搜档网
当前位置:搜档网 › 高考数学大一轮复习7.4基本不等式及其应用教师用书理苏教版【含答案】

高考数学大一轮复习7.4基本不等式及其应用教师用书理苏教版【含答案】

高考数学大一轮复习7.4基本不等式及其应用教师用书理苏教版【含答案】
高考数学大一轮复习7.4基本不等式及其应用教师用书理苏教版【含答案】

§7.4 基本不等式及其应用

1.基本不等式ab ≤a +b 2

(1)基本不等式成立的条件:a >0,b >0.

(2)等号成立的条件:当且仅当a =b 时取等号.

2.几个重要的不等式

(1)a 2+b 2≥2ab (a ,b ∈R ).

(2)b a +a b ≥2(a ,b 同号).

(3)ab ≤?

????a +b 22 (a ,b ∈R ). (4)a 2+b 22≥? ??

??a +b 22

(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.

4.利用基本不等式求最值问题

已知x >0,y >0,则

(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)

(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24

.(简记:和定积最大) 【思考辨析】

判断下面结论是否正确(请在括号中打“√”或“×”)

(1)函数y =x +1x

的最小值是2.( × ) (2)ab ≤(a +b 2)2

成立的条件是ab >0.( × ) (3)函数f (x )=cos x +4cos x ,x ∈(0,π2

)的最小值等于4.( × ) (4)“x >0且y >0”是“x y +y x

≥2”的充要条件.( × )

(5)若a >0,则a 3+1a 2的最小值为2a .( × ) (6)a 2+b 2+c 2

≥ab +bc +ca (a ,b ,c ∈R ).( √ )

1.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是________.

①a 2+b 2>2ab

②a +b ≥2ab ③1a +1b >2ab ④b a +a b

≥2 答案 ④

解析 ∵a 2+b 2-2ab =(a -b )2≥0,∴①错误.

对于②③,当a <0,b <0时,明显错误.

对于④,∵ab >0,∴b a +a

b ≥2 b a ·a b

=2. 2.若a >0,b >0,且a +b =4,则下列不等式恒成立的是________. ①1ab ≤14

②1a +1b ≤1 ③ab ≥2

④a 2+b 2≥8 答案 ④

解析 4=a +b ≥2ab (当且仅当a =b 时,等号成立),即ab ≤2,ab ≤4,1ab ≥14

,①③不成立;1a +1b =a +b ab =4ab

≥1,②不成立;a 2+b 2=(a +b )2-2ab =16-2ab ≥8,故④成立. 3.设x ,y ∈R ,a >1,b >1,若a x =b y =3,a +b =23,则1x +1y

的最大值为________. 答案 1

解析 由a x =b y =3,得:x =log a 3,y =log b 3,由a >1,b >1知x >0,y >0,1x +1y

=log 3a +log 3b =log 3ab ≤log 3? ??

??a +b 22=1,当且仅当a =b =3时“=”成立,则1x +1y 的最大值为1. 4.(2014·福建)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面

造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________.(单位:元)

答案 160

解析 设该长方体容器的长为x m ,则宽为4x

m .又设该容器的造价为y 元,则y =20×4+2(x

+4x )×10,即y =80+20(x +4x )(x >0).因为x +4x ≥2x ·4x =4(当且仅当x =4

x

,即x =2时取“=”),所以y min =80+20×4=160(元).

题型一 通过配凑法利用基本不等式求最值

例1 (1)已知x <54,求f (x )=4x -2+1

4x -5的最大值;

(2)已知x 为正实数且x 2+y 2

2=1,求x 1+y 2

的最大值;

(3)求函数y =x -1

x +3+x -1的最大值.

解 (1)因为x <5

4,所以5-4x >0,

则f (x )=4x -2+14x -5=-(5-4x +1

5-4x )+3≤-2+3=1.

当且仅当5-4x =1

5-4x ,即x =1时,等号成立.

故f (x )=4x -2+1

4x -5的最大值为1.

(2)因为x >0,

所以x 1+y 2= 2 x 212+y

22≤2[x 2+12+y

22

2,

又x 2+(12+y 2

2)=(x 2+y 22)+1

2=32,

所以x 1+y 2≤2(12×32)=32

4,

即(x 1+y 2)max =32

4.

(3)令t =x -1≥0,则x =t 2+1,

所以y =t t 2+1+3+t =t

t 2+t +4.

当t =0,即x =1时,y =0;

当t >0,即x >1时,y =1

t +4t +1

因为t +4t ≥24=4(当且仅当t =2时取等号), 所以y =1t +4t

+1≤15, 即y 的最大值为15

(当t =2,即x =5时y 取得最大值). 思维升华 (1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.

(2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.

(1)已知0

(2)若函数f (x )=x +

1x -2

(x >2)在x =a 处取最小值,则a =________. 答案 (1)12

(2)3 解析 (1)因为00,3-3x >0.

由基本不等式可得x (3-3x )=13

·3x (3-3x ) ≤13(3x +3-3x 2)2=34

, 当且仅当3x =3-3x ,即x =12

时,等号成立. (2)因为x >2,所以x -2>0,则 f (x )=x +1x -2=(x -2)+1x -2+2≥2x -1x -2+2=4, 当且仅当x -2=1x -2

,即x =3时取等号. 即当f (x )取得最小值时,x =3,即a =3.

题型二 通过常数代换或消元法利用基本不等式求最值

例2 (1)已知x >0,y >0且x +y =1,则8x +2y

的最小值为________. (2)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.

答案 (1)18 (2)6

解析 (1)(常数代换法)

∵x >0,y >0,且x +y =1,

高考数学真题分类汇编专题不等式理科及答案

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?????? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,8 22 n m --≥-即212m n +≤ .26,182 m n mn +≤ ≤∴≤Q .由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤ .281 9,22 n m mn +≤ ≤∴≤Q .由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为( ) A .0 B .1 C . 3 2 D .2 【答案】D 【解析】如图,先画出可行域,由于2z x y = +,则11 22 y x z =- +,令0Z =,作直线1 2 y x =- ,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取

上海市2019届高三数学理一轮复习专题突破训练:数列

上海市2017届高三数学理一轮复习专题突破训练 数列 一、填空、选择题 1、(2016年上海高考)无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________. 2、(2015年上海高考)记方程①:x 2+a 1x+1=0,方程②:x 2+a 2x+2=0,方程③:x 2+a 3x+4=0,其中a 1,a 2,a 3是正实数.当a 1,a 2,a 3成等比数列时,下列选项中,能推出方程③无实根的是( ) A .方程①有实根,且②有实根 B . 方程①有实根,且②无实根 C .方程①无实根,且②有实根 D . 方程①无实根,且②无实根 3、(2014年上海高考)设无穷等比数列{}n a 的公比为q ,若()134lim n n a a a a →∞ =++ +,则q = . 4、(虹口区2016届高三三模)若等比数列{}n a 的公比1q q <满足,且24 344,3,a a a a =+=则12lim()n n a a a →∞ ++ +=___________. 5、(浦东新区2016届高三三模)已知公差为d 的等差数列{}n a 的前n 项和为n S ,若 533S S =,则53 a a = 6、(杨浦区2016届高三三模)若两整数a 、 b 除以同一个整数m ,所得余数相同,即 a b k m -=()k Z ∈,则称a 、b 对模m 同余,用符号(mod )a b m ≡表示,若10(mod 6)a ≡(10)a >,满足条件的a 由小到大依 次记为12,,,,n a a a ??????,则数列{}n a 的前16项和为 7、(黄浦区2016届高三二模) 已知数列{}n a 中,若10a =,2i a k =*1 (,22,1,2,3, )k k i N i k +∈≤<=,则满足2100i i a a +≥的i 的最小值 为 8、(静安区2016届高三二模)已知数列{}n a 满足181a =,1 311log ,2, (*)3, 21n n n a a n k a k N n k ---+=?=∈?=+?,则数列{}n a 的前n 项和n S 的最大值为 . 9、(闵行区2016届高三二模)设数列{}n a 的前n 项和为n S , 2 2|2016|n S n a n (0a >),则使得1 n n a a +≤(n ∈* N )恒成立的a 的最大值为 . 10、(浦东新区2016届高三二模)已知数列{}n a 的通项公式为(1)2n n n a n =-?+,* n N ∈,则这个数列的前 n 项和n S =___________. 11、(徐汇、金山、松江区2016届高三二模)在等差数列{}n a 中,首项13,a =公差2,d =若某学生对其中连

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

高三数学必背公式总结

高三数学必背公式总结 高三数学必背公式总结汇总 一、对数函数 log.a(MN)=logaM+logN loga(M/N)=logaM-logaN logaM^n=nlogaM(n=R) logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1) 二、简单几何体的面积与体积 S直棱柱侧=c*h(底面周长乘以高) S正棱椎侧=1/2*c*h′(底面的周长和斜高的一半) 设正棱台上、下底面的周长分别为c′,c,斜高为h′,S=1/2*(c+c′)*h S圆柱侧=c*l S圆台侧=1/2*(c+c′)*l=兀*(r+r′)*l S圆锥侧=1/2*c*l=兀*r*l S球=4*兀*R^3 V柱体=S*h V锥体=(1/3)*S*h V球=(4/3)*兀*R^3 三、两直线的位置关系及距离公式 (1)数轴上两点间的距离公式|AB|=|x2-x1| (2) 平面上两点A(x1,y1),(x2,y2)间的距离公式 |AB|=sqr[(x2-x1)^2+(y2-y1)^2] (3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式 d=|Ax0+By0+C|/sqr (A^2+B^2) (4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1- C2|/sqr(A^2+B^2) 同角三角函数的基本关系及诱导公式 sin(2*k*兀+a)=sin(a)

tan(2*兀+a)=tana sin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tana sin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tana sin(兀+a)=-sina sin(兀-a)=sina cos(兀+a)=-cosa cos(兀-a)=-cosa tan(兀+a)=tana 四、二倍角公式及其变形使用 1、二倍角公式 sin2a=2*sina*cosa cos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2 tan2a=(2*tana)/[1-(tana)^2] 2、二倍角公式的变形 (cosa)^2=(1+cos2a)/2 (sina)^2=(1-cos2a)/2 tan(a/2)=sina/(1+cosa)=(1-cosa)/sina 五、正弦定理和余弦定理 正弦定理: a/sinA=b/sinB=c/sinC 余弦定理: a^2=b^2+c^2-2bccosA b^2=a^2+c^2-2accosB c^2=a^2+b^2-2abcosC cosA=(b^2+c^2-a^2)/2bc cosB=(a^2+c^2-b^2)/2ac cosC=(a^2+b^2-c^2)/2ab tan(兀-a)=-tana sin(兀/2+a)=cosa sin(兀/2-a)=cosa

高考数学真题分类汇编专题不等式理科及答案

高考数学真题分类汇编专题不等式理科及答案 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?? ???? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=- -.据题意,当2m >时,8 22 n m --≥-即212m n +≤.226,182 m n m n mn +?≤ ≤∴≤.由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤.281 29,22 n m n m mn +?≤ ≤∴≤.由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为 ( ) A .0 B .1 C .32 D .2 【答案】D

2020年高考数学复习题:基本不等式及其应用

基本不等式及其应用 [基础训练] 1.下列结论中正确的个数是( ) ①若a >0,则a 2 +1 a 的最小值是2a ; ②函数f (x )=sin 2x 3+cos 2x 的最大值是2; ③函数f (x )=x +1 x 的值域是[2,+∞); ④对任意的实数a ,b 均有a 2+b 2≥-2ab ,其中等号成立的条件是a =-b . A .0 B .1 C .2 D .3 : 答案:B 解析:①错误:设f (a )=a 2 +1 a ,其中a 是自变量,2a 也是变化的,不能说2a 是f (a )的最小值; ②错误:f (x )=sin 2x 3+cos 2 x ≤sin 2x +3+cos 2x 2 =2, 当且仅当sin 2x =3+cos 2x 时等号成立,此方程无解, ∴等号取不到,2不是f (x )的最大值; ③错误:当x >0时,x +1 x ≥2 x ·1x =2, 当且仅当x =1 x ,即x =1时等号成立; 当x <0时,-x >0,x +1 x =-? ?? ??-x +1-x ≤-2 -x ·1 -x =-2, ¥ 当且仅当-x =-1 x ,即x =-1时等号成立. ∴f (x )=x +1 x 的值域是(-∞,-2]∪[2,+∞); ④正确:利用作差法进行判断.

∵a 2+b 2+2ab =(a +b )2≥0,∴a 2+b 2≥-2ab , 其中等号成立的条件是a +b =0,即a =-b . 2.[2019河北张家口模拟]已知a +2b =2,且a >1,b >0,则 2 a -1+1 b 的最小值为( ) A .4 B .5 C .6 D .8 答案:D 解析:因为a >1,b >0,且a +2b =2, \ 所以a -1>0,(a -1)+2b =1, 所以2a -1+1b =? ????2 a -1+1 b ·[(a -1)+2b ] =4+4b a -1 +a -1b ≥4+2 4b a -1·a -1 b =8, 当且仅当4b a -1=a -1 b 时等号成立, 所以2a -1 +1b 的最小值是8,故选D. 3.若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞) D .(-∞,-2] ! 答案:D 解析:∵2x +2y ≥22x ·2y =22x +y (当且仅当2x =2y 时等号成立), ∴2 x +y ≤12,∴2x +y ≤14, 得x +y ≤-2.故选D. 4.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为( ) B .2 2 D .2 答案:D 解析:∵x >0,y >0,x +2y ≥22xy , ∴4xy -(x +2y )≤4xy -22xy , ∴4≤4xy -22xy ,

高考数学必背公式总结

高考公式大总结 根式 当n 为奇数时,a a n n =; 当n 为偶数时,???<-≥==0,0,a a a a a a n n . 正数的正(负)分数指数幂: 1.n m n m a a =1,,0(*>∈>n N n m a ,且) 2.n m n m a a 1 = -1,,0(*>∈>n N n m a ,且). 整数指数幂的运算性质: (1)();,,0Q s r a a a a s r s r ∈>=+ (2)() ()Q s r a a a rs s r ∈>=,,0; (3)()()Q r b a b a ab r r r ∈>>=,0,0. (4)();,,0Q s r a a a a s r s r ∈>=÷- 对数 (1)对数的性质: ① N a N a =log ; ② N a N a =log ; ③ a N N b b a log log log = (换底公式); (2)对数的运算法则: ① ();log log log N M MN a a a += ② ;log log log N M N M a a a -= ③ M n M a n a log log =; 错误! M m n M a n a m log log = ① 常用对数:以10为底的对数叫做常用对 数,并把log 10N 记作_lg 10; ② 自然对数:以_e_为底的对数称为自然对 数,并把loge N 记作ln N . 1.同角三角函数的基本关系 1cos sin 22=+αα αααtan cos sin =(Z k k ∈+≠,2 ππ α) 2.诱导公式的规律: 三角函数的诱导公式可概括为:奇变偶不变,符号看 象限.其中“奇变偶不变”中的奇、偶分别是指π 2 的 奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则正、余弦互变;若是偶数倍,则函数名称不变.“符号看象限”是把α当锐角时,原三角函数式中的2πα?? + ??? 所在象限的原三角函数值的符号. 二倍角公式: αααcos sin 22sin =; ααα22sin cos 2cos -==1cos 22-α =α2sin 21-; α α α2 tan 1tan 22tan -= 三角恒等变换 ()βαβαβαsin cos cos sin sin ±=±; ()βαβαβαsin sin cos cos cos =±; ()β αβ αβαtan tan 1tan tan tan ±= ±; 解三角形 1.正弦定理: R C c B b A a 2sin sin sin === 正弦定理的三种变式:

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

【高考数学专题突破】《专题三第讲数列求和及综合应用学案》(解析版)

第2讲 数列求和及综合应用 数列求和问题(综合型) [典型例题] 命题角度一 公式法求和 等差、等比数列的前n 项和 (1)等差数列:S n =na 1+ n (n -1)2 d (d 为公差)或S n =n (a 1+a n ) 2 . (2)等比数列:S n =???? ?na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1其中(q 为公比). 4类特殊数列的前n 项和 (1)1+2+3+…+n =1 2n (n +1). (2)1+3+5+…+(2n -1)=n 2 . (3)12+22+32+…+n 2 =16n (n +1)(2n +1). (4)13+23+33+…+n 3=14 n 2(n +1)2 . 已知数列{a n }满足a 1=1,a n +1=3a n 2a n +3 ,n ∈N * .

(1)求证:数列???? ?? 1a n 为等差数列; (2)设T 2n = 1 a 1a 2- 1 a 2a 3+ 1 a 3a 4- 1 a 4a 5 +…+ 1 a 2n -1a 2n - 1 a 2n a 2n +1 ,求T 2n . 【解】 (1)证明:由a n +1=3a n 2a n +3,得1a n +1=2a n +33a n =1a n +2 3 , 所以 1 a n +1-1a n =23. 又a 1=1,则1a 1=1,所以数列???? ??1a n 是首项为1,公差为2 3的等差数列. (2)设b n = 1 a 2n -1a 2n - 1 a 2n a 2n +1 =? ??? ?1a 2n -1-1a 2n +11a 2n , 由(1)得,数列???? ??1a n 是公差为2 3的等差数列, 所以 1 a 2n -1 - 1 a 2n +1=-43,即 b n =? ????1a 2n -1-1a 2n +11a 2n =-43×1a 2n , 所以b n +1-b n =-43? ????1a 2n +2-1a 2n =-43×43=-16 9. 又b 1=-43×1a 2=-43×? ????1a 1+23=-20 9 , 所以数列{b n }是首项为-209,公差为-16 9的等差数列, 所以T 2n =b 1+b 2+…+b n =- 209n +n (n -1)2×? ?? ??-169=-49(2n 2 +3n ). 求解此类题需过“三关”:第一关,定义关,即会利用等差数列或等比数列的定义,判断所给的数列是等差数列还是等比数列;第二关,应用关,即会应用等差(比)数列的前n 项和公式来求解,需掌握等差数列{a n }的前n 项和公式:S n = n (a 1+a n ) 2 或S n =na 1+ n (n -1) 2d ;等比数列{a n }的前n 项和公式:S n =?????na 1,q =1,a 1(1-q n )1-q ,q ≠1;第三关,运算关,认真运算,此类题将迎刃而解. 命题角度二 分组转化法求和 将一个数列分成若干个简单数列(如等差数列、等比数列、常数列等),然后分别求和.也可先根据通项公式的特征,将其分解为可以直接求和的一些数列的和,再分组求和,即把一个通项拆成几个通项求和的形式,方便求和. 已知等差数列{a n }的首项为a ,公差为d ,n ∈N * ,且不等式ax 2 -3x +2<0的解集为(1,

文科高考数学必背公式

文科高考数学必背公式

文科高考数学必背公式 高中数学诱导公式全集: 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三:

任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα

公式六: π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα

最新数学不等式高考真题【精】

1.(2018?卷Ⅱ)设函数 (1)当时,求不等式的解集; (2)若,求的取值范围 2.(2013?辽宁)已知函数f(x)=|x﹣a|,其中a>1 (1)当a=2时,求不等式f(x)≥4﹣|x﹣4|的解集; (2)已知关于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.3.(2017?新课标Ⅲ)[选修4-5:不等式选讲] 已知函数f(x)=|x+1|﹣|x﹣2|. (Ⅰ)求不等式f(x)≥1的解集; (Ⅱ)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围. 4.(2017?新课标Ⅱ)[选修4-5:不等式选讲] 已知a>0,b>0,a3+b3=2,证明: (Ⅰ)(a+b)(a5+b5)≥4; (Ⅱ)a+b≤2. 5.(2017?新课标Ⅰ卷)[选修4-5:不等式选讲] 已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分) (1)当a=1时,求不等式f(x)≥g(x)的解集; (2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围. 6.(2017?新课标Ⅱ)[选修4-5:不等式选讲] 已知a>0,b>0,a3+b3=2,证明: (Ⅰ)(a+b)(a5+b5)≥4; (Ⅱ)a+b≤2. 7.(2018?卷Ⅰ)已知 (1)当时,求不等式的解集 (2)若时,不等式成立,求的取值范围 8.(2018?卷Ⅰ)已知f(x)=|x+1|-|ax-1| (1)当a=1时,求不等式f(x)>1的解集 (2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围 9.(2017?新课标Ⅲ)[选修4-5:不等式选讲] 已知函数f(x)=|x+1|﹣|x﹣2|. (1)求不等式f(x)≥1的解集; (2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围. 10.(2014?新课标II)设函数f(x)=|x+ |+|x﹣a|(a>0). (1)证明:f(x)≥2; (2)若f(3)<5,求a的取值范围. 11.(2015·福建)选修4-5:不等式选讲 已知,函数的最小值为4.(1)求的值;

最新高考数学数列题型专题汇总

1. 高考数学数列题型专题汇总 1 一、选择题 2 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 3 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

2. 4、如图,点列{A n },{B n }分别在某锐角的两边上,且 19 1122,,n n n n n n A A A A A A n ++++=≠∈*N , 20 1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合). 21 若1n n n n n n n d A B S A B B +=,为△的面积,则 22 23 A .{}n S 是等差数列 B .2{}n S 是等差数列 24 C .{}n d 是等差数列 D .2{}n d 是等差数列 25 【答案】A 26 27 28 29 30 二、填空题 31 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 32 6=S _______.. 33 【答案】6 34 35 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 36

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

2019高考数学不等式:基本不等式

基本不等式 【考点梳理】 1.基本不等式ab ≤ a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式 (1)a 2 +b 2 ≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号且不为零); (3)ab ≤? ?? ??a +b 22(a ,b ∈R ); (4)? ?? ??a +b 22≤a 2 +b 2 2(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a +b 2 ,几何平均数为ab ,基本不等式可叙述为: 两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 2 4(简记:和定积最大). 【考点突破】 考点一、配凑法求最值 【例1】(1)若x < 54,则f (x )=4x -2+145 x -的最大值为________. (2)函数y = x -1 x +3+x -1 的最大值为________. [答案] (1) 1 (2) 1 5 [解析] (1)因为x <5 4 ,所以5-4x >0,

=-2+3=1. 当且仅当5-4x =1 5-4x ,即x =1时,等号成立. 故f (x )=4x -2+1 4x -5的最大值为1. (2)令t =x -1≥0,则x =t 2 +1, 所以y = t t 2 +1+3+t = t t 2 +t +4 . 当t =0,即x =1时,y =0; 当t >0,即x >1时,y = 1 t +4t +1 , 因为t +4 t ≥24=4(当且仅当t =2时取等号), 所以y = 1t +4t +1 ≤1 5, 即y 的最大值为1 5(当t =2,即x =5时y 取得最大值). 【类题通法】 1.应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件. 2.在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式. 【对点训练】 1.若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a 等于( ) A .1+2 B .1+3 C .3 D .4 [答案] C [解析] 当x >2时,x -2>0,f (x )=(x -2)+ 1 x -2 +2≥2(x -2)× 1 x -2 +2=4,当

高考数学必背公式大全

高考数学必背公式大全 由于高中数学公式很多,同学们复习的时候不方便查阅,下面是我给大家带来的高考必背数学公式,希望能帮助到大家! 高考必背数学公式1 两角和公式 sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb ) ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga ) 倍角公式 tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2) cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2) tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa)) ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa)) 高考必背数学公式2 和差化积

1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b) 2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b) 3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2) 4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb 5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb 等差数列 1、等差数列的通项公式为: an=a1+(n-1)d(1) 2、前n项和公式为: Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2) 从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0. 在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项. , 且任意两项am,an的关系为: an=am+(n-m)d 它可以看作等差数列广义的通项公式. 3、从等差数列的定义、通项公式,前n项和公式还可推出: a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

高考数学真题汇编8 不等式 理( 解析版)

2012高考真题分类汇编:不等式 1.【2012高考真题重庆理2】不等式 01 21 ≤+-x x 的解集为 A.??? ??- 1,21 B.??????-1,21 C.[)+∞???? ??-∞-,121. D.[)+∞???? ? ? -∞-,121, 对 【答案】A 【解析】原不等式等价于0)12)(1(<+-x x 或01=-x ,即12 1 <<-x 或1=x ,所以不等式的解为12 1 ≤<- x ,选A. 2.【2012高考真题浙江理9】设a 大于0,b 大于0. A.若2a +2a=2b +3b ,则a >b B.若2a +2a=2b +3b ,则a >b C.若2a -2a=2b-3b ,则a >b D.若2a -2a=a b -3b ,则a <b 【答案】A 【解析】若2223a b a b +=+,必有2222a b a b +>+.构造函数:()22x f x x =+,则 ()2ln 220x f x '=?+>恒成立,故有函数()22x f x x =+在x >0上单调递增,即a >b 成立.其 余选项用同样方法排除.故选A 3.【2012高考真题四川理9】某公司生产甲、乙两种桶装产品。已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克。每桶甲产品的利润是300元,每桶乙产品的利润是400元。公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克。通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( ) A 、1800元 B 、2400元 C 、2800元 D 、3100元 【答案】C. 【解析】设生产x 桶甲产品,y 桶乙产品,总利润为Z , 则约束条件为???????>>≤+≤+0 012 2122y x y x y x ,目标函数为300400Z x y =+,

高考数学之基本不等式

基本不等式 基础梳理 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R ); (4)a 2+b 22≥????a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a + b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧 22 ab ≤????a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥????a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b 这两个不等式链用处很大,注意掌握它们.

三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 双基自测 1.(人教A 版教材习题改编)函数y =x +1x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 解析 ∵x >0,∴y =x +1x ≥2, 当且仅当x =1时取等号. 答案 C 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1x 2+1≥1,其中正确的个数是( ). A .0 B .1 C .2 D .3 解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1 -1≥2-1=1. 答案 B 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.12 B .1 C .2 D .4 解析 ∵a >0,b >0,a +2b =2, ∴a +2b =2≥22ab ,即ab ≤12 . 答案 A 4.(2011·重庆)若函数f (x )=x +1x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2 +2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1x -2 (x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3. 答案 C 5.已知t >0,则函数y =t 2-4t +1t 的最小值为________. 解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,当且仅当t =1时取等号. 答案 -2

相关主题