搜档网
当前位置:搜档网 › 一类不定方程的解集判别171212141

一类不定方程的解集判别171212141

一类不定方程的解集判别171212141
一类不定方程的解集判别171212141

一类不定方程的解集判别171212141

张祖华

平阴县职业教育中心济南平阴 250400

摘要:本文对一类不定方程的正整数解作出判断。

关键词:自然数不定方程正整数解

定理1:当自然数m,n>3时,关于x的不定方程

X88+1-10609n×m(m+1)(20000m+6163)=0不存在正整数解.

参考文献:

[1]张祖华等.解无约束优化的一种新的xx,数学进展,已录用。

[2]张祖华.一元高次方程根的若干xx(W2017060347599), 数学进展,已录用。

[3]张祖华.第四类超越方程解的可计数性(W2017052145671), 数学进展,已录用。

[4]张祖华.第五类高次不定方程的无穷解(W2017041439231), 数学进展,已录用。

不定方程的解法

基本介绍编辑本段 不定方程是数论的一个分支,它有着悠 久的历史与丰富的内容。所谓不定方程是指解的范围为整数、正整数、有理数或代数整数的方程或方程组,其未知数的个数通常多于方程的个数。 古希腊数学家丢番图于三世纪初就研究过若干这类方程,所以不定方程又称丢番图方程,是数论的重要分支学科,也是历史上最活跃的数学领域之一。不定方程的内容十分丰富,与代数数论、几何数论、集合数论等等都有较为密切的联系。1969 年,莫德尔较系统地总结了这方面的研究成果。 2 发展历史编辑本段

希腊的丢番图早在公元3 世纪就开始研究不定方程,因此常称不定方程为丢番图方程。Diophantus ,古代希腊人,被誉为代数学的鼻祖,流传下来关于他的生平事迹并不多。今天我们称整系数的不定方程为「Diophantus 方程」,内容主要是探讨其整数解或有理数解。他有三本著作,其中最有名的是《算术》,当中包含了189 个问题及其答案,而许多都是不定方程组(变量的个数大于方程的个数)或不定方程式(两个变数以上)。丢番图只考虑正有理数解,而不定方程通常有无穷多解的。 研究不定方程要解决三个问题:①判断何时有解。②有解时决定解的个数。③求出所有的解。中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5 世纪的《张丘建算经》中的百鸡问题标志中国对不定方程理论有了系统研究。秦九韶的大衍求一术将不定方程与同余理论联系起来。百鸡问题说:“鸡翁一,直钱五,鸡母一,直钱三,鸡雏三,直钱一。百钱买百鸡,问鸡翁、母、雏各几何”。设x,y,z 分别表鸡翁、母、雏的个数,则此问题即为不定方程组的非负整数解x,y,z,这是一个三元不定方程组问题。 3 常见类型编辑本段

线性方程组有解的判别定理

非齐次线性方程组同解的讨论 摘要 本文主要讨论两个非齐次线性方程组有相同解的条件,即如何判定这两个非齐次线性方程组有相同的解. 关键词 非齐次线性方程组 同解 陪集 零空间 引言 无论是解齐次线性方程组,还是解非齐次线性方程组.所用的方法都是消元法,即对其系数矩阵或增广矩阵施以行的初等变换,而得到比较简单的同解方程组.用矩阵理论来说,就是系数矩阵或增广矩阵左乘以可逆矩阵后所得线性方程组与原线性方程组据有相同的解.这仅为问题的一面,而问题的反面是,如果两个非齐次线性方程组同解,则它们的系数矩阵或增广矩阵之间是否存在一个可逆矩阵?答案是肯定的,此即是本文主要解决的问题。 下面是一个非齐次线性方程组,我们用矩阵的形式写出 11121121222212n n m m mn m a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++=? 令 A= 111212122212n n m m mn a a a a a a a a a ???????????? ,b= 12m b b b ???????????? 。 即非齐次线性方程组可写成Ax b =。 一 、线性方程组同解的性质 引理 1 如果非齐次线性方程组Ax b =与Bx d =同解,则矩阵[]A b 与[]B d 的秩相等. 证明 设非齐次线性方程组Ax b =的导出组的基础解系为111,,,r ξξξ ,其中1 r 为矩阵[]A b 的秩,再设非齐次线性方程组Bx=d 的导出组的基础解系为 2 12,,,r ηηη ,其中2r 为矩阵[]B d 的秩,如果*η是非齐次线性方程组Ax=b 与Bx=d 特解,由于这两个方程组同解,所以向量组1*11,,,,r ξξξη 与向量组2*12,,,,r ηηηη 等价。从而这两个线性无关的向量组所含的向量个数相等,于是有12,r r =则矩阵[]A b 与[]B d 的秩相等. 引理[1]2 设A 、B 为m n ?矩阵,则齐次线性方程组0Ax =与0Bx =同解的充

线性方程组解的判定

1 / 3 第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解. 11112211211222221122n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++= ? (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵111212122212n n m m mn a a a a a a A a a a ??????=?????? 称为方程组(13-2)的系数矩阵.由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212n n m m mn m a a a b a a a b A a a a b ??????=?????? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X ;常数项组成一个m 行、1列 的矩阵(或列向量),记作b ,即12n x x X x ??????=??????,12m b b b b ??????=?????? 由矩阵运算,方程组(13—2)实际上是如下关系111212122212 n n m m mn a a a a a a a a a ????????????12n x x x ????????????=12m b b b ???????????? 即 AX=b

数理方程总结完整终极版

00 |()()t t u x u x t ?ψ===????=?? ?k z j y i x ?????+??+??= ?u u ?=grad 拉普拉斯算子:2222222 z y x ??+??+??=???=?2 2 22 2y u x u u ??+??=? 四种方法: 分离变量法、 行波法、 积分变换法、 格林函数法 定解问题: 初始条件.边界条件.其他 波动方程的初始条

波动方程的边界条件:

(3) 弹性支承端:在x=a端受到弹性系数为k 的弹簧的支承。 定解问题的分类和检验:(1) 初始 问题:只有初始条件,没有边界条 件的定解问题; (2) 边值问题:没有初始条件,只 有边界条件的定解问题; (3) 混合问题:既有初始条件,也 有边界条件的定解问题。 ?解的存在性:定解问题是 否有解; ?解的唯一性:是否只有一 解; ?解的稳定性:定解条件有 微小变动时,解是否有相应的微小变动。 分离变量法:基本思想:首先求出具有变量分离形式且满足边界条件的特解,然后由叠加原理作出这些解的线性组合,最后由其余的定解条件确定叠加系数。把偏微分方程化为常微分方程来处理,使问题简单化。适用范围:波动问题、热传导问题、稳定场问题等

分离变量法步骤:一有界弦的自由振动二有限长杆上的热传导三拉普拉斯方程的定解问题 常用本征方程齐次边界条件 2''0 (0)()0,/,1,2,sin k k X X X X l k l k X x λλββπβ+=?? ==? ====0,1,2,0,1,2,λ0,1,2,λ

非齐次方程的求解思路用分解原理得出对应的齐次问题。解出齐次问题。求出任意非齐次特解。叠加成非齐次解。 行波法:1.基本思想:先求出偏微分方程的通解,然后用定解条件确定特解。这一思想与常微分方程的解法是一样的。2.关键步骤:通过变量变换,将波动方程化为便于积分的齐次二阶偏微分方程。3.适用范围:无界域内波动方程,等…

求不定方程整数解的常用方法

求不定方程整数解的常用方法 摘要:不定方程,是指未知数的个数多于方程的个数,且未知数受到某些限制的方程或方程组.因此,要求一个不定方程的全部的解,是相当困难的,有时甚至是不可能或不现实的.本文利用变量替换、未知数之间的关系、韦达定理、整除性、求根公式、判别式、因式分解等有关理论,求得一类不定方程的正整数解.通过一些具体的例子,给出了常用的不定方程的解法,分别为分离整数法、辗转相除法、不等式估值法、逐渐减小系数法、分离常数项的方法、奇偶性分析法、换元法、构造法、配方法、韦达定理、整除性分析法、利用求根公式、判别式、因式分解法等等. 关键字:不定方程;整数解;整除性

1引言 不定方程是数论的一个分支,有悠久的历史与丰富的内容,与其他数学领域有密切联系,是数论中的重要的、活跃的研究课题之一,我国对不定方程的研究以延续了数千年,“百钱百鸡问题”等一直流传至今,“物不知其数”的解法被称为中国剩余定理,学习不定方程,不仅可以拓宽数学知识面,而且可以培养思维能力,提高数学的解题技能. 中学阶段是学生的思维能力迅猛发展的关键阶段.在此阶段要注重培养学生的思维能力,开发学生智力,因此对于初等数论的一般方法、理论有一定的了解是必不可少的.让学生做题讲究思想、方法与技巧、创造性的解决问题,就要有一定的方法与技巧的积累与总结. 不定方程的重要性在中学中得到了充分的体现,无论在中高考还是在每年世界各地的数学竞赛中,不定方程都占有一席之地,而且它还是培养学生思维能力、观察能力、运算能力、解决问题能力的好材料. 2不定方程的定义 所谓不定方程是指未知数的个数多于方程的个数,且未知数受到某些(如要求是有理数,整数或正整数等等)限制的方程或方程组.不定方程也称丢番图方程,是数论的重要分支学科,也是数学上最活跃的数学领域之一,不定方程的内容十分丰富,与代数数论、几何数论、集合数论都有较为密切的联系. 下面对中学阶段常用的求不定方程整数解的方法做以总结: 3一般常用的求不定方程整数解的方法 (1)分离整数法 此法主要是通过解未知数的系数中绝对值较小的未知数,将其结果中整数部分分离出来,则剩下部分仍为整数,则令其为一个新的整数变量,以此类推,直到能直接观察出特解的不定方程为止,再追根溯源,求出原方程的特解. 例1 求不定方程02 5=-++y x x 的整数解 解 已知方程可化为 2 31232223225++=++++=+++=++=x x x x x x x x y 因为y 是整数,所以2 3+x 也是整数. 由此 5,1,3,1,3,3,1,12---=--=+x x 即 相应的.0,2,0,4=y

线性方程组数值解法

. 计算法实验 题目:

班级:学号::

目录 计算法实验 (1) 1 实验目的 (3) 2 实验步骤 (3) 2.1环境配置: (3) 2.2添加头文件 (3) 2.3主要模块 (3) 3 代码 (3) 3.1主程序部分 (3) 3.2多项式程部分 (3) 3.3核心算法部分 (3) 3.4数据结构部分 (3) 4运行结果 (3) 4.1列主元高斯消去法运行结果 (3) 4.2LU三角分解法运行结果 (3) 4.3雅克比迭代法运行结果 (3) 边界情况调试 (3) 5总结 (3) 输入输出 (3) 列主元高斯消元法 (3) 雅克比迭代法 (3) 6参考资料 (3)

1 实验目的 1.通过编程加深对列主元高斯消去法、LU三角分解法和雅克比迭代法等求解多 项式程法的理解 2.观察上述三种法的计算稳定性和求解精度并比较各种法利弊 2 实验步骤 2.1环境配置: VS2013,C++控制台程序 2.2添加头文件 #include "stdio.h" #include "stdlib.h" #include "stdafx.h" #include 2.3主要模块 程序一共分成三层,最底层是数据结构部分,负责存储数据,第二层是交互部分,即多项式程部分,负责输入输出获得数据,最上层是核心的算法部分,负责处理已获得的数据。具体功能如下: ●数据结构部分 数据结构部分是整个程序的最底层,负责存储部分。因数组作为数据元素插入和删除操作较少,而顺序表空间利用率大且查看便,故此程序选用二维顺序表保存系数。数据结构文件中写的是有关其的所有基本操作以供其他文件调用。 ●多项式程部分

解线性方程组基思想

解线性方程组基思想

————————————————————————————————作者:————————————————————————————————日期:

四:基本方法 基本思路将在解题的过程中得到体现。 1.(求线性方程组的唯一解或特解),这类问题的求法分为两类:一类主要用于解低阶稠 密矩阵——直接法;一类是解大型稀疏矩阵——迭代法。 1.1利用矩阵除法求线性方程组的特解(或一个解) 方程:AX=b,解法:X=A\b,(注意此处’\’不是’/’) 例1-1 求方程组的解。 解: A = ; = ;b=(1,0,0,0,1)’ 由于>>rank(A)=5,rank( )=5 %求秩,此为R(A)=R()>=n的情形,有唯一解。 >>X= A\b %求解X =(2.2662, -1.7218, 1.0571,-0.5940, 0.3188)’ 或用函数rref 求解,>>sv=rref(A:b);所得sv的最后一列即为所要求的解。 1.2 利用矩阵的LU、QR和cholesky分解求方程组的解 这三种分解,在求解大型方程组时很有用。其优点是运算速度快、可以节省磁盘空间、节省内存。 I) LU分解又称Gauss消去分解,可把任意方阵分解为下三角矩阵的基本变换形式(行交换)和上三角矩阵的乘积。即A=LU,L为下三角阵,U为上三角阵。 则:A*X=b 变成L*U*X=b 所以X=U\(L\b) 这样可以大大提高运算速度。命令[L,U]=lu (A) 在matlab中可以编如下通用m 文件: 在Matlab中建立M文件如下 % exp1.m A;b; [L,U]=lu (A); X=U\(L\b) II)Cholesky分解 若A为对称正定矩阵,则Cholesky分解可将矩阵A分解成上三角矩阵和其转置的乘积,即:其中R为上三角阵。 方程A*X=b 变成所以 在Matlab中建立M文件如下 % exp2.m A;b; [R’,R]=chol(A); X=R\(R’\b) III)QR分解 对于任何长方矩阵A,都可以进行QR分解,其中Q为正交矩阵,R为上三角矩阵的初等变换形 式,即:A=QR 方程A*X=b 变形成QRX=b 所以X=R\(Q\b)

初中数学几种不定方程和方程组的解题技巧和方法

初中数学几种不定方程和方程组的解题技巧和方法 凯里市大风洞正钰中学曾祥文 摘要:教学作为一种有明确目的性的认知活动,其有效性是教育工作者所共同追求的。在初中数学教学中不定方程与方程(组)占很大的比例,是中学生经常出错和不懂的部分。本文主要探讨几种不定方程和方程组的解题技巧和方法。 关键词:初中数学不定方程方程 教学作为一种有明确目的性的认知活动,其有效性是教育工作者所共同追求的。有效教学是教师在达成教学目标和满足学生发展需要方面都很成功的教学行为,它是教学的社会价值和个体价值的双重体现。数学是人们对客观世界定性把握和定量刻画、逐渐抽象、形成方法和理论,并进行广泛应用的过程。数学教学是教师对学生进行数学思维培养的一种认知过程。 方程(组)中,未知数的个数多于方程的个数时,它的解往往有无数多个,不能唯一确定,因此这类方程常称为不定方程(组),解不定方程没有固定的方法,需具体问题具体分析,经常用到整数的整除、奇数偶数的特性、因数分解、不等式估值、穷举、分离整数、配方等知识与方法,解不定方程的技巧是对方程适当变形,灵活运用相关知识。本文就几类常见的不定方程与方程做如下浅析。 1 非负数的巧用 在初中数学中,经常用的非负数有:①a2 ≥0 ;②|a|≥0;③a≥0若干个非负数的和为0,那么每个非负数均为0, 例1:已经x2 + y2-x+2y+5/4= 0 ,求x 、y的值。 评析:方程左边配方可变为非负数之和 解:由x2 + y2-x+ 2y+5/4= 0 得( x—1/2 ) 2+ ( y +1 ) 2= 0 所以( x—1/2 ) 2≥0,( y + 1 )2≥≥0 一般地,几个非负数之和为0,则每个非负数均为0。所以x=1/2, y=1 2 二元一次方程的整数解

线性方程组数值解法总结

好久没来论坛,刚刚发现以前的帖子现在那么火很欣慰,谢谢大家支持! 今天趁着不想做其他事情,把线性方程组的数值解法总结下,有不足的地方希望大神指教!数学建模中也会用到线性方程组的解法,你会发现上10个的方程手动解得话把你累个半死,而且不一定有结果,直接用matlab的函数,可以,关键是你不理解用着你安心吗?你怎么知道解得对不对? 我打算开个长久帖子,直到讲完为止!这是第一讲,如有纰漏请多多直接,大家一起交流!线性方程组解法有两大类:直接法和迭代法 直接法是解精确解,这里主要讲一下Gauss消去法,目前求解中小型线性方程组(阶数不超过1000),它是常用的方法,一般用于系数矩阵稠密,而有没有特殊结构的线性方程组。 首先,有三角形方程组的解法引入Gauss消去法,下三角方程组用前代法求解, 这个很简单,就是通过第一个解第二个,然后一直这样直到解出最后一个未知数,代码如下:前代法: function [b]= qiandai_method(L,b) n=size(L,1); %n 矩阵L的行数 for j=1:n-1 %前代法求解结果存放在b中 b(j)=b(j)/L(j,j); b(j+1:n)=b(j+1:n)-b(j)*L(j+1:n,j); end b(n)=b(n)/L(n,n); 上三角方程组用回代法,和前面一样就是从下面开始解x,代码: 后代法: function [y]=houdai_method(U,y) n=size(U,1); %n 矩阵L的行数 for j=n:-1:2 %后代法求解结果存放在y中 y(j)=y(j)/U(j,j); y(1:j-1)=y(1:j-1)-y(j)*U(1:j-1,j); end y(1)=y(1)/U(1,1); Gauss消去的前提就是这两个算法: 具体思想是把任何一个线性方程组的系数矩阵A,分解为一个上三角和一个下三角的乘积,即A=LU,其中L为下三角,U为上三角。 那么具体怎么做呢? 有高斯变换,什么是高斯变换?由于时间有限我不可能去输入公式,所以我用最平白的话把它描述出来。 你先想一下怎么把一个矩阵的某一列的从第j个分量后全部变0? 高斯变换就是通过每次一个矩阵Li把A的第i列对角线元素以下的都变为0,最后把这么多Li一次左乘起来就是一个矩阵L’=L(n-1)L(n-2)…L2L1,而L’A=U, 那么L=L’的转置,这样就得到了A得分解。 我们要求Ax=b A=LU

线性方程组解的判定

第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解。 11112211211222 22 11 22n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+ ++= ????+++=? (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵11121212221 2 n n m m mn a a a a a a A a a a ? ?? ? ? ?=?? ?? ? ? 称为方程组(13-2)的系数矩阵。由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212 n n m m mn m a a a b a a a b A a a a b ?? ????=??? ??? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X;常数项组成一个m 行、1 列的矩阵(或列向量),记作b ,即12n x x X x ??????=?????? ,12 m b b b b ?? ????=?????? 由矩阵运算,方程组(13-2)实际上是如下关系111212122212 n n m m mn a a a a a a a a a ? ?? ? ? ? ?? ?? ? ? 12n x x x ???????????? =12m b b b ???????????? 即 AX=b

线性方程组的数值解法

第三章线性方程组地数值解法 范数 (1> 常用范数 ① 向量 1- 范数: ② 向量 2- 范数: ③ 向量∞- 范数: ④ 向量 p- 范数: 向量1- 范数,向量2- 范数,向量∞- 范数实际上为任意 p- 范数地特例. (2> 矩阵范数 设,则 (1>,A地行范数 (2>,A地列范数 (3>,A地 2- 范数,也称谱范数 (4>, F- 范数 其中指矩阵地最大特征值 (3>谱半径(用于判断迭代法地收敛值> 设为矩阵A地特征值,则

称为A地谱半径 谱半径小于任何半径,若,则 (4>设A为非奇异矩阵,称 为A地条件数 矩阵地条件数与范数选取有关,通常有 显然当A对称时 直接法 Gauss消去法 ①Gauss顺序消去法 对线性方程组Ax=b,设,按顺序消元法,写出增广矩阵(A┆b>第一步,写出,将2~n行中地变为0 第k步,写出,将k+1~n行中地变为0 具体步骤可参照下面地例题 例5:用Gauss消去法解方程组

解: Guass列主元消去法 消去过程与Guass消元法基本相同,不同地是每一步消元时,都要将所选到地绝对值最大元素作为主元. 具体分析参见习题详解1 ②矩阵三角(LU>分解法 基本思想:将Ax=b化为LUx=b,令Ux=y 可得Ly=b,Ux=y,相当于先求出y,再求出x 其中,L,U分别为下三角矩阵和上三角矩阵 若L为单位下三角矩阵,则称为Doolittle分解。若U为单位上三角矩阵,则称为Crout分解. ③矩阵Doolittle分解法

计算公式 具体解题见习题详解2 注意计算顺序,先行再列,用简图表示为 虚线上地元素为对角元,划为行元. ④ 分解法 计算公式

线性方程组解的情况及其判别准则

摘要:近年来,线性代数在自然科学和工程技术中的应用日益广泛,而线性方程组求解问题是线性代数的基本研究内容之一,同时它也是贯穿线性代数知识的主线。本文探究了线性方程组一般理论的发展,用向量空间和矩阵原理分析了线性方程组解的情况及其判别准则。介绍了线性方程组理论在解决解析几何问题中的作用,举例说明了线性方程组解的结构理论在判断空间几何图形间位置关系时的便利之处。 关键字:线性方程组;解空间;基础解系;矩阵的秩 Abstract:In recent years, linear algebra in science and engineering application, and wide linear equations solving problems is the basic content of linear algebra, at the same time, it is one of the main knowledge of linear algebra.This article has researched the development of system of linear equations theory,discussed the general theory of linear equations, vector space with the development and matrix theory to analyze the linear equations and the criterion of the situation. Introduces the theory of linear equations in solving the problem of analytic geometry, illustrates the role of linear equations of structure theory in judgment space relation between the geometry of the convenience of position. space geometric figure between time the position relations with theory of the system of linear equation with examples. Key words: linear equations, The solution space, Basic solution, Matrix rank

非齐次线性方程组同解的判定和同解类

非齐次线性方程组同解的判定和同解类 摘要 本文主要讨论两个非齐次线性方程组同解的条件及当两个非齐次线性方程组的导出组的解空间相同时解集之间的关系。 关键词 非齐次线性方程组 同解 陪集 引言 无论是解齐次线性方程组,还是解非齐次线性方程组.所用的方法都是消元法,即对其系数矩阵或增广矩阵施以行的初等变换,而得到比较简单的同解方程组.用矩阵理论来说,就是系数矩阵或增广矩阵左乘以可逆矩阵后所得线性方程组与原线性方程组据有相同的解.这仅为问题的一面,而问题的反面是,如果两个非齐次线性方程组同解,则它们的系数矩阵或增广矩阵之间是否存在一个可逆矩阵?答案是肯定的,此即是本文主要解决的问题. 预备知识 定理1设,A B 是向量组C 两个线性无关的极大组,则存在可逆矩阵P ,使得 B PA =。 定理2设A 、B 为m n ?矩阵,且秩A =秩B ,如果存在矩阵C ,使得 CA B = 则存在m m ?可逆矩阵P ,使得 PA B = 证明 设秩A =秩B =r ,则存在可逆矩阵1P 与Q 使 011A P A A ??=????, 01B QB B ??=???? 其中0A ,0B 分别为秩数等于r 的r n ?矩阵,由于B CA =,则B 的行可由A 的行线性表出,从而B 的行可由0A 的行线性表出,进而0B 的行可由0A 的行线性表出, 于是矩阵00A B ?? ???? 的行向量组的极大线性无关组为0A 的各行,因为0B 的各行线性无 关且秩0B r =,所以0B 的各行亦构成一个线性无关组,则存在可逆矩阵r P 使得 00r B P A = 又设 110A C A =,12020r B C B C P A == 令 221 0r r n r P P C P C I -?? =? ?-?? 则1P 为可逆矩阵,且

线性方程组解的判定与解的结构

***学院数学分析课程论文 线性方程组解的判定与解的结构 院系数学与统计学院 专业数学与应用数学(师范) 姓名******* 年级 2009级 学号200906034*** 指导教师 ** 2011年6月

线性方程组解的判定与解的结构 姓名****** (重庆三峡学院数学与计算机科学学院09级数本?班) 摘 要:线性方程组是否有解,用系数矩阵和增广矩阵的秩来刻画.在方程组有解且有 多个解的情况下,解的结构就是了解解与解之间的关系. 关键词:矩阵; 秩; 线性方程组; 解 引言 通过系数矩阵和增广矩阵的秩是否相同来给出判定线性方程组的解的判别条件.在了解了线性方程组的判别条件之后,我们进一步讨论解的结构.对于齐次线性方程组,解的线性组合还是方程组的解.在线性方程组有无穷个解时可用有限多个解表示出来.另外以下还涉及到线性方程组通解的表达方式. 1 基本性质 下面我们分析一个线性方程组的问题,导出线性方程组有解的判别条件. 对于线性方程组 1111221121122222 1122n n n n s s sn n s a x a x a x b a x a x a x b a x a x a x b ++???+=??++???+=???????++???+=? (1) 引入向量 112111s αααα??????=?????????,122222s αααα??????=?????????,…12n n n sn αααα??????=????????? ,12s b b b β?? ?? ??=??????? ?? 方程(1)可以表示为 1122n n x x x αααβ++???+= 性质 线性方程组⑴有解的充分必要条件为向量β可以表成向量组α1,α2,…,αn 的线性组合. 定理1 线性方程组⑴有解的充分必要条件为它的系数矩阵

线性方程组的数值解法及其应用

线性方程组的数值解法及其应用 一、问题描述 现实中的问题大多数是连续的,例如工程中求解结构受力后的变形,空气动力学中计算机翼周围的流场,气象预报中计算大气的流动。这些现象大多是用若干个微分方程描述。用数值方法求解微分方程(组),不论是差分方法还是有限元方法,通常都是通过对微分方程(连续的问题,未知数的维数是无限的)进行离散,得到线性方程组(离散问题,因为未知数的维数是有限的)。因此线性方程组的求解在科学与工程中的应用非常广泛。 经典的求解线性方程组的方法一般分为两类:直接法和迭代法。 二、基本要求 1)掌握用MATLAB软件求线性方程初值问题数值解的方法; 2)通过实例学习用线性方程组模型解决简化的实际问题; 3)了解用高斯赛德尔列主元消去法和雅可比迭代法解线性方程组。 三、测试数据 1) 直接法:A=[0.002 52.88;4.573 -7.290]; b=[52.90;38.44]; 2) 迭代法:A=[10 -1 -2;-1 10 -2;-1 -1 5]; b=[7.2;8.3;4.2]; 四、算法程序及结果 1) function[RA,RB,n,x]=liezy1(A,b) B=[A b];n=length(b);RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0, disp('因为RA~=RB,所以此方程组无解.') return

if RA==RB if RA==n disp('因为RA=RB=n,所以此方程组有唯一解.') x=zeros(n,1);C=zeros(1,n+1); for p=1:n-1 [Y,j]=max(abs(B(p:n,p)));C=B(p,:); B(p,:)=B(j+p-1,:);B(j+p-1,:)=C; for k=p+1:n m=B(k,p)/B(p,p); B(k,p:n+1)=B(k,p:n+1)-m*B(p,p:n+1); end end b=B(1:n,n+1);A=B(1:n,1:n);x(n)=b(n)/A(n,n); for q=n-1:-1:1 x(q)=(b(q)- sum(A(q,q+1:n)*x(q+1:n)))/A(q,q); end else disp('因为RA=RB> b=[52.90;38.44]; >> [RA,RB,n,x]=liezy1(A,b) 因为RA=RB=n,所以此方程组有唯一解. RA = 2 RB = 2

线性方程组有解的判别定理

§ 4 线性方程组 设 是由m 个方程组成的 n 元线性方程组,它的系数矩阵、未知数列向量和常数列向量分别是 A = X = β = 于是线性方程组( 4-1 )可改为 AX= β。记: = = 称为 (4-1) 的增广矩阵。

如果β=0 ,那么,式 (4-1) 表示一个齐次线性方程组;否则 (4-1) 表示一个非齐次线性方程组。 定理4.1 如果线性方程组 AX= β有两个不同的解,那么它一定有无穷多解。 线性方程组( 4-1 )的解只有三种可能:无解,唯一解,无穷多解。 下面介绍解线性方程组的一个规范方法 --- 高斯消去法,它是加减消元法和代入消元法的推广和规范化。 定义4.1 设是两个由m 个方程组成的 n 元线性方程组,如果的解都是的解, 的解 都是的解,即线性方程组有相同的解,那么称它们为同解方程组,或称这两个方程组同解。 定理4.2 如果线性方程组的增广矩阵A= 经过有 限次行初等变换变成矩阵,作为增广矩阵对应于线性方程组 那么,线性方程组是同解方程组。 用高斯消去法解线性方程组 4-1 ,实际上就是对增广矩阵进行矩 阵的行初等变换,先把变为阶梯形矩阵,再继续施行行初等变换,使其变为简化阶梯形矩阵。前者就是消元过程,后者就是回代过程。

定理4.3 设线性方程组 4-1 的增广矩阵 A 经过行初等变换变为阶梯形矩阵 4-4 。 1 当d ≠ 0 时,线性方程组 4-1 无解; 2 当d =0 且r =n 时,线性方程组 4-1 只有唯一解; 3 当d =0 且r <n 时,线性方程组 4-1 有无穷多 解。 (4-4) 对于齐次线性方程组 (4-5) 由于总是它的一个解(通常称为零解),所以齐次线性方程组的解总是存在的。问题是它会不会有非零解,从而有无穷多解。 推论4.4 如果齐次线性方程组( 4-5 )的系数矩阵 A 的阶梯形中

北京大学数学物理方法(下)课件_12数学物理方程和定解条件(精)

12.4 边界条件与初始条件初始条件研究质点的性质时嬬单由微分方程嬬并不能求出质点性质随时间的变化孼即任何时刻质点的性质嬮例如嬬根据孎孥孷孴孯孮定律并不能确定质点的运动孼它在任意时刻的位置和速度嬬我们还需要知道质点的初始位置和初始速度嬮对于描述介质运动的偏微分方程嬬同样需要给出介质的初始状态嬬才能决定介质以后任意时刻的物理状态嬮介质的初始状态即由初始条件给出嬮对于波动方程嬬它是关于时间的二阶偏微分方程嬬所以应该给出介质初始时刻各点的位移 u|t=0 嬽φ嬨x, y, z 嬩和初始时刻各点的速度嬬即对时间的一阶偏导数?u ?t 嬽ψ 嬨x, y, z 嬩 t=0 对于热传导方程嬬由于方程中只出现对 t 的一阶偏导数嬬所以初始条件只需给出初始时刻各点温度 u嬨x, y, z 嬩的值 u|t=0 嬽φ嬨x, y, z 嬩稳定问题与时间无关嬬则没有初始条件嬮边界条件对于介质嬬情况比质点还要复杂嬺除了初始条件嬬还需要有边界条件嬮这是因为介质有内部和表面嬮在推导介质满足的数理方程时嬬只考虑了介质内部的点嬮介质表面的点与介质内部的点不同嬺首先嬬它只在一侧与介质内其它点相互作用嬻其次嬬在另一侧与外界有相互作用嬮因此介质表面所满足的方程与介质内部所满足的方程不同嬬应另外推导嬮我们把介质表面各点满足的方程称为边界条

件嬮先以一维振动为例嬬其边界由两端点组成嬮 Example 12.4 Solution 弦的横振动如果弦的两端嬨由外界嬩固定嬬那么边界条件就是 u|x=0 嬽嬰 u|x=l 嬽嬰Example 12.5 Solution 杆的纵振动如果 x 嬽嬰端固定嬬而另一端 x 嬽 l 受嬨x 方向的嬩外力作用嬬设单位面积上的力是 F 嬨t嬩 P 嬨l ? 孤x嬩S O l ? 孤x u|x=0 嬽嬰 l F 嬨t嬩S x 嬽嬰端边界条件仍是嬨嬱嬳嬩 x 嬽 l 这一端的边界条件并不能直接看出嬮模仿推导方程的方法嬬在端点 x 嬽 l 处截取一小段杆嬬长度为孤x嬮根据孎孥孷孴孯孮定律?2u ?2u F 嬨t嬩S ? P 嬨l ? 孤x, t嬩S 嬽孤m 2 嬽ρS 孤x 2 ?t ?t 因为孤x → 嬰 F 嬨t嬩嬽 P 嬨l, t嬩嬶 根据孈孯孯孫孥定律 P 嬽E 所以?u ?x 如果 x 嬽 l 端是自由的嬬 F 嬨t嬩嬽嬰嬬则?u ?x 如果外力为弹簧提供的弹性力嬬 F 嬨t嬩嬽?k 孛u嬨l, t嬩? u0 孝u0 为端点的平衡位移嬬则?u k 嬫u ?x E 再举一个三维例子嬬其边界为一闭合曲面嬮 Example 12.6 Solution 热传导问题嬽x=l ?u ?x 嬱 F 嬨t嬩 E 嬨嬱嬴嬩嬽 x=l 嬽嬰 x=l 嬨嬱嬵嬩 k u0 E 嬨嬱嬶嬩第一种类型是边界上各点的温度已知嬨由外界给定嬩u|Σ 嬽φ嬨嬆, t嬩嬨嬱嬷嬩这里嬬我们用嬆表示边界上的各点嬬同时也表示相应点的坐标嬮第二种类型是介质与外界通过表面嬨边界嬩有热量的交换嬬单位时间内嬬通过单位面积的边界面流入的热量已知嬬为ψ 嬨嬆, t嬩嬬由外界给定?qn |Σ 嬽ψ 嬨嬆, t嬩 n 为表面的法向嬬负号表示方向与法向相反嬮qn Σ? n ?qn Σ 嬆?嬆这时嬬我们可在边界嬆的内侧截取一小薄层的介质嬬它的另一个底面在介质内部嬬其上的点用嬆?表示嬮当介质薄层的厚度d → 嬰时嬬则两底面的面积相等嬬而侧面面积可忽略嬮所以流入介质薄层的热量为两底面流入热量之和嬮根据能量守恒定律嬬应该等于这一块介质薄层温度升高所需要的热量嬮假设薄层的底面积为单位面积qn |Σ? ? qn |Σ 嬽热容量 ×温度升高但介质薄层的厚度→ 嬰时嬬显然其热容量→ 嬰嬬所以qn |Σ? ? qn |Σ 嬽嬰嬷 即通过介质表面流入的热量嬬应当全部通过薄层的另一底面流向介质内部嬮由孆孯孵孲孩孥孲定律嬬热流密度矢量 q 嬽?k ? u 而 qn 嬽 q · n 嬽?k n ·嬨?u 嬩嬽?k 其中法向导数定义为? ≡n·? ?n 所以?k ?k 嬆?→ 嬆嬬故?u ?n 如果边界

数值分析讲义——线性方程组的解法

数值分析讲义 第三章线性方程组的解法 §3.0 引言 §3.1 雅可比(Jacobi)迭代法 §3.2 高斯-塞德尔(Gauss-Seidel)迭代法 §3.3 超松驰迭代法§3.7 三角分解法 §3.4 迭代法的收敛性§3.8 追赶法 §3.5 高斯消去法§3.9 其它应用 §3.6 高斯主元素消去法§3.10 误差分析 §3 作业讲评3 §3.11 总结

§3.0 引言 重要性:解线性代数方程组的有效方法在计算数学和科学计算中具有特殊的地位和作用.如弹性力学、电路分析、热传导和振动、以及社会科学及定量分析商业经济中的各种问题. 分类:线性方程组的解法可分为直接法和迭代法两种方法. (a) 直接法:对于给定的方程组,在没有舍入误差的假设下,能在预定的运算次数内求得精确解.最基本的直接法是Gauss消去法,重要的直接法全都受到Gauss消去法的启发.计算代价高. (b) 迭代法:基于一定的递推格式,产生逼近方程组精确解的近似序列.收敛性是其为迭代法的前提,此外,存在收敛速度与误差估计问题.简单实用,诱人.

§3.1 雅可比Jacobi 迭代法 (AX =b ) 1 基本思想: 与解f (x )=0 的不动点迭代相类似,将AX =b 改写为X =BX +f 的形式,建立雅可比方法的迭代格式:X k +1=BX (k )+f ,其中,B 称为迭代矩阵.其计算精度可控,特别适用于求解系数为大型稀疏矩阵(sparse matrices)的方程组. 2 问题: (a) 如何建立迭代格式? (b) 向量序列{X k }是否收敛以及收敛条件? 3 例题分析: 考虑解方程组??? ??=+--=-+-=--2.453.82102 .72103 21321321x x x x x x x x x (1) 其准确解为X *={1, 1.2, 1.3}. 建立与式(1)相等价的形式: ??? ??++=++=++=84.02.01.083.02.01.072 .02.01.02 13312321x x x x x x x x x (2) 据此建立迭代公式: ?????++=++=++=+++84 .02.01.083.02.01.072.02.01.0)(2)(1)1(3 )(3 )(1)1(23)(2)1(1k k k k k k k k k x x x x x x x x x (3) 取迭代初值0) 0(3 )0(2)0(1===x x x ,迭代结果如下表. JocabiMethodP31.cpp

高斯消元法解线性方程组

高斯消元法解线性方程组 在工程技术和工程管理中有许多问题经常可以归结为线性方程组类型的数学模型,这些模型中方程和未知量个数常常有多个,而且方程个数与未知量个数也不一定相同。那么这样的线性方程组是否有解呢?如果有解,解是否唯一?若解不唯一,解的结构如何呢?这就是下面要讨论的问题。 一、线性方程组 设含有n 个未知量、有m 个方程式组成的方程组 a x a x a x b a x a x a x b a x a x a x b n n n n m m mn n m 11112211211222221122+++=+++=+++=??????? (3.1) 其中系数a ij ,常数b j 都是已知数,x i 是未知量(也称为未知数)。当右端常数项b 1, b 2, …, b m 不全为0时, 称方程组(3.1)为非齐次线性方程组;当b 1=b 2= … =b m = 0时,即 a x a x a x a x a x a x a x a x a x n n n n m m mn n 111122121122221122000 +++=+++=+++=??????? (3.2) 称为齐次线性方程组。 由n 个数k 1, k 2, …, k n 组成的一个有序数组(k 1, k 2, …, k n ),如果将它们依次代入方程组(3.1)中的x 1, x 2, …, x n 后,(3.1)中的每个方程都变成恒等式,则称这个有序数组(k 1, k 2, …, k n )为方程组(3.1)的一个解。显然由x 1=0, x 2=0, …, x n =0组成的有序数组(0, 0, …, 0)是齐次线性方程组(3.2)的一个解,称之为齐次线性方程组(3.2)的零解,而当齐次线性方程组的未知量取值不全为零时,称之为非零解。 (利用矩阵来讨论线性方程组的解的情况或求线性方程组的解是很方便的。因此,我们先给出线性方程组的矩阵表示形式。) 非齐次线性方程组(3.1)的矩阵表示形式为: AX = B 其中 A = ????????????mn m m n n a a a a a a a a a 212222111211,X = ????????????n x x x 21, B = ????? ???????n b b b 21 称A 为方程组(3.1)的系数矩阵,X 为未知矩阵,B 为常数矩阵。将系数矩阵A 和常数矩阵B 放在一起构成的矩阵

线性方程组数值解法

计算方法实验 题目: 班级: 学号: 姓名:

目录 计算方法实验 (1) 1 实验目的 (3) 2 实验步骤 (3) 2.1环境配置: (3) 2.2添加头文件 (3) 2.3主要模块 (3) 3 代码 (4) 3.1主程序部分 (4) 3.2多项式方程部分 (4) 3.3核心算法部分 (8) 3.4数据结构部分 (12) 4运行结果 (14) 4.1列主元高斯消去法运行结果 (14) 4.2LU三角分解法运行结果 (15) 4.3雅克比迭代法运行结果 (16) 边界情况调试 (17) 5总结 (18) 输入输出 (18) 列主元高斯消元法 (18) 雅克比迭代法 (18) 6参考资料 (18)

1 实验目的 1.通过编程加深对列主元高斯消去法、LU三角分解法和雅克比迭代法等求解多 项式方程方法的理解 2.观察上述三种方法的计算稳定性和求解精度并比较各种方法利弊 2 实验步骤 2.1环境配置: VS2013,C++控制台程序 2.2添加头文件 #include "stdio.h" #include "stdlib.h" #include "stdafx.h" #include 2.3主要模块 程序一共分成三层,最底层是数据结构部分,负责存储数据,第二层是交互部分,即多项式方程部分,负责输入输出获得数据,最上层是核心的算法部分,负责处理已获得的数据。具体功能如下: ●数据结构部分 数据结构部分是整个程序的最底层,负责存储部分。因数组作为数据元素插入和删除操作较少,而顺序表空间利用率大且查看方便,故此程序选用二维顺序表保存系数。数据结构文件中写的是有关其的所有基本操作以供其他文件调用。 ●多项式方程部分 多项式方程部分是程序的第二层,内容是有关方程组的所有函数、构建方程、输出方程等等,同时在此文件中获得方程系数并储存,同时此文件还负责显示菜单部分。 ●算法部分 此文件负责核心算法,处于整个程序最上层部分,负责列主元高斯消去法、

相关主题