片和全貌图(右图)

集成电路中器件互联线的研究

集成电路中器件互联线的研究 王锴 摘要:集成电路的互连线问题当今集成电路领域的一个研究热点,随着半导体器件和互连线尺寸的不断缩小,越来越多的关键设计指标,如性能、抗扰度等将主要取决于互连线,或受互连线的严重影响。为了加强对于互连线技术的了解和对互连线问题的进行研究,文章讨论了互连线发展的缘由和互连线材料。 关键词::超大规模集成电路互连线问题建模金属互连线 1引言 集成电路工业作为信息产业的基础,对国民经济和社会发展产生着日益重要的影响。而在集成电路发展的大部分时间里,芯片上的互连线几乎总像是“二等公民”,它们只是在特殊的情形在或当进行高精度分析时才以予考虑。随着深亚微米半导体工艺的出现,这一情形已发生了迅速的变化。由导线引起的寄生效应所显示的尺寸缩小特性并不与如晶体管等有源器件相同,随着器件尺寸的缩小和电路速度的提高,它们常常变得非常重要。事实上它们已经开始支配数字集成电路一些相关的特性指标,如速度、能耗和可靠性。这一情形会由于工艺的进步而更加严重,因为后者可以经济可行地生产出更大尺寸的芯片,从而加大互连线的平均长度以及相应的寄生效应。因此仔细深入得分析半导体工艺中互连线的作用和特性不仅是人们所希望的,也是极为重要的。这使得互连线影响、或以互连线为中心的集成电路设计方法学和计算机辅助设计技术成为了集成电路领域的研究热点。2 集成电路互连线发展缘由 一般认为,硅材料的加工极限是10nm 线宽。我们都知道,从工艺水平来看,集成电路发展实现了从微米级别(0.5um,0.35um,0.18um,0.13um)到纳米级别(100nm,90nm,65nm,45nm,28nm,22nm)的跨越。目前Intel、Samsung、TSMC等跨国跨地区企业先后进入22nm工业化量产工艺节点。随着集成电路向超深亚微米的迈进,即制造工艺由已经可以规模量产的28nm 进一步朝22nm,18nm提升,并向10nm逼近时,摩尔定律在集成电路技术发展中的适用性开始受到挑战。 由于器件特征尺寸的进一步微缩,虽然电路的门延迟减小,但是特征尺寸的减小将导致互连引线横截面和线间距的减小。互连线的横截面和间距的减小,将不可避免的使得互连延迟效应变得更加严重。为了应对特征尺寸进一步缩小而带来的互连延迟的问题,产业界开始通过研发新材料、新结构、

芯片可靠性测试d

芯片可靠性检测 2011-08-08 11:00 电子元器件可靠度评估分析 可靠性评估分析的意义 可靠性(Reliability)则是对产品耐久力的测量, 我们主要典型的IC产品的生命周期可以用一条浴缸曲线(Bathtub Curve)来表示。 如上图示意,集成电路得失效原因大致分为三个阶段: Region (I) 被称为早夭期(Infancy period), 这个阶段产品的失效率快速下降,造成失效的原因在于IC设计和生产过程中的缺陷; Region (II) 被称为使用期(Useful life period), 这个阶段产品的失效率保持稳定,失效的原因往往是随机的,比如温度变化等等; Region (III) 被称为磨耗期(Wear-Out period)这个阶段产品的失效率会快速升高,失效的原因就是产品的长期使用所造成的老化等。 ·军工级器件老化筛选 ·元器件寿命试验 ·ESD等级、Latch_up测试评价 ·高低温性能分析试验 ·集成电路微缺陷分析 ·封装缺陷无损检测及分析 ·电迁移、热载流子评价分析 根据试验等级分为如下几类: 一、使用寿命测试项目(Life test items):EFR, OLT (HTOL), LTOL ①EFR:早期失效等级测试( Early fail Rate Test ) 目的: 评估工艺的稳定性,加速缺陷失效率,去除由于天生原因失效的产品。 测试条件: 在特定时间内动态提升温度和电压对产品进行测试 失效机制:材料或工艺的缺陷,包括诸如氧化层缺陷,金属刻镀,离子玷污等由于生产造成的失效。 参考标准: JESD22-A108-A EIAJED- 4701-D101 ②HTOL/ LTOL:高/低温操作生命期试验(High/ Low Temperature Operating Life ) 目的: 评估器件在超热和超电压情况下一段时间的耐久力 测试条件: 125℃,1.1VCC, 动态测试 失效机制:电子迁移,氧化层破裂,相互扩散,不稳定性,离子玷污等 参考数据:

(整理)集成电路IC知识

集成电路IC常识 中国半导体器件型号命名方法 第一部分:用数字表示半导体器件有效电极数目。 第二部分:用汉语拼音字母表示半导体器件的材料和极性 第三部分:用汉语拼音字母表示半导体器件的内型。 第四部分:用数字表示序号 第五部分:用汉语拼音字母表示规格号 日本半导体分立器件型号命名方法 第一部分:用数字表示器件有效电极数目或类型。 第二部分:日本电子工业协会JEIA注册标志。 第三部分:用字母表示器件使用材料极性和类型。 第四部分:用数字表示在日本电子工业协会JEIA登记的顺序号。 第五部分:用字母表示同一型号的改进型产品标志。 集成电路(IC)型号命名方法/规则/标准 原部标规定的命名方法X XXXXX 电路类型电路系列和电路规格符号电路封装T:TTL;品种序号码(拼音字母)A:陶瓷扁平; H:HTTL;(三位数字) B :塑料扁平; E:ECL; C:陶瓷双列直插; I:I-L; D:塑料双列直插; P:PMOS; Y:金属圆壳; N:NMOS; F:金属菱形; F:线性放大器; W:集成稳压器; J:接口电路。 原国标规定的命名方法CXXXXX中国制造器件类型器件系列和工作温度范围器件封装符号 T:TTL;品种代号C:(0-70)℃;W:陶瓷扁平; H:HTTL;(器件序号)E :(-40~85)℃;B:塑料扁平; E:ECL; R:(-55~85)℃;F:全密封扁平; C:CMOS; M:(-55~125)℃;D:陶瓷双列直插; F:线性放大器; P:塑料双列直插; D:音响、电视电路; J:黑瓷双理直插; W:稳压器; K:金属菱形; J:接口电路; T:金属圆壳; B:非线性电路; M:存储器; U:微机电路;其中,TTL中标准系列为CT1000系列;H 系列为CT2000系列;S系列为CT3000系列;LS系列为CT4000系列; 原部标规定的命名方法CX XXXX中国国标产品器件类型用阿拉伯数字和工作温度范围封装 T:TTL电路;字母表示器件系C:(0~70)℃F:多层陶瓷扁平; H:HTTL电路;列品种G:(-25~70)℃B:塑料扁平; E:ECL电路;其中TTL分为:L:(-25~85)℃H:黑瓷扁平; C:CMOS电路;54/74XXX;E:(-40~85)℃D:多层陶瓷双列直插; M:存储器;54/74HXXX;R:(-55~85)℃J:黑瓷双列直插; U:微型机电路;54/74LXXX;M:(-55~125)℃P:塑料双列直插; F:线性放大器;54/74SXXX; S:塑料单列直插; W:稳压器;54/74LSXXX; T:金属圆壳; D:音响、电视电路;54/74ASXXX; K:金属菱形; B:非线性电路;54/74ALSXXX; C:陶瓷芯片载体; J:接口电路;54/FXXX。 E:塑料芯

全球重点芯片公司介绍

全球重点芯片公司介绍 龙继军 英特尔公司——全球最大的芯片制造商 英特尔公司是全球最大的芯片制造商及国际领先的个人电脑网络产品和通信产品的生产商。自一九八五年进入中国市场以来,英特尔公司已在中国设立了十二个办事机构,并在上海兴建了世界一流的制造工厂。为了与中国的计算机行业共同发展,在上海和北京分别成立了英特尔上海软件实验室和英特尔中国研究中心。 我们不仅努力发展新一代的微型处理器,更为各方人士的沟通,学习和生活作出多元化的改善。杰出的员工是我们成功的关键。英特尔公司以独特的企业文化,"业绩为本"的激励机制及每一位员工都能享受的股票期权计划,创造"良好的工作环境",吸引最优秀的人才。我们身为高科技的先驱者,为您提供不可多得的工作机会。把握科技时代的脉搏,亲身体验探索尖端科技领域的乐趣,发掘具有创意的解决方案,在无止境的挑战中开拓人生的崭新境界,尽在英特尔世界。 日本Elpida公司——全球最大芯片工厂 日本硕果仅存的DRam芯片制造商Elpida内存公司表示,计划在未来三年最多投资5000亿日元(54亿美元)建立全球最大的芯片制造工厂之一。 这一投资突出显示了DRam芯片制造商面临的压力,他们需要通过增加投资来保持竞争力。英飞凌、Nanya技术公司已经宣布将合作投资建立工厂,明年的产量将能达到50000个圆片。 Elpida希望这一投资能使公司进入市场领先者的行列。三星、美光、英飞凌目前主宰着市场。iSuppli 的数据显示,Elpida目前是全球第六大DRam芯片制造商,有4.3%的份额。Elpida是日立和NEC建立的合资企业,希望这家位于Hiroshima的工厂在2005年秋季能开始生产先进的300毫米圆片,主要用于数码产品,其中包括手机和数码电视。 最初的产量将在每月一万个圆片左右,但是在2007年可望提高到每月六万个圆片。ING芯片分析师YoshihiroShimada表示:“这一投资是Elpida生存的条件。如果他们不能发展,就应该退出。所以,他们必须这么做。”Elpida在市场中还是一个轻量级选手,市场份额只有排名第三的英飞凌的四分之一。 Elpida目前仍然在调整第一座工厂的生产线,希望在年底将生产能力提高到28000个300毫米圆片。汇丰分析师史蒂夫-迈尔斯表示:“如果只有一个工厂,市场份额就会相对太低。”但是Elpida要募集新工厂的资金也面临着巨大的障碍,他们将通过银行贷款还将发行债券和新股,同时租赁一些设备。Elpida计划今年IPO上市,这是这一投资的先决条件。 IDC——全球第3大DRAM厂商 据韩国媒体报道,市场研究公司IDC日前称,去年,德国的英飞凌科技公司已经超过韩国Hynix半导体公司成为全球第三大DRAM制造商。 全球最大的内存片制造商三星电子公司,去年仍然保持了其在这一市场的领头地位,其市场份额是29.7%。美国的美光科技公司排列第二,市场份额是19.7%。 IDC还预计,今年全球科技发展投资与去年比将增长7%,而今年早些时候曾预计这个数字是4.9%。 台湾TSMC——全球最大的芯片代工企业 台湾积体电路制造公司(TSMC,简称台积电)是全球最大的芯片代工企业,该公司行政总裁及创始人张忠谋(MorrisChang)对芯片行业的健康状况有独特观点。 张忠谋认为,尽管深深困扰芯片行业的3年低迷时期即将结束,但是该行业的前景还不能说是一片光明。 他认为半导体行业在宽带、传感器和无线应用领域都有良好的发展机会,还有许多应用潜力有待开发。但是,看似光明的前景却处在一个令人担忧的背景之下。电子设备中的半导体含量已经饱和。1980年代,电子装备中半导体的平均含量仅为5%。随后该比例逐年上升,2000年达到最高点21%。目前该含量又开

SYN6288中文语音合成芯片数据手册V1.5

第 1 页 / 共 40 页 2010年6月25日更新 SYN6288中文语音合成芯片 数据手册 北京宇音天下科技有限公司 地址:北京市海淀区上地高新技术区 010-******** 010-******** https://www.sodocs.net/doc/df6237457.html,

第 2 页 / 共 40 页 2010年6月25日更新 目 录 目 录.......................................................................................................................................................................2 1.概述 (4) 1.1 产品应用范围..................................................................................................................................................4 1.2 功能特点..........................................................................................................................................................4 1.3 产品功能描述..................................................................................................................................................5 1.4 合成效果..........................................................................................................................................................6 1.5 系统构成框图..................................................................................................................................................6 1.6 封装信息..........................................................................................................................................................7 1.7 IC 引脚结构.. (8) 1.7.1 纵向引脚视图......................................................................................................................................8 1.7.2 横向引脚视图......................................................................................................................................8 1.7.3 引脚定义. (9) 2.芯片控制方式 (10) 2.1 控制命令........................................................................................................................................................10 2.2 芯片回传.. (11) 3.通讯方式 (11) 3.1 异步串行通讯(UART)接口........................................................................................................................12 3.2 通讯传输字节格式. (12) 4.通信帧定义及通信控制 (12) 4.1 命令帧格式....................................................................................................................................................12 4.2 芯片支持的控制命令....................................................................................................................................13 4.3 命令帧相关的特别说明.. (14) 4.3.1 休眠与唤醒说明................................................................................................................................14 4.3.2 设置波特率说明................................................................................................................................14 4.3.3 其它特别说明....................................................................................................................................15 4.4 命令帧举例. (15) 4.4.1 语音合成播放命令............................................................................................................................15 4.4.2 设置波特率命令................................................................................................................................16 4.4.3 停止合成命令....................................................................................................................................17 4.4.4 暂停合成命令....................................................................................................................................17 4.4.5 恢复合成命令....................................................................................................................................18 4.4.6 芯片状态查询命令............................................................................................................................18 4.4.7 芯片进入Power Down 模式命令. (18) 5. 文本控制标记 (18) 5.1 文本控制标记列表........................................................................................................................................19 5.2 文本控制标记使用示例.. (20) 5.2.1标记[v?] --前景播放音量...............................................................................................................20 5.2.2标记[m?]--背景音乐音量.................................................................................................................21 5.2.3标记[t?] ---词语语速 (21)

集成电路封装和可靠性Chapter2-1-芯片互连技术【半导体封装测试】

UESTC-Ning Ning 1 Chapter 2 Chip Level Interconnection 宁宁 芯片互连技术 集成电路封装测试与可靠性

UESTC-Ning Ning 2 Wafer In Wafer Grinding (WG 研磨)Wafer Saw (WS 切割)Die Attach (DA 黏晶)Epoxy Curing (EC 银胶烘烤)Wire Bond (WB 引线键合)Die Coating (DC 晶粒封胶/涂覆) Molding (MD 塑封)Post Mold Cure (PMC 模塑后烘烤)Dejunk/Trim (DT 去胶去纬) Solder Plating (SP 锡铅电镀)Top Mark (TM 正面印码)Forming/Singular (FS 去框/成型) Lead Scan (LS 检测)Packing (PK 包装) 典型的IC 封装工艺流程 集成电路封装测试与可靠性

UESTC-Ning Ning 3 ? 电子级硅所含的硅的纯度很高,可达99.9999 99999 % ? 中德电子材料公司制作的晶棒( 长度达一公尺,重量超过一百公斤 )

UESTC-Ning Ning 4 Wafer Back Grinding ?Purpose The wafer backgrind process reduces the thickness of the wafer produced by silicon fabrication (FAB) plant. The wash station integrated into the same machine is used to wash away debris left over from the grinding process. ?Process Methods: 1) Coarse grinding by mechanical.(粗磨)2) Fine polishing by mechanical or plasma etching. (细磨抛光 )

系统芯片指标

CMOS 射频集成电路设计 课程项目 唐长文 提交期限: 2009年8月6日,7日课程项目报告 1. 项目简介 软件无线电(Software Defined Radio, SDR)射频芯片是将射频50MHz ~6000GHz 信道中的带宽0.2~40MHz 的各种标准协议的有用信号直接下变频到零中频(或者低中频)一款射频模拟前端电路。该项目的最终目标是在保证信道性能的前提下减小片外元件的需求,达到CMOS 工艺全集成。软件无线电射频芯片系统结构框图如下所示: 芯片涉及到的主要核心模块有:宽带可变增益低噪声放大器、上/下变频混频器、第一级宽带频率综合器、第二级窄带频率综合器、抗叠混低通滤波器,可变增益放大器, 模数转换器等。

2. 系统芯片指标 软件无线电射频芯片的性能指标如下: 频率范围 Frequency Range 50MHz~6000MHz 信道带宽 Channel Bandwidth 0.2~40MHz 射频输入信号范围RF Input Signal Range –110dBm~0dBm 最大增益 Maximum Gain 114dB 最小增益 Minimum Gain 4dB 噪声系数NF @ Max. Gain <4dB 三阶交调量IIP3 @ RF LNA Max. Gain –10dBm 二阶交调量IIP2 @ RF LNA Max. Gain +35dBm 中频频率范围IF Frequency Range 零中频 Zero IF 0.2~20MHz 中频信道选择性IF Channel Selectivity (40MHz BW) 零中频Zero IF, @ 40MHz Offset –60dB 中频输出信号IF Output Signal Level, Differential 500mV pp (+4dBm) I/Q匹配性–45dBc 本振相位噪声 LO1@10kHz, @1MHz, Quadrature generator LO2@10kHz, @1MHz, Quadrature generator –92dBc/Hz, –125dBc/Hz –97dBc/Hz, –125dBc/Hz 功耗 Power consumption <96mW@1.2V 芯片面积 Die size <9mm2 @ 90nm CMOS 3. 课程项目 a) 宽带可变增益低噪声放大器设计 b) 宽带正交上变/下变频混频器设计 c) 宽带正交输出的电感电容压控振荡器设计 d) 窄带正交输出的电感电容压控振荡器设计 e) 宽带频率综合器设计 f) 窄带频率综合器设计 g) 抗叠混低通滤波器与可变增益放大器设计 h) 模数转换器设计 上述8个设计项目任选一个,独立完成电路级设计和仿真工作,撰写完整设计报告。设计报告包括:电路图,Testbench电路图,元器件参数,理论和原理分析,手工计算,性能仿真结果等。文档的整洁、排版格式、图中线条和文字的清晰度等占总分的20%。

芯片互联技术的研究现状与发展趋势

芯片互联技术的研究现状与发展趋势 许健华 (桂林电子科技大学机电工程学院,广西桂林) 摘要:概述了芯片级互联技术中的引线键合、载带自动键合、倒装芯片,其中倒装芯片技术是目前半导体封装的主流技术,从微电子封装技术的发展历程可以看出,IC芯片与微电子封装互联技术是相互促进、协调发展、密不可分的,微电子封装技术将向小型化、高性能并满足环保要求的方向发展。将介绍芯片互联一些技术与未来发展趋势。 关键词:微电子封装;芯片互联;倒装焊;微组装技术;发展现状 Chipinterconnection technology research status and development trend Xu Jian-hua (Gulin university of electronic technology institute of electrical and mechanical engineering,Guilin,China) Abstract:Summarizes the wire bonding of chip-level interconnection technology,loaded with automatic bonding,flip-chip,including flip-chip technology is the mainstream of the semiconductor packaging technology.Can be seen from the development of microelectronics packaging technology;IC chip and microelectronic package interconnection technology is mutual promotion,coordinated development, inseparable, microelectronics packaging technology to the direction of miniaturization,high performance and meet the requirements of environmental protection. Key words: Microelectronics packaging; Chip interconnection;Flip-chipbonded;Microassemblytechnology;Development situation 前言: 从上世纪九十年代以来,以计算机(computer)、通信(comunication)和家用电器等消费类电子产品(consumer electronics)为代表的IT产业得到迅猛发展。微电子产业已成为当今世界第一大产业,也是我国国民经济的支柱产业。现代微电子产业逐渐演变为设计、制造和封装三个独立产业。微电子封装技术是支持IT产业发展的关键技术,作为微电子产业的一部分,近年来发展迅速:微电子封装是将数十万乃至数百万个半导体元件(即集成电路芯片)组装成一个紧凑的封装体,由外界提供电源,并与外界进行信息交流。微电子封装可以保证IC在处理过程中芯片免受机械应力:环境应力例如潮气和污染以及静电破坏。封装必须满足器件的各种性能要求,例如在电学(电感、电容、串扰)、热学(功率耗散、结温、质量)、可靠性以及成本控制方面的各项性能指标要求。 现代电子产品高性能的普遍要求,计算机技术的高速发展和LSI,VLSI,ULSI的普及应用,对PCB 的依赖性越来越大,要求越来越高。PCB制作工艺中的高密度、多层化、细线路等技术的应用越来越广。 其中集成电路IC封装设备的发展与芯片技术的发展是相辅相成的。新一代IC的出现常常要求有新的封装形式,而封装形式的进步又将反过来促成芯片技术向前发展。它已经历了三个发展阶段:第一阶段为上世纪80年代以前,封装的主体技术是针脚插装;第二阶段是从上世纪80年代中期开始,表面贴装技术成为最热门的组装技术,改变了传统PTH插装形式,通过微细的引线将集成电路芯片贴装到基板上,大大提高了集成电路的特性,而且自动化程度也得到了很大的提高;第三阶段为上世纪90年代,随着器件封装尺寸的进一步小型化,出现了许多新的封装技术和封装形式,其中最具有代表性的技术引线键合、载带自动焊、有球栅阵列、倒装芯片和多芯片组件等,这些新技术大多采用了面阵引脚,封装密度大为提高,在此基础上,还出现了芯片规模封装和芯片直接倒装贴装技术,因此芯片互联技术得到大力发展。

芯片和键合考题

芯片和键合考题

一、粘片 1、芯片质量检验 采用目检的方法,可以检验出芯片中存在的掩膜缺陷、金属化层缺陷、绝缘电阻以及在各金属化层布线之间、引线之间或引线与芯片边缘之间的缺陷、扩散和钝化层缺陷、划片和芯片缺陷。 2、芯片粘接剪切强度与器件可靠性的关系 1)芯片剪切强度小,粘接机械强度低,器件的耐机械冲击、耐振动、耐离心加速度的能力就小,严重时在进行上述试验时会使芯片脱落,造成器件致命性失效。 2)器件的内热阻会增大。 3)耐热冲击和温度循环能力差,间歇工作寿命(抗热疲劳、热循环次数)小。4)通常芯片剪切强度差,热阻大,结温高,也会造成器件电性能变差。 3、影响芯片粘接剪切强度的因素 芯片在剪切力作用下可能发生断裂的界面和材料如图所示 硅片 芯片背面金属化层 底座镀层 底座 图1芯片可能发生断裂的界面和材料 只有经检验确定剪切试验时断裂面两边材料的性质,才能找到剪切强度低和剪切力分散的原因,继而找出解决办法。 可能发生断裂或脱层的材料为下列5种: 1)硅片。脆性材料,易裂。 2)芯片背面多层金属层。很薄的多层金属材料,工艺不良时易分层。 3)芯片焊层(粘接层)。

4)底座镀层。 5)底座。 正常情况下,这些材料的抗剪强度都大于芯片粘接剪切强度的要求。可能发生断裂或脱层的材料界面为下列5种: 1)硅芯片与芯片背面多层金属层之间。 2)芯片背面多层金属层内各金属层之间。 3)芯片背面金属层与焊层之间。 4)芯片焊层与底座镀层之间。 5)底座镀层与底座基材之间。 剪切强度低的器件,断裂通常发生在材料的界面。 4、芯片装配通用工艺文件和管芯粘片、键合检验工艺文件。 二、键合 1、键合线和键合点的形状、位置检测

LM567芯片简介

LM567芯片简介 音调解码器567详解 -------------------------------------------------------------------------------- 567音调解码器内含锁相环,可以广泛用于BB机、频率监视器等各种电路中。 音调解码器 本文讨论锁相环电路,介绍NE567单片音调解码器集成电路。此音调解码块包含一个稳定的锁相环路和一个晶体管开关,当在此集成块的输入端加上所先定的音频时,即可产生一个接地方波。此音调解码器可以解码各种频率的音调。例如检测电话的按键音等。 此音调解码器还可以用在BB机、频率监视器和控制器、精密振荡器和遥测解码器中。 本文主要讨论Philip的NE567音调解码器/锁相环。此器件是8脚DIP封装的567型廉价产品。图1所示为这种封装引脚图。图2所示为此器件的内部框图,可以看出,NE567的基本组成为锁相环、直角相位检波器(正交鉴相器)、放大器和一个输出晶体管。锁相环内则包含一个电流控制振荡器(CC0)、一个鉴相器和一个反馈滤波器。 Philip的NE567有一定的温度工作范围,即0至+70℉。其电气特性与Philip的SE567大致相同,只是SE567的工作温度为-55至125℉。但是,567已定为工业标准音调解码器,有其它若干个多国半导体集成电路制造厂同时生产此集成块。 例如,Anal·g Device提供三种AD567,EXar公司提供5种XR567,而National Sevniconductor提供3种LM567。这类不同牌号的567器件均可在本文讨论的电路中正常工作。因此,本文以下将这类器件通称为567音调解码器。 567基础 567的基本工作状况有如一个低压电源开关,当其接收到一个位于所选定的窄频带内的输入音调时,开关就接通。换句话说567可做精密的音调控制开关。 通用的567还可以用做可变波形发生器或通用锁相环电路。当其用作音调控制开关时,所检测的中心频率可以设定于0.1至500KHz内的任何值,检测带宽可以设定在中心频率14%内的任何值。而且,输出开关延迟可以通过选择外电阻和电容在一个宽时间范围内改变。 电流控制的567振荡器可以通过外接电阻R1和电容器C1在一个宽频段内改变其振荡频率,但通过引脚2上的信号只能在一个很窄的频段(最大范围约为自由振荡频率的14%)改变其振荡频率。因此,567锁相电路只能“锁定”在预置输入频率值的极窄频带内。567的积分相位检波器比较输入信号和振荡器输出的相对频率和相位。只有当这二个信号相同时(即锁相环锁定)才产生一个稳定的输出,567音调开关的中心频率等于其自由振荡频率,而其带宽等于锁相环的锁定范围。 图3所示为567用作音调开关时的基本接线图。输入音调信号通过电容器C4交流耦合到引脚3,这里的输入阻抗约为20KΩ。插接在电源正电源端和引脚8之间的外接输出负载电阻RL与电源电压有关,电源电压的最大值为15V,引脚8可以吸收达100mA的负载电流。 引脚7通常接地,面引脚4接正电源,但其电压值需最小为4.75V,最大为9V。如果注意节流,引脚8也可接到引脚4的正电源上。 振荡器的中心频率(f0)也由下式确定: f0=1.1×(R1×C1) (1) 这里电阻的单位是KΩ,电容的单位是uF,f0的单位为KHz。 将方程(1)进行相应移项,可得电容C1之值: C1=1.1/(f0×R1) (2)

SYN6288语音合成芯片-使用说明

第 1 页 / 共 39 页 2011年9月6日更新 SYN6288中文语音合成芯片 数据手册 北京宇音天下科技有限公司 地址:北京市海淀区上地高新技术区 010-******** 010-******** https://www.sodocs.net/doc/df6237457.html,

第 2 页 / 共 39 页 2011年9月6日更新 目 录 目 录.......................................................................................................................................................................2 1.概述 (4) 1.1 产品应用范围..................................................................................................................................................4 1.2 功能特点..........................................................................................................................................................4 1.3 产品功能描述..................................................................................................................................................5 1.4 合成效果..........................................................................................................................................................6 1.5 系统构成框图..................................................................................................................................................6 1.6 封装信息..........................................................................................................................................................7 1.7 IC 引脚结构.. (8) 1.7.1 纵向引脚视图......................................................................................................................................8 1.7.2 横向引脚视图......................................................................................................................................8 1.7.3 引脚定义. (9) 2.芯片控制方式 (10) 2.1 控制命令........................................................................................................................................................10 2.2 芯片回传.. (11) 3.通讯方式 (11) 3.1 异步串行通讯(UART)接口........................................................................................................................12 3.2 通讯传输字节格式. (12) 4.通信帧定义及通信控制 (12) 4.1 命令帧格式....................................................................................................................................................12 4.2 芯片支持的控制命令....................................................................................................................................13 4.3 命令帧相关的特别说明.. (14) 4.3.1 休眠与唤醒说明................................................................................................................................14 4.3.2 设置波特率说明................................................................................................................................14 4.3.3 其它特别说明....................................................................................................................................14 4.4 命令帧举例. (15) 4.4.1 语音合成播放命令............................................................................................................................15 4.4.2 设置波特率命令................................................................................................................................16 4.4.3 停止合成命令....................................................................................................................................17 4.4.4 暂停合成命令....................................................................................................................................17 4.4.5 恢复合成命令....................................................................................................................................17 4.4.6 芯片状态查询命令............................................................................................................................18 4.4.7 芯片进入Power Down 模式命令. (18) 5. 文本控制标记 (18) 5.1 文本控制标记列表........................................................................................................................................18 5.2 文本控制标记使用示例.. (20) 5.2.1标记[v?] --前景播放音量...............................................................................................................20 5.2.2标记[m?]--背景音乐音量.................................................................................................................20 5.2.3标记[t?] ---词语语速 (21)

相关主题