搜档网
当前位置:搜档网 › 数字信号处理实验3

数字信号处理实验3

数字信号处理实验3
数字信号处理实验3

实验三离散时间信号的DTFT

一、实验目的

1.加深对离散时间信号的DTFT 的理解。

2.应用DTFT 求解序列的离散时间傅里叶变换。

二、实验仪器设备

1.微机。

2.Matlab 编程环境。

三、实验学时

2 学时

四、预习要求

1.熟悉Matlab 的编程环境和编程语言。

2.学习教材P94-104,P125-134,掌握离散时间傅里叶变换(DTFT)的原理。

五、实验特点及实验原理简介

1.实验重点、难点、特点

离散时间傅里叶变换(DTFT)的原理及应用。难点在Matlab 编程中数字角频率的表示及矩阵乘的应用。

2.实验原理

离散时间信号的DTFT:

六、实验内容及步骤

1.编写DTFT 的函数文件并存盘,以便调用。

function [Xw,w]=DTFT_mf(xn,n)

k=0:1:999;

Xw=xn*(exp(-j*pi/500)).^(n'*k);

w=1/500*k;

2.调用DTFT 的函数文件,计算16 点序列的DTFT。分别绘出该序列DTFT 的幅度响应

和相位响应曲线。

n=0:1:15;

xn=cos(5*pi/16*n);

[xw,w]=DTFT_mf(xn,n);

ampx=abs(xw);angx=angle(xw);

subplot(2,2,1);

stem(n,xn);grid on;

xlabel('n');ylabel('xn');title('待做DTFT的序列');

subplot(2,2,2);

plot(w,ampx);grid on;

ylabel('幅值');title('幅频响应');

subplot(2,2,4);

plot(w,angx);grid on;

xlabel('以π为单位的角频率');ylabel('相角');title('相频响应');

七、问题思考

1. 序列DTFT 的幅度响应曲线有何特点?

2.序列DTFT 的相位响应曲线有何特点?

八、心得体会

数字信号处理实验一

实验一 离散时间信号分析 班级 信息131班 学号 201312030103 姓名 陈娇 日期 一、实验目的 掌握两个序列的相加、相乘、移位、反褶、卷积等基本运算。 二、实验原理 1.序列的基本概念 离散时间信号在数学上可用时间序列)}({n x 来表示,其中)(n x 代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为+∞<<∞-n 的整数,n 取其它值)(n x 没有意义。离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号)(t x a 进行等间隔采样,采样间隔为T ,得到)}({nT x a 一个有序的数字序列就是离散时间信号,简称序列。 2.常用序列 常用序列有:单位脉冲序列(单位抽样)) (n δ、单位阶跃序列)(n u 、矩形序列)(n R N 、实指数序列、复指数序列、正弦型序列等。 3.序列的基本运算 序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。 4.序列的卷积运算 ∑∞ -∞==-= m n h n x m n h m x n y )(*)()()()( 上式的运算关系称为卷积运算,式中代表两个序列卷积运算。两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。其计算的过程包括以下4个步骤。 (1)反褶:先将)(n x 和)(n h 的变量n 换成m ,变成)(m x 和)(m h ,再将)(m h 以纵轴为对称轴反褶成)(m h -。

(2)移位:将)(m h -移位n ,得)(m n h -。当n 为正数时,右移n 位;当n 为负数时,左移n 位。 (3)相乘:将)(m n h -和)(m x 的对应点值相乘。 (4)求和:将以上所有对应点的乘积累加起来,即得)(n y 。 三、主要实验仪器及材料 微型计算机、Matlab6.5 教学版、TC 编程环境。 四、实验内容 (1)用Matlab 或C 语言编制两个序列的相加、相乘、移位、反褶、卷积等的程序; (2)画出两个序列运算以后的图形; (3)对结果进行分析; (4)完成实验报告。 五、实验结果 六、实验总结

数字信号处理实验报告

数字信号处理作业提交日期:2016年7月15日

实验一 维纳滤波器的设计 第一部分 设计一维纳滤波器。 (1)产生三组观测数据,首先根据()(1)()s n as n w n =-+产生信号()s n ,将其加噪(信噪比分别为20,10,6dB dB dB ),得到观测数据123(),(),()x n x n x n 。 (2)估计()i x n ,1,2,3i =的AR 模型参数。假设信号长度为L ,AR 模型阶数为N ,分析实验结果,并讨论改变L ,N 对实验结果的影响。 1 实验原理 滤波技术是信号分析、处理技术的重要分支,无论是信号的获取、传输,还是信号的处理和交换都离不开滤波技术,它对信号安全可靠和有效灵活地传递是至关重要的。信号分析检测与处理的一个十分重要的内容就是从噪声中提取信号,实现这种功能的有效手段之一是设计一种具有最佳线性过滤特性的滤波器,当伴有噪声的信号通过这种滤波器的时候,它可以将信号尽可能精确地重现或对信号做出尽可能精确的估计,而对所伴随噪声进行最大限度地抑制。维纳滤波器就是这种滤波器的典型代表之一。 维纳(Wiener )是用来解决从噪声中提取信号的一种过滤(或滤波)方法。这种线性滤波问题,可以看做是一种估计问题或一种线性估计问题。 设一线性系统的单位样本响应为()h n ,当输入以随机信号()x n ,且 ()() () x n s n v n =+,其中()s n 表示原始信号,即期望信号。()v n 表示噪声,则输出()y n 为()=()()m y n h m x n m -∑,我们希望信号()x n 经过线性系统()h n 后得到的()y n 尽可能接近 于()s n ,因此称()y n 为估计值,用?()s n 表示。 则维纳滤波器的输入-输出关系可用下面表示。 设误差信号为()e n ,则?()()()e n s n s n =-,显然)(n e 可能是正值,也可能是负值,并且它是一个随机变量。因此,用它的均方误差来表达误差是合理的,所谓均方误差最小即 它的平方的统计期望最小:222?[|()|][|()()|][|()()|]E e n E s n s n E s n y n =-=-=min 。而要使均方误差最小,则需要满足2[|()|]j E e n h ?=0. 进一步导出维纳-霍夫方程为:()()()()*(),0,1,2...xs xx xx i R m h i R m i R m h m m =-==∑ 写成矩阵形式为:xs xx R R h =,可知:1xs xx h R R -=。表明已知期望信号与观测数据的互相关函数以及观测信号的自相关函数时,可以通过矩阵求逆运算,得到维纳滤波器的

数字信号处理实验

实验一: 系统及响应时域采样及频域采样 1. 实验目的 (1)掌握用卷积求系统响应及卷积定理的验证; (2)掌握连续信号经理想采样前后的频谱变化关系, 加深对时域采样定理的理解。 (3)掌握频域采样引起时域周期化概念, 加深对频域采样定理的理解。 (4) 掌握序列傅里叶变换的计算机实现方法, 利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。 3. 实验内容及步骤 (1) 认真复习卷积定理、 时域采样和频域采样理论。 (2) 编制实验用主程序及相应子程序。 ①系统单位脉冲响应序列产生子程序。 有限长序列线性卷积子程序, 用于完成两个给定长度的序列的卷积。 可以直接调用MATLAB 语言中的卷积函数conv 。 conv 用于两个有限长度序列的卷积,它假定两个序列 都从n=0开始。调用格式如下: y=conv (x, h) ② 卷积定理的验证。 (3)时域采样定理的验证:信号产生子程序, 用于产生实验中要用到的下列信号序列: x a (t)=Ae -at sin(Ω0t)u(t) 进行采样, 可得到采样序列 x a (n)=x a (nT)=Ae -anT sin(Ω0nT)u(n), 0≤n<50 其中A 为幅度因子, a 为衰减因子, Ω0是模拟角频率, T 为采样间隔。 这些参数都要在实验过程中由键盘输入, 产生不同的x a (t)和x a (n)。 >> %1时域采样序列分析 A=400;a=200;w=200; n=0:50-1;fs=1000; xa=A*exp((-a)*n/fs).*sin(w*n/fs); k=-200:200;w=(pi/100)*k; Xk=fft(xa,length(k));magX=abs(Xk);angX=angle(Xk); subplot(2,1,1); stem(n,xa,'.');xlabel('n');ylabel('xa(n)'); title('信号的类型'); )()(10n R n h a =) 3()2(5.2)1(5.2)()(-+-+-+=n n n n n h b δδδδ1 ,,2,1,0,)()()(-==M k e H e X e Y k k k j j a j ωωω

数字信号处理实验一

一、实验目的 1. 通过本次实验回忆并熟悉MATLAB这个软件。 2. 通过本次实验学会如何利用MATLAB进行序列的简单运算。 3. 通过本次实验深刻理解理论课上的数字信号处理的一个常见方法——对时刻n的样本附近的一些样本求平均,产生所需的输出信号。 3. 通过振幅调制信号的产生来理解载波信号与调制信号之间的关系。 二、实验内容 1. 编写程序在MATLAB中实现从被加性噪声污染的信号中移除噪声的算法,本次试验采用三点滑动平均算法,可直接输入程序P1.5。 2. 通过运行程序得出的结果回答习题Q1.31-Q1.33的问题,加深对算法思想的理解。 3. 编写程序在MATLAB中实现振幅调制信号产生的算法,可直接输入程序P1.6。 4. 通过运行程序得出的结果回答习题Q1.34-Q1.35的问题,加深对算法思想的理解。 三、主要算法与程序 1. 三点滑动平均算法的核心程序: %程序P1.5 %通过平均的信号平滑 clf; R=51; d=0.8*(rand(R,1)-0.5);%产生随噪声 m=0:R-1; s=2*m.*(0.9.^m);%产生为污染的信号 x=s+d';%产生被噪音污染的信号 subplot(2,1,1); plot(m,d','r-',m,s,'g--',m,x,'b-.');

xlabel('时间序号n');ylabel('振幅'); legend('d[n]','s[n]','x[n]'); x1=[0 0 x];x2=[0 x 0];x3=[x 0 0]; y=(x1+x2+x3)/3; subplot(2,1,2); plot(m,y(2:R+1),'r-',m,s,'g--'); legend('y[n]','s[n]'); xlabel('时间序号n');ylabel('振幅'); 2. 振幅调制信号的产生核心程序:(由于要几个结果,因此利用subplot函数画图) %程序P1.6 %振幅调制信号的产生 n=0:100; m=0.1;fH=0.1;fL=0.01; m1=0.3;fH1=0.3;fL1=0.03; xH=sin(2*pi*fH*n); xL=sin(2*pi*fL*n); y=(1+m*xL).*xH; xH1=sin(2*pi*fH1*n); xL1=sin(2*pi*fL1*n); y1=(1+m1*xL).*xH; y2=(1+m*xL).*xH1; y3=(1+m*xL1).*xH; subplot(2,2,1); stem(n,y); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.1;fH=0.1;fL=0.01;'); subplot(2,2,2); stem(n,y1); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.3;fH=0.1;fL=0.01;'); subplot(2,2,3); stem(n,y2); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.3;fH=0.3;fL=0.01;'); subplot(2,2,4); stem(n,y3); grid;

数字信号处理实验

实验一 离散傅里叶变换(DFT )对确定信号进行谱分析 一.实验目的 1.加深对DFT 算法原理和基本性质的理解。 2.熟悉DFT 算法和原理的编程方法。 3.学习用DFT 对信号进行谱分析的方法,了解可能出现的误差及其原因,以便在实际中正确利用。 二.实验原理 一个连续信号)(t x a 的频谱可以用其傅里叶变换表示,即 dt e t x j X t j a a Ω-∞ ∞ -? = Ω)()( 若对)(t x a 进行理想采样可得采样序列 )(|)()(nT x t x n x a nT t a === 对)(n x 进行DTFT ,可得其频谱为: ∑∞ -∞ =-= n n j j e n x e X ωω )()( 其中数字频率ω与模拟频率Ω的关系为: s f T Ω = Ω=ω )(n x 的DFT 为∑∞ -∞ =-= n nk N j e n x k X π 2)()( 若)(t x a 是限带信号,且在满足采样定理的条件下,)(ω j e X 是)(Ωj X a 的周期延拓, )(k X 是)(ωj e X 在单位圆上的等间隔采样值,即k N j e X k X πωω2| )()(= =。 为在计算机上分析计算方便,常用)(k X 来近似)(ω j e X ,这样对于长度为N 的有限 长序列(无限长序列也可用有限长序列来逼近),便可通过DFT 求其离散频谱。 三.实验内容 1.用DFT 对下列序列进行谱分析。 (1))()04.0sin(3)(100n R n n x π=

1 (2)]0,0,0,0,0,0,0,0,1,1,1,1[)(=n x 2.为了说明高密度频谱和高分辨率频谱之间的区别,考察序列 )52.0cos()48.0cos()(n n n x ππ+= (1)当0≤n ≤10时,确定并画出x(n)的离散傅里叶变换。 (2)当0≤n ≤100时,确定并画出x(n)的离散傅里叶变换。 四.实验结果 1. (1) (2)

数字信号处理实验报告

实验一MATLAB语言的基本使用方法 实验类别:基础性实验 实验目的: (1)了解MATLAB程序设计语言的基本方法,熟悉MATLAB软件运行环境。 (2)掌握创建、保存、打开m文件的方法,掌握设置文件路径的方法。 (3)掌握变量、函数等有关概念,具备初步的将一般数学问题转化为对应计算机模型并进行处理的能力。 (4)掌握二维平面图形的绘制方法,能够使用这些方法进行常用的数据可视化处理。 实验内容和步骤: 1、打开MATLAB,熟悉MATLAB环境。 2、在命令窗口中分别产生3*3全零矩阵,单位矩阵,全1矩阵。 3、学习m文件的建立、保存、打开、运行方法。 4、设有一模拟信号f(t)=1.5sin60πt,取?t=0.001,n=0,1,2,…,N-1进行抽样,得到 序列f(n),编写一个m文件sy1_1.m,分别用stem,plot,subplot等命令绘制32 点序列f(n)(N=32)的图形,给图形加入标注,图注,图例。 5、学习如何利用MATLAB帮助信息。 实验结果及分析: 1)全零矩阵 >> A=zeros(3,3) A = 0 0 0 0 0 0 0 0 0 2)单位矩阵 >> B=eye(3) B = 1 0 0 0 1 0 0 0 1 3)全1矩阵 >> C=ones(3) C = 1 1 1 1 1 1 1 1 1 4)sy1_1.m N=32; n=0:N-1; dt=0.001; t=n*dt; y=1.5*sin(60*pi*t); subplot(2,1,1), plot(t,y); xlabel('t'); ylabel('y=1.5*sin(60*pi*t)'); legend('正弦函数'); title('二维图形'); subplot(2,1,2), stem(t,y) xlabel('t'); ylabel('y=1.5*sin(60*pi*t)'); legend('序列函数'); title('条状图形'); 00.0050.010.0150.020.0250.030.035 t y = 1 . 5 * s i n ( 6 * p i * t ) 二维图形 00.0050.010.0150.020.0250.030.035 t y = 1 . 5 * s i n ( 6 * p i * t ) 条状图形

数字信号处理实验答案完整版

数字信号处理实验答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

实验一熟悉Matlab环境 一、实验目的 1.熟悉MATLAB的主要操作命令。 2.学会简单的矩阵输入和数据读写。 3.掌握简单的绘图命令。 4.用MATLAB编程并学会创建函数。 5.观察离散系统的频率响应。 二、实验内容 认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。在熟悉了MATLAB基本命令的基础上,完成以下实验。 上机实验内容: (1)数组的加、减、乘、除和乘方运算。输入A=[1 2 3 4],B=[3 4 5 6],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。 clear all; a=[1 2 3 4]; b=[3 4 5 6]; c=a+b; d=a-b; e=a.*b; f=a./b; g=a.^b; n=1:4; subplot(4,2,1);stem(n,a); xlabel('n');xlim([0 5]);ylabel('A'); subplot(4,2,2);stem(n,b); xlabel('n');xlim([0 5]);ylabel('B'); subplot(4,2,3);stem(n,c); xlabel('n');xlim([0 5]);ylabel('C'); subplot(4,2,4);stem(n,d); xlabel('n');xlim([0 5]);ylabel('D'); subplot(4,2,5);stem(n,e); xlabel('n');xlim([0 5]);ylabel('E'); subplot(4,2,6);stem(n,f); xlabel('n');xlim([0 5]);ylabel('F'); subplot(4,2,7);stem(n,g); xlabel('n');xlim([0 5]);ylabel('G'); (2)用MATLAB实现下列序列: a) x(n)= 0≤n≤15 b) x(n)=e+3j)n 0≤n≤15 c) x(n)=3cosπn+π)+2sinπn+π) 0≤n≤15 d) 将c)中的x(n)扩展为以16为周期的函数x(n)=x(n+16),绘出四个周期。

数字信号处理实验报告一

武汉工程大学 数字信号处理实验报告 姓名:周权 学号:1204140228 班级:通信工程02

一、实验设备 计算机,MATLAB语言环境。 二、实验基础理论 1.序列的相关概念 2.常见序列 3.序列的基本运算 4.离散傅里叶变换的相关概念 5.Z变换的相关概念 三、实验内容与步骤 1.离散时间信号(序列)的产生 利用MATLAB语言编程产生和绘制单位样值信号、单位阶跃序列、指数序列、正弦序列及随机离散信号的波形表示。 四实验目的 认识常用的各种信号,理解其数字表达式和波形表示,掌握在计算机中生成及绘制数字信号波形的方法,掌握序列的简单运算及计算机实现与作用,理解离散时间傅里叶变换,Z变换及它们的性质和信号的频域分

实验一离散时间信号(序列)的产生 代码一 单位样值 x=2; y=1; stem(x,y); title('单位样值 ') 单位阶跃序列 n0=0; n1=-10; n2=10; n=[n1:n2]; x=[(n-n0)>=0]; stem(n,x); xlabel('n'); ylabel('x{n}'); title('单位阶跃序列');

实指数序列 n=[0:10]; x=(0.5).^n; stem(n,x); xlabel('n'); ylabel('x{n}'); title('实指数序列');

正弦序列 n=[-100:100]; x=2*sin(0.05*pi*n); stem(n,x); xlabel('n'); ylabel('x{n}'); title('正弦序列');

随机序列 n=[1:10]; x=rand(1,10); subplot(221); stem(n,x); xlabel('n'); ylabel('x{n}'); title('随机序列');

数字信号处理实验三

实验三 离散付里叶变换(DFT ) 一、实验目的: 1. 掌握离散付里叶级数 2. 掌握DFT 变换。 3. 掌握DFT 特性。 4. 掌握利用DFT 计算线性卷积。 5. 掌握快速付里叶变换(FFT)。 二、实验原理: 1.离散付里叶级数(DFS ) )(~n x 为周期序列,其频率为基本频率(N /2π )的倍数(或谐波)。其离散付叶级 数(DFS )为:;∑ -=-±== 1 2,,1,0,)(~)(~N n kn N j k e n x k X π IDFS 为:∑ -== 1 2)(~ 1)(~N k kn N j e k X N n x π 2.离散付里叶变换(DFT ) )(n x 为长度N 的有限长序列,其DFT 为:21 1()()N j kn N k x n X k e N π--== ∑ IDFT 为:21 ()(),0,1,N j kn N n X k x n e k π-== =±∑ 3.DFT 的特性: (1) 线性性:)]([)]([)]()([2121n x bDFT n x aDFT n bx n ax DFT +=+ (2) 循环折叠(圆周对称)性:?? ? -≤≤-==-1 1) (0) 0())((N n n N x n x n x N (3) 共轭性: N k X n x DFT ))(()]([* *-= (4) 实序列的对称性(圆周共轭对称性):N k X k X ))(()(* -= (5) 序列的圆周移位:N m n x m n x ))(()(~ -=-

(6) 频域中的圆周移位:)())(()]([|ln k R l k X n x W DFT N N N -=- (7) 时域循环卷积:)()()]()([2121k X k X n x n x DFT =? (8) 频域循环卷积(乘法性):)()(1)]()([2121k X k X N n x n x DFT ?= (9) 帕塞瓦尔(Parseval )定理:∑ ∑ -=-== = 1 2 1 2 ) (1)(N k N n x k X N n x E 4.用DFT 计算线性卷积: 设)(1n x 为1N 点序列,)(2n x 为2N 点序列,)(3n x 为)(1n x 和)(2n x 的线性卷积,其为121-+N N 点序列,)(4n x 为)(1n x 和)(2n x 的圆卷积,其长度为 N ,当121-+=N N N 时,)()(43n x n x =。实际中,采用分段卷积法,即重 叠保留法和重叠相加法。需要对数据流进行分块处理,这时直接采用DFT 计算线性卷积会产生一些问题,而应该将)(n x 通过重复前M-1个取样进行分块,这样可得到正确结果。 5.快速付里叶变换(FFT ): 掌握基2-时域抽取FFT(DIT-FFT)和基2-频域抽取FFT(DIF-FFT)。MATLAB 提供fft 函数来计算x 的DFT 。fft 函数是用机器语言写的,采用混合基法,其调用形式为:),(N x fft X =。如N 为2的幂,则得到高速的基2-FFT 算法;若N 不是2的乘方,则将N 分解成质数,得到较慢的混合基FFT 算法;最后,若N 为质数,则fft 函数采用的是原始的DFT 算法。 三、实验步骤: 1.离散付里叶级数(DFS ) (1)自已动手:编写实现离散付里叶级数和逆离散付里叶级数的函数。 (2)已知周期性序列如下所示:}3,2,1,0,3,2,1,0,3,2,1,0{)(~ ↑ =n x 求其离散付里叶级数。 2.离散付里叶变换(DFT ) (1) 编写实现DFT 和IDFT 的函数。 (2) 已知)(n x 是一个六点序列,如下所示: ?? ?≤≤=e ls e n n x 0 501 )( 要求计算该序列的离散时间的付里叶变换和离散付里叶变换,并绘出它们的幅度和相

数字信号处理实验三

实验三:离散LSI 系统的频域分析 一、实验内容 2、求以下各序列的z 变换: 12030() ()sin() ()sin()n an x n na x n n x n e n ωω-=== 程序清单如下: syms w0 n z a; x1=n*a^n;X1=ztrans(x1) x2=sin(w0*n);X2=ztrans(x2) x3= exp(-a*n)*sin(w0*n);X3=ztrans(x3) 程序运行结果如下: X1 =z/(a*(z/a - 1)^2) X2 =(z*sin(w0))/(z^2 - 2*cos(w0)*z + 1) X3 =(z*exp(a)*sin(w0))/(exp(2*a)*z^2 - 2*exp(a)*cos(w0)*z + 1) 3、求下列函数的逆z 变换 0 312342 1 1() () () ()() 1j z z z z X z X z X z X z z a z a z e z ω---= = = = ---- 程序清单如下: syms w0 n z a; X1=z/(z-a);x1=iztrans(X1) X2= z/(a-z)^2;x2=iztrans(X2) X3=z/ z-exp(j*w0);x3=iztrans(X3) X4=(1-z^-3)/(1-z^-1);x4=iztrans(X4) 程序运行结果如下: x1 =a^n x2 =n*a^n/a 课程名称 数字信号 实验成绩 指导教师 实 验 报 告 院系 信息工程学院 班级 学号 姓名 日期

x3 =charfcn[0](n)-iztrans(exp(i*w0),w0,n) x4 =charfcn[2](n)+charfcn[1](n)+charfcn[0](n) 4、求一下系统函数所描述的离散系统的零极点分布图,并判断系统的稳定性 (1) (0.3)()(1)(1) z z H z z j z j -= +-++ z1=[0,0.3]';p1=[-1+j,-1-j]';k=1; [b1,a1]=zp2tf(z1,p1,k); subplot(1,2,1);zplane(z1,p1); title('极点在单位圆外); subplot(1,2,2);impz(b1,a1,20); 由图可见:当极点位于单位圆内,系统的单位序列响应随着频率的增大而收敛;当极点位于单位圆上,系统的单位序列响应为等幅振荡;当极点位于单位圆外,系统的单位序列响应随着频率的增大而发散。由此可知系统为不稳定系统。 -1 -0.5 00.51 -2 -1.5-1-0.500.511.5 2Real Part I m a g i n a r y P a r t 极点在单位圆外 n (samples) A m p l i t u d e Impulse Response

数字信号处理实验报告(实验1_4)

实验一 MATLAB 仿真软件的基本操作命令和使用方法 实验容 1、帮助命令 使用 help 命令,查找 sqrt (开方)函数的使用方法; 2、MATLAB 命令窗口 (1)在MATLAB 命令窗口直接输入命令行计算3 1)5.0sin(21+=πy 的值; (2)求多项式 p(x) = x3 + 2x+ 4的根; 3、矩阵运算 (1)矩阵的乘法 已知 A=[1 2;3 4], B=[5 5;7 8],求 A^2*B

(2)矩阵的行列式 已知A=[1 2 3;4 5 6;7 8 9],求A (3)矩阵的转置及共轭转置 已知A=[1 2 3;4 5 6;7 8 9],求A' 已知B=[5+i,2-i,1;6*i,4,9-i], 求B.' , B' (4)特征值、特征向量、特征多项式 已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] ,求矩阵A的特征值、特征向量、特征多项式;

(5)使用冒号选出指定元素 已知:A=[1 2 3;4 5 6;7 8 9];求A 中第3 列前2 个元素;A 中所有列第2,3 行的元素; 4、Matlab 基本编程方法 (1)编写命令文件:计算1+2+…+n<2000 时的最大n 值;

(2)编写函数文件:分别用for 和while 循环结构编写程序,求 2 的0 到15 次幂的和。

5、MATLAB基本绘图命令 (1)绘制余弦曲线 y=cos(t),t∈[0,2π]

(2)在同一坐标系中绘制余弦曲线 y=cos(t-0.25)和正弦曲线 y=sin(t-0.5), t∈[0,2π] (3)绘制[0,4π]区间上的 x1=10sint 曲线,并要求: (a)线形为点划线、颜色为红色、数据点标记为加号; (b)坐标轴控制:显示围、刻度线、比例、网络线 (c)标注控制:坐标轴名称、标题、相应文本; >> clear;

数字信号处理实验4

数字信号处理实验四 第一题结果: (1)没有增加过渡点 源码如下: N = 15; H = [1 1 1 0.5 zeros(1,7) 0.5 1 1 1]; %确定抽样点的幅度大小 %H(3,13) = 0.75;H(5,11) = 0.25; %设置过渡点 k = 0:N-1; A = exp(-j*pi*k*(N-1)/N); %抽样点相位大小 HK = H.*A; %求抽样点的H(k) hn = ifft(HK,N); %求出FIR的单位冲激响应h(n) freqz(hn,1,256); %画出幅频相频曲线figure(2); stem(real(hn),'.'); %绘制单位冲激响应的实部 line([0,35],[0,0]);xlabel('n');ylabel('Real(h(n))'); 单位脉冲响应曲线 幅频和相频特性曲线

(2)增加过渡点 源码如下: N = 15; H = [1 1 1 0.5 zeros(1,7) 0.5 1 1 1]; %确定抽样点的幅度大小 H(3) = 0.75;H(13) = 0.75;H(5) = 0.25;H(11) = 0.25; %设置过渡点 k = 0:N-1; A = exp(-j*pi*k*(N-1)/N); %抽样点相位大小 HK = H.*A; %求抽样点的H(k) hn = ifft(HK,N); %求出FIR的单位冲激响应h(n) freqz(hn,1,256); %画出幅频相频曲线figure(2); stem(real(hn),'.'); %绘制单位冲激响应的实部 line([0,35],[0,0]);xlabel('n');ylabel('Real(h(n))'); 单位脉冲响应曲线 幅频和相频特性曲线 第二题结果:

西南交大数字信号处理报告

信息科学与技术学院本科三年级 数字信号处理实验报告 2011 年12 月21日

实验一 序列的傅立叶变换 实验目的 进一步加深理解DFS,DFT 算法的原理;研究补零问题;快速傅立叶变换 (FFT )的应用。 实验步骤 1. 复习DFS 和DFT 的定义,性质和应用; 2. 熟悉MATLAB 语言的命令窗口、编程窗口和图形窗口的使用;利用提供的 程序例子编写实验用程序;按实验内容上机实验,并进行实验结果分析;写出完整的实验报告,并将程序附在后面。 实验内容 1. 周期方波序列的频谱试画出下面四种情况下的的幅度频谱,并分析补零后,对信号频谱的影响。 实验结果: 60 ,7)4(;60,5)3(; 40,5)2(;20,5)1()] (~[)(~,2,1,01 )1(,01,1)(~=========±±=???-+≤≤+-+≤≤=N L N L N L N L n x DFS k X m N m n L m N L m N n m N n x ) 52.0cos()48.0cos()(n n n x ππ+=

2. 有限长序列x(n)的DFT (1) 取x(n)(n=0:10)时,画出x(n)的频谱X(k) 的幅度; (2) 将(1)中的x(n)以补零的方式,使x(n)加长到(n:0~100)时,画出 x(n)的频谱X(k) 的幅度; (3) 取x(n)(n:0~100)时,画出x(n)的频谱X(k) 的幅度。利用FFT 进行谱分析 已知:模拟信号 以t=0.01n(n=0:N-1)进行采样,求N 点DFT 的幅值谱。 请分别画出N=45; N=50;N=55;N=60时的幅值曲线。 实验结果: ) 8cos(5)4sin(2)(t t t x ππ+=

matlab数字信号处理实验指导

电工电子实验中心实验指导书 数字信号处理 实验教程 二○○九年三月

高等学校电工电子实验系列 数字信号处理实验教程 主编石海霞周玉荣 攀枝花学院电气信息工程学院 电工电子实验中心

内容简介 数字信号处理是一门理论与实践紧密联系的课程,适当的上机实验有助于深入理解和巩固验证基本理论知识,了解并体会数字信号处理的CAD手段和方法,锻炼初学者用计算机和MATLAB语言及其工具箱函数解决数字信号处理算法的仿真和滤波器设计问题的能力。 本实验指导书结合数字信号处理的基本理论和基本内容设计了八个上机实验,每个实验对应一个主题内容,包括常见离散信号的MATLAB产生和图形显示、离散时间系统的时域分析、离散时间信号的DTFT、离散时间信号的Z变换、离散傅立叶变换DFT、快速傅立叶变换FFT及其应用、基于MATLAB的IIR和FIR数字滤波器设计等。此外,在附录中,还简单介绍了MATLAB的基本用法。每个实验中,均给出了实验方法和步骤,还有部分的MATLAB程序,通过实验可以使学生掌握数字信号处理的基本原理和方法。

目录 绪论 (1) 实验一常见离散信号的MATLAB产生和图形显示 (2) 实验二离散时间系统的时域分析 (6) 实验三离散时间信号的DTFT (9) 实验四离散时间信号的Z变换 (14) 实验五离散傅立叶变换DFT (18) 实验六快速傅立叶变换FFT及其应用 (24) 实验七基于MATLAB的IIR数字滤波器设计 (30) 实验八基于MATLAB的FIR数字滤波器设计 (33) 附录 (37) 参考文献 (40)

绪论 绪论 随着电子技术迅速地向数字化发展,《数字信号处理》越来越成为广大理工科,特别是IT领域的学生和技术人员的必修内容。 数字信号处理是把信号用数字或符号表示成序列,通过计算机或通用(专用)信号处理设备,用数值计算方法进行各种处理,达到提取有用信息便于应用的目的。数字信号处理的理论和技术一出现就受到人们的极大关注,发展非常迅速。而且随着各种电子技术及计算机技术的飞速发展,数字信号处理的理论和技术还在不断丰富和完善,新的理论和技术层出不穷。目前数字信号处理已广泛地应用在语音、雷达、声纳、地震、图象、通信、控制、生物医学、遥感遥测、地质勘探、航空航天、故障检测、自动化仪表等领域。 数字信号处理是一门理论和实践、原理和应用结合紧密的课程,由于信号处理涉及大量的运算,可以说离开了计算机及相应的软件,就不可能解决任何稍微复杂的实际应用问题。Matlab是1984年美国Math Works公司的产品,MATLAB 语言具备高效、可视化及推理能力强等特点,它的推出得到了各个领域专家学者的广泛关注,其强大的扩展功能为各个领域的应用提供了基础,是目前工程界流行最广的科学计算语言。早在20世纪90年代中期,MATLAB就己成为国际公认的信号处理的标准软件和开发平台。从1996年后,美国新出版的信号处理教材就没有一本是不用MATLAB的。 本实验指导书结合数字信号处理的基本理论和基本内容,用科学计算语言MATLAB实现数字信号处理的方法和实践,通过实验用所学理论来分析解释程序的运行结果,进一步验证、理解和巩固学到的理论知识,从而达到掌握数字信号处理的基本原理和方法的目的。

数字信号处理实验报告

3.(1)用双线性变换法设计一个Chebyshev型高通滤波器程序如下 Rp=1.2;Rs=20;T=0.001;fp=300;fs=200; wp=2*pi*fp*T;ws=2*pi*fs*T; wp1=(2/T)*tan(wp/2);ws1=(2/T)*tan(ws/2); [n,wn]=cheb1ord(wp1,ws1,Rp,Rs,'s'); [b,a]=cheby1(n,Rp,wn,'high','s'); [bz,az]=bilinear(b,a,1/T); [db,mag,pha,grd,w]=freqz_m(bz,az);plot(w/pi,db); axis([0,1,-30,2]); 3.(2) a用双线性变换法设计一个Butterworth型数字低通滤波器程序如下Rp=1;Rs=25;T=0.001;fp=300;fs=200; wp=2*pi*fp*T;ws=2*pi*fs*T; wp1=(2/T)*tan(wp/2);ws1=(2/T)*tan(ws/2); [n,wn]=buttord(wp1,ws1,Rp,Rs,'s'); [b,a]=butter(n,wn,'low','s'); [bz,az]=bilinear(b,a,1/T); [db,mag,pha,grd,w]=freqz_m(bz,az);plot(w/pi,db); axis([0,1,-30,2]); b用脉冲响应不变法设计一个Butterworth数字低通滤波器的程序如下:wp=400*pi;ws=600*pi;Rp=1;Rs=25; [n,wn]=buttord(wp,ws,Rp,Rs,'s') [b,a]=butter(n,wn,'s') [db,mag,pha,w]=freqs_m(b,a,500*2*pi);

数字信号处理实验

数字信号处理实验 报告

实验一 信号、系统及系统响应 一.实验目的 (1) 熟悉连续信号理想采样前后的频谱变化关系,加深对时域采样定理的理解; (2) 熟悉时域离散系统的时域特性; (3) 利用卷积方法观察分析系统的时域特性; (4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离 散信号及系统响应进行频域分析。 二.实验原理与方法 采样时连续信号数字处理的第一个关键环节。对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生变化以及信号信息不丢失的条件,而且可以加深对傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。 对一个连续信号 () a x t 进行理想采样的过程可用下式表示: ?()()()a a x t x t p t = 其中 ?()a x t 为 () a x t 的理想采样,()p t 为周期脉冲,即 ()() m p t t nT δ∞ =-∞ = -∑ ?()a x t 的傅里叶变换为 10 ()()k k N jw jw n n X e x m e --==∑ 其中, 10 2()()k k N jw jw n k n X e x m e w k M π --=== ∑ ,k=0,1, M-1 时域离散线性非时变系统的输入输出关系为 ()()*()()() m y n x n h n x m h n m ∞ =-∞ == -∑ 卷积运算也可在频域实现 ()()()jw jw jw Y e X e H e = 三.实验内容及步骤 (1)分析采样序列的特性

(2)时域离散系统响应分析N=10 3.卷积定理的验证

数字信号处理实验报告实验三(DOC)

物理与电子信息工程学院 实验报告 实验课程名称:数字信号处理 实验名称:用FFT对信号作频谱分析班级:1012341 姓名:严娅 学号:101234153 成绩:_______ 实验时间:2012年12月6日

一、实验目的 学习用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT。 二、实验原理 用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行谱分析的信号是模拟信号和时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D和分析误差。频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现的频率分辨率是N/ 2π,因此要求D 2π。可以根据此式选择FFT的变换区间N。误差主要来自于/ N≤ 用FFT作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N较大时离散谱的包络才能逼近于连续谱,因此N要适当选择大一些。 周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT,得到的离散谱才能代表周期信号的频谱。如果不知道信号周期,可以尽量选择信号的观察时间长一些。 对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。 三、实验步骤及内容 (1)对以下序列进行谱分析。

?????≤≤-≤≤-=?? ???≤≤-≤≤+==其它n n n n n n x 其它n n n n n n x n R n x ,074, 330,4)(,074, 830, 1)() ()(3241 这些都是时域离散非周期信号,选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。分别打印其幅频特性曲线。并进行对比、分析和讨论。 (2)对以下周期序列进行谱分析。 4()cos 4x n n π= 5()cos(/4)cos(/8)x n n n ππ=+ 这些是时域离散周期信号,选择FFT 的变换区间N 为8和16 两种情况分别对以上序列进行频谱分析。分别打印其幅频特性曲线。并进行对比、分析和讨论。 (3)对模拟周期信号进行谱分析 6()cos8cos16cos20x t t t t πππ=++ 这是时域连续周期信号,选择采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。分别打印其幅频特性,并进行分析和讨论。 四、实验程序清单 %第10章实验3程序exp3.m % 用FFT 对信号作频谱分析

数字信号处理实验八

实验报告 实验名称:FIR数字滤波器设计及应用 课程名称____数字信号处理________ 院系部:电气与电子工程专业班级:信息1002 学生姓名:王萌学号: 11012000219同组人:实验台号: 指导教师:范杰清成绩: 实验日期: 华北电力大学

一、实验目的 加深理解 FIR 数字滤波器的时域特性和频域特性,掌握FIR 数字 滤波器的设计原理与设计方法,以及FIR 数字滤波器的应用。 二、 实验原理 FIR 数字滤波器可以设计成具有线性相位,在数据通信、图像处理、 语音信号处理等实际应用领域得到广泛应用。 M 阶FIR 数字滤波器的系统函数为: FIR 数字滤波器的单位脉冲响应h [k ]是长度为M +1的有限长因果序列。当满足对称条件时,该FIR 数字滤波器具有线性相位。FIR 数字滤波器设计方法主要有窗口法、频率取样法及优化设计法。 MATLAB 中提供的常用FIR 数字滤波器设计函数有: fir1 窗函数法设计FIR 数字滤波器(低通、高通、带通、 带阻、多频带滤波器) fir2 频率取样法设计FIR 数字滤波器:任意频率响应 firls FIR 数字滤波器设计:指定频率响应 firrcos 升余弦型 FIR 数字滤波器设计 intfilt 内插FIR 数字滤波器设计 kaiserord 凯塞(Kaiser)窗函数设计法的阶数估计 firpm Parks-McClellan 算法实现FIR 数字滤波器优化设计 firpmord Parks-McClellan 数字滤波器的阶数选择 cremez 复系数非线性相位FIR 等波纹滤波器设计 1、 窗口法设计FIR 数字滤波器 fir1函数可以很容易地实现FIR 数字滤波器窗口法设计。 可设计低通、高通、带通、带阻滤波器、多频带滤波器。 k M k z k h z H -=∑=][)(0

相关主题