搜档网
当前位置:搜档网 › 直流电动机实验报告

直流电动机实验报告

直流电动机实验报告
直流电动机实验报告

实验报告

电机

课程名称:______电机实验_________指导老师:___ _____成绩:__________________

实验名称:_______直流并励电动机___________实验类型:________________同组学生姓名:

一、实验目的和要求

1.掌握用实验方法测取直流并励电机的工作特性和机械特性。

2.掌握直流并励电机的调速方法。

二、主要仪器设备

D17直流并励电动机,测功机,实验工作台

三、实验步骤与内容

1.记录名牌数据:额定电压220V,额定电流1.1A,额定功率185W,额定转速1600r/min,

额定励磁电流<0.16A

特性和机械特性

<1> 电动机启动前,将R1最大,R f调至最小,测功机常规负载旋钮调至零,直流电压调至零,各

个测量表均调至最大量程处。

<2> 接通实验电路,将直流电压源调至25伏左右,在电动机转速较慢的情况下,判断其转向是否

与测功机上箭头所示方向一致。若不一致,则将电枢绕组或励磁绕组反接。

<3> 将R1调至零,调节直流电压源旋钮,使U=220V,转速稳定后将测功机转矩调零。同时调节直

流电源旋钮,测功机的加载旋钮和电动机的磁场调节电阻R f,使U=U N=220V,I=I N=1.1A,n=n N=1600r/min,记录此时励磁电流I f,即为额定励磁电流I fN。

<4> 在保持U=U N=220V,I f=I fN=0.071A及R1=0不变的条件下,逐次减小电动机的负载,测取电动

机输入电流I,转速n和测功机转矩M,其中必要测量额定点和空载点。

<5> 根据公式P2=0.105*n*M2,P1=U*I η= P2/P1*100% Ia=I-I fN, 计算出Ia、P2、η

4.调速特性

(1)改变电枢端电压的调速

<1> 直流电动机启动后,将电枢调节电阻R1调至0,同时调节测功机、直流电源及电阻Rf,

使U=U N=220V,M2=500mN.m,I f=I fN=0.071A

<2> 保持此时的M2和I f=I fN,逐次增加R1的阻值,即降低电枢两端的电压Ua,测取Ua,n, I

(2)改变励磁电流的调速

<1> 直流电动机启动后,将电阻R1和Rf调至0,同时调节测功机、直流电源,使电动机

U=U N=220V,M2=500mN.m。

<2>保持此时的M2和U=U N =220V ,R1=0,逐次增加Rf 的阻值至n=1.1n N =1760r/min,测取电动机的n, I f , I 。

四、实验数据记录,处理与分析

1.工作特性和机械特性

测得实验数据与计算数据如下表

表格一

U=U N =220V ,I f =I fN =0.071A ,Ra=20Ω

Δn=(n 0-n N )/ n N =(1768-1600)/1600=10.5%

n=f(I a )的曲线特性

n=f(M2)的曲线特性

效率与输出功率的关系曲线

转速与输出功率的关系曲线

转矩与输出功率的关系曲线

3.调速特性

(1)改变电枢端电压的调速

测得实验数据如下表

表格二

I f=I fN=0.071A,M2=500mN.m

n=f(U a)的曲线特性

(2)改变励磁电流的调速

测得实验数据如下表

表格三

U=U N=220V,

M2=500mN.m

n=f(I f)的曲线特性

(3)在恒转矩负载时,两种调速方法电枢电流变化规律

<1>改变电枢端电压的调速时,由公式Tem=C TΦIa可知,M与I f不变时,Tem与Φ均不变,故Ia

也不变,于此可知Ia在实验中几乎不变,从表格二中的数据可以证实这个结论。

<2>改变励磁电流的调速时,由公式Tem=C TΦIa可知,M不变时,Tem不变,Φ与I f成正相关,因

此可知Ia与I f成反相关,当励磁电流减小时,Ia会增加,表格三中的数据可得,Ia=f(I f)的曲线特性若下图所示

Ia=f(I f)的曲线特性

(4)两种调速方法的优缺点

改变电枢端电压调速可以连续平滑的无极调速,机械特性硬,对于轻载与重载具有明显的调速效果。但转速只能从额定转速往下调,初投资大,维护要求高。

改变励磁电流调速在恒转矩负载时,因磁通减小,导致电枢电流Ia增大,电机效率降低,而且长时间运行会导致电机发热,故弱磁调速适合恒功率场合。弱磁调速可以连续平滑调速,改变励磁电流控制方便,但转速只能从额定转速往上调,最高转速受机械强度与换向能力的限制。

五、思考题

1.并励电动机的速率特性n=f(Ia)为什么是略微下降?是否出现上翘现象?为什么?上翘的速率

特性对电动机有何影响?

答:n=U/CeΦ-RaTem/CeC TΦ2=n0-βT em,为一条下垂的斜线,由于直流电动机中的Ra<< CeC TΦ2,故β很小,只是略微下降。当Ia增加时,由于电枢反应的去磁作用,导致Φ的减小,E=CeΦn知,n会增加,故可能出现上翘现象。

2.当电动机的负载转矩和励磁电流不变时,减小电枢端压,为什么会引起电动机转速降低?答:当M和If不变时,由E=CeΦn知,电动机转速会下降

3.当电动机的负载转矩和电枢电压不变时,减小励磁电流会引起转速的升高,为什么?

答:当M和Ua不变时,由E=CeΦn知,减小励磁电流会使Φ减小,而E几乎不变,故n升高

4.并励电动机在负载运行时,当磁场回路断线时是否一定会出现“飞速”?为什么?

答:当磁场回路断线时,Φ值骤减,但由于但由于磁滞效应,仍有剩磁存在,

由公式n=U/CeΦ-RaTem/CeCTΦ2=n0-βTem可得,n0, β均变得很大,而且β>n0,于是当负载转矩很小时,可能会导致飞速。若负载转矩较大,这可能产生制动效果

直流电动机起动实验

实验一直流电动机起动实验 一、实验目的理解直流电机的工作原理,测试直流电动及直接起动的波形。说明负载转矩、转速、电流、电磁转矩之间为何具有相应的对应关系。 二、实验的主要内容 仿真一台直流并励电动机的起动过程。电动机参数为: PN =17kW, U N = 220V, n0= 3000r/min,电枢回路电阻R a =0. 0870,电枢电感La =0. 0032H,励磁回路电阻R F=181.50,电机转动惯量J=0.76 kg ?m2。 三、实验的基本原理直流电动机刚与电源接通的瞬间,转子尚未转动起来时,他励和串励电动机的电枢电流以及并励和复励电动机的输入电流称为起动电流,这时的电磁转矩称为起动转矩。一般情况下,在额定电压下直接起动时,起动电流可达电枢电流额定值的10~20倍,起动转矩也能达到额定转矩的10~20倍,这样的起动电流是换向所不允许的,而且过大的起动转矩会使电动机和它所拖动的生产机械遭受突然的巨大冲击,以致损坏传动机械和生产机械。由此可见,除了额定功率在数百瓦以下的微型直流电动机,因电枢绕组导线细、枢电阻大以及转动惯量又比较小,可以直接起动以外,一般的直流电动机是不允许采用直接起动的。 四、实验步骤 1) 建立并激电动机的仿真模型:直流电动机DCmotor 的电枢和励磁并联后由直流电源DC 供电,用Step 模块给定电动机的负载转矩,在DCmotor 的m 端连接了Demux 模块,将m 端输出的4 个信号分为4 路,以便通过示波器Scope 观察,m 端输出的转速单位为rad/s,这里使用了一个放大器(Gain), 将rad/s 转换为习惯的r/min,变换系数为:k=60/2 π =9.55。 2) 计算电动机参数: 励磁电流 励磁电感在恒定磁场控制时可取“ 0” 电枢电阻 R a =0.0870 电枢电感估算

永磁无刷直流电动机的基本工作原理

永磁无刷直流电动机的基本工作原理 无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。 1. 电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。 无刷直流电动机的原理简图如图一所示: 永磁无刷直流电动机的基本工作原理 主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ调制波的对称交变矩形波。 永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组件处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。每种状态下,仅有两相绕组通电,依次改变一种状态,定子绕组产生的磁场轴线在空间转动60°电角度,转子跟随定子磁场转动相当于60°电角度空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新的编码又改变了功率管的导通组合,使定子绕组产生的磁场轴再前进60°电角度,如此循环,无刷直流电动机将产生连续转矩,拖动负载作连续旋转。正因为无刷直流电动机的换向是自身产生的,而不是由逆变器强制换向的,所以也称作自控式同步电动机。 2. 无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始位置处在何处,电动机在启动瞬间就会产生足够大的启动转矩,因此转子上不需另设启动绕组。 由于定子磁场轴线可视作同转子轴线垂直,在铁芯不饱和的情况下,产生的平均电磁转矩与绕组电流成正比,这正是他励直流电动机的电流-转矩特性。 电动机的转矩正比于绕组平均电流: Tm=KtIav (N·m) 电动机两相绕组反电势的差正比于电动机的角速度: ELL=Keω (V) 所以电动机绕组中的平均电流为: Iav=(Vm-ELL)/2Ra (A) 其中,Vm=δ·VDC是加在电动机线间电压平均值,VDC是直流母线电压,δ是调制波的占空比,Ra为每相绕组电阻。由此可以得到直流电动机的电磁转矩: Tm=δ·(VDC·Kt/2Ra)-Kt·(Keω/2Ra) Kt、Ke是电动机的结构常数,ω为电动机的角速度(rad/s),所以,在一定的ω时,改变占空比δ,就可以线性地改变电动机的电磁转矩,得到与他励直流电动机电枢电压控制相同的控制特性和机械特性。

直流电动机控制系统

煤炭工程学院课程设计 题目:直流电动机转速控制系统 专业班级: 学生姓名: 学号: 指导教师: 日期:

摘要 当今社会,电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。据资料显示,在所有动力资源中,百分之九十以上来自电动机。同样,我国生产的电能中有百分之六十是用于电动机的。电动机与人的生活息息相关,密不可分。电气时代,电动机的调速控制一般采用模拟法、PID控制等,对电动机的简单控制应用比较多。简单控制是指对电动机进行启动,,制动,正反转控制和顺序控制。这类控制可通过继电器,光耦、可编程控制器和开关元件来实现。还有一类控制叫复杂控制,是指对电动机的转速,转角,转矩,电压,电流,功率等物理量进行控制。 电机在各行各业发挥着重要的作用,而电机转速是电机重要的性能指标之一,因而测量电机的转速和电机的调速,使它满足人们的各种需要,更显得重要,而且随着科技的发展,PWM调速成为电机调速的新方式。 随着数字技术的迅速发展,微控制器在社会的各个领域得到了广泛的应用,由于数字系统有着模拟系统所没有的优势,如抗干扰性强、便于和PC机相联、系统易于升级维护。 本设计是以单片机AT89S52和L298控制的直流电机脉宽调制调速系统。利用AT89S52芯片进行低成本直流电动机控制系统的设计,能够简化系统构成、降低系统成本、增强系统性能、满足更多应用场合的需要。系统实现对电机的正转、反转、急停、加速、减速的控制,以及PWM的占空比在LCD上的实时显示。 关键词:直流电机;AT89S52;PWM调速;L298

直流电机与交流电动机的区别

直流电机与交流电动机的区别 区别就是驱动电源的种类不同,交流电机是交流,直流电机是直流。 交流电机是定子所形成的旋转磁场在转子上感应出电势后产生的旋转动力。 转速一般是固定的转速。但由于其结构简单,供电电源方便,所以大量使用于工业企业中。小到家用冰箱洗衣机吸尘器,大到机床,等等,都使用交流电机。 直流电机的定子是一个固定磁场,直流电通过转子的电刷在其周围形成变化的磁场,从而在定子内转动。 由于交流比较容易获得,比较容易输送,所以目前我们所使用的电动机械大部分都是交流电机驱动的,交流电机应用更广泛一些。 直流电机是磁场不动,导体在磁场中运动;交流电机是磁场旋转运动,而导体不动. 直流电动机分为定子绕组和转子绕组.定子绕组产生磁场.当通直流电时.定子绕组产生固定 极性的磁场.转子通直流电在磁场中受力.于是转子在磁场中受力就旋转起来.直流电机构造 复杂.造价高. 交流电动机分定子绕组和转子导体.转子导体形状像鼠笼,导体与导体之间用硅钢片.有的交流电动机转子也有绕组. 三相异步电动机的旋转原理 三相异步电动机要旋转起来的先决条件是具有一个旋转磁场,三相异步电动机的定子绕组就是用来产生旋转磁场的。我们知道,三相电源相与相之间的电压在相位上是相差120度的,三相异步电动机定子中的三个绕组在空间方位上也互差120度,这样,当在定子绕组中通入三相电源时,定子绕组就会产生一个旋转磁场,定子绕组产生旋转磁场后,转子导体(鼠笼条)将切割旋转磁场的磁力线而产生感应电流,转子导条中的电流又与旋转磁场相互作用产生电磁力,电磁力产生的电磁转矩驱动转子沿旋转磁场方向旋转起来。一般情况下,电动机的实际转速低于旋转磁场的转速不同步。为此我们称三相电动机为异步电动机。 直流电机具有响应快速、较大的起动转矩、从零转速至额定转速具备可提供额定转矩的性能,但直流电机的优点也正是它的缺点,因为直流电机要产生额定负载下恒定转矩的性能,则电枢磁场与转子磁场须恒维持90°,这就要藉由碳刷及整流子。碳刷及整流子在电机转动时会产生火花、碳粉因此除了会造成组件损坏之外,使用场合也受到限制。 交流电机没有碳刷及整流子,免维护、坚固、应用广,但特性上若要达到相当于直流电机的性能须用复杂控制技术才能达到。交流电动机分为异步电动机和同步电动机两类。异步电动机按照定子相数的不同分为单相异步电动机、两相异步电动机和三相异步电动机。三相异步电动机结构简单,运行可靠,成本低廉等。

物理八年级人教新课标实验安装直流电动机模型

物理八年级人教新课标实 验安装直流电动机模型 Prepared on 22 November 2020

实验报告 实验:安装直流电动机模型 初三( )班姓名:_____________ 座号:_______ _____年___月___日 实验目的:1.安装直流电动机模型。 2.研究直流电动机的转动方向和转速。 实验器材:直流电动机模型(散件),干电池组、滑动变阻器、开关、导线若干。 实验步骤:1.安装直流电动机模型。 2.画出直流电动机模型与变阻器、电源、开关、组成的串联电路 图。 3.按电路图连接电路。 4.经检查无误后,闭合开关,调节滑动变阻器至合适位置,观察电动机线圈转动情况。 5.按下表进行实验,结论填入表中。 源电压,否则容易把电 动机模型烧坏。

2.为了使线圈在转动到平衡位置时,适时地改变线圈中电流方向,必须十分注意通电线圈 和换向器安装是否符合要求,应该使换向器两个铜质半环的绝缘处(断开处)的边线与线圈平面垂直。 3.电刷和换向器安装的松紧要适当,太松会接触不良形成开路,太紧会使电刷与铜质半环 间摩擦过大妨碍线圈的转动。 4.若接通电源后,电动机模型不转动,则可能有以下故障: ①滑动变阻器的连入阻值过大。②电刷与换向器间接触不良。③线圈正好处于平衡位置。 ④电磁铁没有磁性(或磁体没有放置好,磁场较弱)⑤电路的其它部分开路。☆) 实验报告 实验:安装直流电动机模型 初三( )班姓名:_____________ 座号:_______ _____年___月___日 实验目的:1.安装直流电动机模型。 2.研究直流电动机的转动方向和转速。 实验器材:直流电动机模型(散件),干电池组、滑动变阻器、开关、导线若干。 实验步骤:1.安装直流电动机模型。 2.画出直流电动机模型与变阻器、电源、开关、组成的串联电路 图。 3.按电路图连接电路。 4.经检查无误后,闭合开关,调节滑动变阻器至合适位置,观察电动机线圈转动情况。 5.按下表进行实验,结论填入表中。

无刷直流电机的组成及工作原理

无刷直流电机的组成及工作原理 2.1 引言 直流无刷电动机一般由电子换相电路、转子位置检测电路和电动机本体三部分组成,电子换相电路一般由控制部分和驱动部分组成,而对转子位置的检测一般用位置传感器来完成。工作时,控制器根据位置传感器测得的电机转子位置有序的触发驱动电路中的各个功率管,进行有序换流,以驱动直流电动机。下文从无刷直流电动机的三个部分对其发展进行分析。 2.2 无刷直流电机的组成 2.2.1 电动机本体 无刷直流电动机在电磁结构上和有刷直流电动机基本一样,但它的电枢绕组放在定子上,转子采用的重量、简化了结构、提高了性能,使其可*性得以提高。无刷电动机的发展与永磁材料的发展是分不开的,磁性材料的发展过程基本上经历了以下几个发展阶段:铝镍钴,铁氧体磁性材料,钕铁硼(NdFeB)。钕铁硼有高磁能积,它的出现引起了磁性材料的一场革命。第三代钕铁硼永磁材料的应用,进一步减少了电机的用铜量,促使无刷电机向高效率、小型化、节能的方向发展。 目前,为提高电动机的功率密度,出现了横向磁场永磁电机,其定子齿槽与电枢线圈在空间位置上相互垂直,电机中的主磁通沿电机轴向流通,这种结构提高了气隙磁密,能够提供比传统电机大得多的输出转矩。该类型电机正处于研究开发阶段。 2.2.2 电子换相电路 控制电路:无刷直流电动机通过控制驱动电路中的功率开关器件,来控制电机的转速、转向、转矩以及保护电机,包括过流、过压、过热等保护。控制电路最初采用模拟电路,控制比较简单。如果将电路数字化,许多硬件工作可以直接由软件完成,可以减少硬件电路,提高其可靠性,同时可以提高控制电路抗干扰的能力,因而控制电路由模拟电路发展到数字电路。 驱动电路:驱动电路输出电功率,驱动电动机的电枢绕组,并受控于控制电路。驱动电路由大功率开关器件组成。正是由于晶闸管的出现,直流电动机才从有刷实现到无刷的飞跃。但由于晶闸管是只具备控制接通,而无自关断能力的半控性开关器件,其开关频率较低,不能满足无刷直流电动机性能的进一步提高。随着电力电子技术的飞速发展,出现了全控型的功率开关器件,其中有可关断晶体管(GTO)、电力场效应晶体管(MOSFET)、金属栅双极性晶体管IGBT 模块、集成门极换流晶闸管(IGCT)及近年新开发的电子注入增强栅晶体管(IEGT)。随着这些功率器件性能的不断提高,相应的无刷电动机的驱动电路也获得了飞速发展。目前,全控型开关器件正在逐渐取代线路复杂、体积庞大、功能指标低的普通晶闸管,驱动电路已从线性放大状态转换为脉宽调制的开关状态,相应的电路组成也由功率管分立电路转成模块化集成电路,为驱动电路实现智能化、高频化、小型化创造了条件。 2.2.3 转子位置检测电路

直流电动机转速控制

直流电动机转速控制 王文玺 (北京交通大学机械与电子控制工程学院,北京) 摘要:通过对直流电动机控制系统的建模,再利用Matlab对建模后的系统进行分析,来加深对自动控制系统的理解。找到系统的输入、输出,理清经历各环节前后的信号变化,找出系统传递函数。 关键词:直流电动机、Matlab、建模、传递函数 1、直流电动机动态数学模型建立 1.1直流电机数字PID闭环速度控制,系统实现无静差控制。 这是一个完整的带PID算法的直流电动机控制系统。目标值为给定的期望值,期望值与被测输出结果形成的反馈做比较,得到误差信号。误差信号经过PID控制环节得到控制信号。继而经历驱动环节得到操作量,驱动量作用与对象即电动机然后得到输出信号即转速。转速通过传感器得到反馈信号。 1.2PID控制环节 1.3被控对象(直流电动机)的统一数学模型 信号类型一次为,输入信号为电压,然后电流、电流、转矩、转速,反馈信号为电压。

各环节的比例函数为: 1.3.1额定励磁条件下,直流电机的电压平衡关系: (Ud为外加电压,E 为感应电势,R a为电枢电阻 ,La为电枢电感,i a为电枢电流。) 拉氏变换后: (ra—L /R ,为电枢时间常数) 1.3.2直流电机的转矩平衡关系及拉氏变换: (Te 为电磁转矩,Tl 为负载转矩,B为 阻尼系数,J 为转动惯量,w为电机机 械转速,rm=J/B,为机械时间常数) 1.3.3电动机传递函数 可见直流电动机本身就是一个闭环系统,假设电机工作在空载状态,且机械时间常数远大于电枢时间常数,则电机传递函数可近似为: 1.4具体实例 电枢控制直流电动机拖动惯性负载的原理图,涉及的参数有:电压U为输入,转速为输出,R、L为电枢回路电阻、电感,K 是电动机转矩系数,K 是反电动势系数,K 是电动机和负载折合到电动机轴上的黏性摩擦系数,.厂是电动机和负载折合到电动机轴上的转动惯量。已知:R一2.0 Q,L:==0.5 H ,K = Kb一0.015,Kf一0.2 Nms,J— o.02kg.m 。 ( 取电压U为输入,转速叫为输出,由已知条件和原理图,根据直流电机的运动方程可以求出电动机系统的数学模型为:

实验二 直流并励电动机

实验二直流并励电动机 一.实验目的 1.掌握用实验方法测取直流并励电动机的工作特性和机械特性。 2.掌握直流并励电动机的调速方法。 二.预习要点 1.什么是直流电动机的工作特性和机械特性? 2.直流电动机调速原理是什么? 三.实验项目 1.工作特性和机械特性 保持U=U N和I f=I fN不变,测取n、T2、n=f(I a)及n=f(T2)。 2.调速特性 (1)改变电枢电压调速 保持U=U N、I f=I fN=常数,T2=常数,测取n=f(Ua)。 (2)改变励磁电流调速 保持U=U N,T2 =常数,R1 =0,测取n=f(I f)。 (3)观察能耗制动过程 四.实验设备及仪器 1.NMEL系列电机教学实验台的主控制屏。 2.电机导轨及涡流测功机、转矩转速测量(NMEL-13)。 3.可调直流稳压电源(含直流电压、电流、毫安表) 4.直流电压、毫安、安培表(NMEL-06)。 5.直流并励电动机。M03 (U N=220v,I N=1.1A,n N=1600) 6.波形测试及开关板(NMEL-05)。 7.三相可调电阻900Ω(MEL-03)。 五.实验方法 1.并励电动机的工作特性和机械特性。 实验线路如图1-6所示 U1:可调直流稳压电源 R1、R f:电枢调节电阻和磁场调节电阻, 位于NMEL-09。

电机旋转,并调整电机的旋转方向,使电机正转。 b.直流电机正常起动后,将电枢串联电阻R1调至零,调节直流可调稳压电源的输出至220V,再分别调节磁场调节电阻R f和“转矩设定”电位器,使电动机达到额定值:U=U N=220V,Ia=I N,n=n N=1600r/min,此时直流电机的励磁电流I f=I fN(额定励磁电流)。 c.保持U=U N,I f=I fN不变的条件下,逐次减小电动机的负载,即逆时针调节“转矩设定”电位器,测取电动机电枢电流I a、转速n和转矩T2,共取数据7-8组填入表1-8中。表U=U N=221V I f=I fN=56.1mA I f2=1.1 A

直流无刷电动机及其调速控制

直流无刷电动机及其调速控制 1.直流无刷电动机的发展概况与应用 有刷直流电动机从19世纪40年代出现以来,以其优良的转矩控制特性,在相当长的一段时间内一直在运动控制领域占据主导地位。但是,有机械接触电刷-换向器一直是电流电机的一个致命弱点,它降低了系统的可靠性,限制了其在很多场合中的使用。为了取代有刷直流电动机的机械换向装置,人们进行了长期的探索。早在1917年,Bolgior就提出了用整流管代替有刷直流电动机的机械电刷,从而诞生了无刷直流电机的基本思想。 1955年美国的D.Harrison等首次申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,标志着现代无刷直流电动机的诞生。无刷直流电动机的发展在很大程度上取决于电力电子技术的进步,在无刷直流电动机发展的早期,由于当时大功率开关器件仅处于初级发展阶段,可靠性差,价格昂贵,加上永磁材料和驱动控制技术水平的制约,使得无刷直流电动机自发明以后的一个相当长的时间内,性能都不理想,只能停留在实验室阶段,无法推广使用。1970年以后,随着电力半导体工业的飞速发展,许多新型的全控型半导体功率器件(如GTR、MOSFET、IGBT等)相继问世,加之高磁能积永磁材料(如SmCo、NsFeB)陆续出现,这些均为无刷直流电动机广泛应用奠定了坚实的基础。在1978年汉诺威贸易博览会上,前联邦德国的MANNESMANN公司正式推出了MAC无刷直流电动机及其驱动器,引起了世界各国的关注,随即在国际上掀起了研制和生产无刷直流系统的热潮,这业标志着无刷直流电动机走向实用阶段。 随着现代永磁材料和相关电子元器件的性能不断提高,价格不断下降,无刷电动机的到了快速发展,并被广泛应用于各个领域,例如,在数控机床、工业机器人以及医疗器械、仪器仪表、化工、轻纺机械和家用电器等小功率场合,计算

直流电动机转速控制系统设计

摘要 当今,自动化控制系统已经在各行各业得到了广泛的应用和发展,而直流驱动控制作为电气传动的主流在现代化生产中起着主要作用。特别是在直流电动机广泛应用的电气传动领域,起到至关重要的作用。直流电动机因为具有良好的调速性能和比较大的起动转矩,一直被应用在电气领域,尤其是在需要调速性能很高的场所。在制造业、工农业自动化、铁路与运输等行业都被广泛的应用,随着市场的竞争力,对直流电动机的需求也越来越高,同时对直流电动机的调速性能也有了更高的要求。因此,研究直流电动机转速控制系统的调速性能有着很重要的意义。 在本次的设计中采用PWM控制直流电动机转速。PWM脉冲受到PID算法的控制,被用来控制直流电动机的转速。同时利用安装在直流电动机转轴上的光电式传感器,将直流电动机的转速转换成脉冲信号,反馈到单片机,形成闭环反馈控制系统,改变不同占空比的PWM脉冲就可以实现直流电动机转速控制。 本论文对每一个方案的选择都进行详细的论述,在软件和硬件部分都进行了模块化。硬件部分首先给出一个以AT89S52单片机为核心的整体结构图,并对驱动电路、显示电路等模块进行详细的阐述。在软件部分给出整体程序流程图,对PWM 程序、PID算法程序、显示程序等模块详细的阐述。本次系统设计的具有抗干扰能力强、性价比高、维修简单方便等优点。 关键词:PWM;单片机;直流电动机;转速控制

Abstract Nowadays, automatic control system has been widely used and greatly developed in all walks of life. As the dominant part of electric drive, direct current (DC) control plays an important role in modern production, especially in the DC motor is widely used in the field of electric transmission. DC motor because of its good speed control performance and relatively large starting torque, has been applied in the electrical field, especially in the high speed performance requirements of the occasion. Is widely used in the manufacturing industry, industry and trade of agricultural automation, rail and transit industry, with the competitiveness of the market, the demand of DC motor is also more and more high, also of the DC motor speed performance also has the higher requirements. Therefore, it is very important to study the speed control performance of the DC motor speed control system. In this design, using PWM control DC motor speed. PWM pulse is controlled by the PID algorithm, PWM is used to control the speed of DC motor. At the same time, the hall sensor mounted on the rotational shaft of the DC motor, the DC motor speed is converted into a pulse signal, feedback to the microcontroller, form a closed loop feedback control system, changing the duty ratio of the PWM pulse can realize DC motor speed control. In this paper, the choice of each program are discussed in detail, in both the software and hardware parts are modular. In the part of hardware, we first give a whole structure diagram with AT89S52 single chip microcomputer as the core, and elaborate the driving circuit, display circuit and other modules in detail. In the software part gives the overall program flow chart, the PWM program, PID algorithm program, display program, and other modules are described in detail. The system design has the advantages of strong anti-interference ability, high cost performance, easy maintenance and so on. Key Words: PWM; microcomputer; DC motor; speed control

直流电动机分类

直流电动机分类 直流电动机按结构及工作原理可划分:(1)无刷直流电动机和(2)有刷直流电动机。 (1)无刷直流电动机:无刷直流电动机是将普通直流电动机的定子与转子进行了互换。其转子为永久磁铁产生气隙磁通:定子为电枢,由多相绕组组成。在结构上,它与永磁同步电动机类似。无刷直流电动机定子的结构与普通的同步电动机或感应电动机相同.在铁芯中嵌入多相绕组(三相、四相、五相不等).绕组可接成星形或三角形,并分别与逆变器的各功率管相连,以便进行合理换相。转子多采用钐钴或钕铁硼等高矫顽力、高剩磁密度的稀土料,由于磁极中磁性材料所放位置的不同.可以分为表面式磁极、嵌入式磁极和环形磁极。由于电动机本体为永磁电机,所以习惯上把无刷直流电动机也叫做永磁无刷直流电动机。 (2)有刷直流电动机可划分:(2、1)永磁直流电动机和(2、2)电磁直流电动机。 (2、1)永磁直流电动机划分:稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钴永磁直流电动机。 (2、1、1)稀土永磁直流电动机:体积小且性能更好,但价格昂贵,主要用于航天、计算机、井下仪器等。

(2、1、2)铁氧体永磁直流电动机:由铁氧体材料制成的磁极体,廉价,且性能良好,广泛用于家用电器、汽车、玩具、电动工具等领域。 (2、1、3)铝镍钴永磁直流电动机:需要消耗大量的贵重金属、价格较高,但对高温的适应性好,用于环境温度较高或对电动机的温度稳定性要求较高的场合。 (2、2)电磁直流电动机划分:串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。 (2、2、1)串励直流电动机:电流串联,分流,励磁绕组是和电枢串联的,所以这种电动机内磁场随着电枢电流的改变有显著的变化。为了使励磁绕组中不致引起大的损耗和电压降,励磁绕组的电阻越小越好,所以直流串励电动机通常用较粗的导线绕成,他的匝数较少。 (2、2、2)并励直流电动机:并励直流电机的励磁绕组与电枢绕组相并联,作为并励发电机来说,是电机本身发出来的端电压为励磁绕组供电;作为并励电动机来说,励磁绕组与电枢共用同一电源,从性能上讲与他励直流电动机相同。 (2、2、3)他励直流电动机:励磁绕组与电枢没有电的联系,励磁电路是由另外直流电源供给的。因此励磁电流不受电枢端电压或电枢电流的影响。

电动机保养与维护

电动机日常保养维护制度 电动机就就是利用电磁感应原理,将电能转化为机械能得一种旋转得电气设备。常用得电动机可以分为:交流、直流与交直流两用电动机。交流电动机包括同步电动机与异步电动机。异步电动机又可分为三相交流异步电动机、单相异步电动机。企业中大多数为三相异步电动机,三相异步电动机又分为绕线式与鼠笼式。电动机整体形状就是一个圆柱体,主要部件有转子与定子。定子就是一对能产生磁场得固定电磁极。装在定子中间得就是一个能转动得电磁体叫转子。转子就是由特种材料作成得圆柱体,套在电动机轴上。 异步电动机在运行过程中,由于许多原因常常会出现各种故障,影响工厂得正常生产。为此,正确使用与维护电动机得运转,了解电动机发生故障得主要现象,限制故障得扩大,及时加以排除,对保证完成或提前完成生产任务就是十分重要得。时间就就是产量,产量就就是效益,所以准确快速得找到故障原因,以最快速度排除故障、恢复生产,也就保证了工厂生产得效益。 电动机日常维护保养得目得:应用到工作实践中,避免或减少电动机烧坏,加强电动机得管理水平,做好定期检查,就能大大减少电动机故障与事故,从而提高生产效率、减少维修费用,保障生产安全顺利进行。 一、电动机得日常检查得要素 电动机由定子架、绕组及绝缘材料、转子、两端轴承及端盖等组成,比较简单。电动机故障得常见原因有:电源断相、电压或频率不对;绕组短路、断路、接地;轴承运转不良;内、外部脏,散热不好(外部涂油漆太厚也就是散热不好得原因),与自带冷却风扇坏,通风不畅;与机械装备连接不良;长期高负荷运行;环境温度高等等。 1、保持电动机得清洁 电动机在运行中,进风口周围至少3米内不允许有尘土、水渍与其她杂物,以防止吸进电动机内部,形成短路介质,或损坏导线绝缘层,造成匣间短路,电流增大,温度升高而烧毁电动机。所以,要保证电动机有足够得绝缘电阻,以及良好得通风冷却环境,才能使电动机保持长期得安全、稳定运行状态。

初中物理直流电动机实验

初中物理直流电动机实验 初中物理直流电动机实验 观察与思考 1.试总结使直流电动机转向和转速改变的因素. 2.试推想交流电动机的工作原理。 3.玩具小汽车,坦克等车辆能向前后两个方向运动,而车轮的转动由车内的电动机带动,问汽车、坦克等车辆怎样改变运动方向的? 实验结论 1.通过增大电流、增强磁场,可以使电动机的转速变快。即改变电流大小、改变磁场的强弱可以改变电动机的转动速度; 2. 只要改变电流的方向或磁场的方向中的一个,就可以改变电动机转动的方向。 实验考点 这个实验所涉及的内容,往往考查电动机的转动速度与哪些因素有关,转动的方向与哪些因素有关,以及电动机的原理,往往以探究题、填空题等形式出现。 经典考题 1. 科学家通过长期研究,发现了电和磁的联系,其中最重要的两种研究如上图所示。 (1)甲图是研究_________现象的装置,根据这一现象制了

________机。 (2)乙图是研究_____________的装置,根据这一现象制成了_________机。 3. 在安装直流电动机模型的实验中,安装完毕后闭合开关,线圈沿顺时针方向转动,要想使线圈沿逆时针方向转动,正确的做法是() A. 减少一节电池 B. 调换磁性更强的磁铁 C. 把电源正、负极和磁铁南、北极同时对调 D. 把电源正、负极对调或磁铁南、北极对调 观察与思考答案 1. 电流的方向,磁铁磁极的方向能改变电动机的转向,电流的强弱、磁场的强弱、线圈的特性能改变转速。 2. 交流电动机采用交流电源,利用电流方向的改变使线圈在磁场中受力方向改变,从而维持线圈的不断转动。 3. 当电流方向发生改变时,电动机的转向随之发生改变,进而使车轮也反向转动,达到向前后两个方向运动的目的。 经典考题答案 1.要明确电动机的原理和发电机的原理,这两个实验比较相似,是同学们容易混淆的两个知识点。发电机的原理图中没有电源而有电流表,电动机的图中有电源,没有电流表。

直流电动机控制系统设计

X X X X X学院 题目:直流电动机控制系统 学 院 XXXXXX学院 专 业 自动化 班 级 XX班 姓 名 XXX 学 号 XXXXX 指导老师 XXX 2012年 12 月 25 日 1、 设计题目:直流电动机控制系统 1、前言 近年来,随着科技的进步,电力电子技术得到了迅速的发展,直流电机得到了越来越广泛的应用。直流它具有优良的调速特性,调速平滑、方便,调速范围广;过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转;需要能满足生产过程自动化系统各种不同的特殊运行要求,从而对直流电机的调速提出了较高的要求,改变电枢回路电阻调速,改变电枢电压调速等技术已远远不能满足要求,这时通过PWM方式控制直流电机调速的方法应运而生。 采用传统的调速系统主要有以下缺陷:模拟电路容易随时间漂移,会产生一些不必要的热损耗,以及对噪声敏感等。而在用了PWM技术后,避免了以上的缺陷,实现了用数字方式来控制模拟信号,可以大幅度降低成本和功耗。另外,由于PWM 调速系统的开关频率较高,仅靠电枢电感的滤波作用就可获得平稳的直流电流,低速特性好;同样,由于开

关频率高,快速响应特性好,动态抗干扰能力强,可以获得很宽的频带;开关器件只工作在开关状态,主电路损耗小,装置效率高。PWM 具有很强的抗噪性,且有节约空间、比较经济等特点。 2、系统设计原理 脉宽调制技术是利用数字输出对模拟电路进行控制的一种有效技术,尤其是在对电机的转速控制方面,可大大节省能量,PWM控制技术的理论基础为:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需 要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 直流电动机的转速n和其他参量的关系可表示为 (1) 式中 Ua——电枢供电电压(V); Ia ——电枢电流(A); Ф——励磁磁通(Wb); Ra——电枢回路总电阻(Ω); CE——电势系数, ,p为电磁对数,a为电枢并联支路数,N为导体数。 由式(1)可以看出,式中Ua、Ra、Ф三个参量都可以成为变量,只要改变其中一个参量,就可以改变电动机的转速,所以直流电动机有三种基本调速方法:(1)改变电枢回路总电阻Ra;;(2)改变电枢供电电压Ua;(3)改变励磁磁通Ф。 3、方案选择及论证 3.1、方案选择 3.1.1、改变电枢回路电阻调速 可以通过改变电枢回路电阻来调速,此时转速特性公式为 n=U-【I(R+Rw)】/KeФ (2)式中Rw为电枢回路中的外接电阻(Ω)。 当负载一定时,随着串入的外接电阻Rw的增大,电枢回路总电阻R= (Ra+Rw)增大,电动机转速就降低。Rw的改变可用接触器或主令开关切换来实现。 这种调速方法为有级调速,转速变化率大,轻载下很难得到低速,

电动机技术发展、工作原理及维护

毕业设计(论文) G RADUATE D ESIGN(T HESIS) 设计(论文)题目电动机技术发展、工作原理及维护 学生 学习中心太原理工大学 专业矿山机电 层次 二〇一四年八月六日

引言 近几十年来,随着电力电子技术、微电子技术及现代控制理论的发展,中、小功率电动机在工农业生产及人们的日常生活中都有极其广泛的的应用。特别是乡镇企业及家用电器的迅速,更需要大量的中小功率电动机。由于这种电动机的发展及广泛的应用,它的使用、保养和维护工作也越来越重要。本文主要介绍了电动机技术发展及现状、工作原理、电动机的运行维护。 关键词:技术现状工作原理运行维护

第一章电动机技术发展及现状 电机是利用电磁感应原理工作的机械。随着生产的发展而发展的,反过来,电机的发展又促进了社会生产力的不断提高。从19世纪末期起,电动机就逐渐代替蒸汽机作为拖动生产机械的原动机,一个多世纪以来,虽然电机的基本结构变化不大,但是电机的类型增加了许多,在运行性能,经济指标等方面也都有了很大的改进和提高,而且随着自动控制系统和计算机技术的发展,在一般旋转电机的理论基础上又发展出许多种类的控制电机,控制电机具有高可靠性﹑好精确度﹑快速响应的特点,已成为电机学科的一个独立分支。 它应用广泛,种类繁多。性能各异,分类方法也很多。电动机的功能是将电能转换成机械能,它可以作为拖动各种生产机械的动力,是国民经济各部门应用最多的动力机械,也是最主要的用电设备,各种电动机消耗的电能占全国总发电量的60%-70%。另一种分类方法是按照电机的结构或转速分类,可分为变压器和旋转电机.根据电源电流的不同旋转电机又分为直流电机和交流电机两大类.交流电机又分为同步电机和异步电机。 在现代化工业生产过程中,为了实现各种生产工艺过程,需要各种各样的生产机械。拖动各种生产机械运转,可以采用气动,液压传动和电力拖动。由于电力拖动具有控制简单﹑调节性能好﹑耗损小﹑经济,能实现远距离控制和自动控制等一系列优点,因此大多数生产机械都采用电力拖动。 按照电动机的种类不同,电力拖动系统分为直流电力拖动

实验八 直流并励电动机

实验八直流并励电动机 一.实验目的 1.掌握用实验方法测取直流并励电动机的工作特性和机械特性。 2.掌握直流并励电动机的调速方法。 二.实验方法 1.并励电动机的工作特性和机械特性。 表1-8 U=U N=220V I f=I fN= 80.8 mA 2.调速特性 (1)改变电枢端电压的调速 (2)改变励磁电流的调速 三.实验报告 1.由表1-8计算出P2和η,并绘出n、T2、η=f(I a)及n=f(T2)的特性曲线。

图1 n=f(I a)特性曲线图2 T2=f(I a)特性曲线 图3 η=f(I a)特性曲线图4 n=f(T2)特性曲线 2.绘出并励电动机调速特性曲线n=f(U a)和n=f(I f)。分析在恒转矩负载时两种调速的电枢电流变化规律以及两种调速方法的优缺点。 图5 特性曲线n=f(U a)图6 特性曲线n=f(I f) 在恒转矩负载时两种调速的电枢电流变化规律以及两种调速方法的优缺点: 改变电枢端电压的调速是在额定转速以下调节转速的方法,电压Ua越小,转速n越小。优点:(1)可实现平滑的无级调速;(2)相对稳定性较好;(3)调速经济性较好;(4)调速范围大。 缺点:需要专用的可调压直流电源。 改变励磁电流的调速是在额定转速以上调节转速的方法,励磁电流If减小,磁通Φ变小,转速n升高。 优点:(1)可实现无级调速;(2)稳定性好;(3)调速经济性较好;(4)控制方便,能量损耗小。 缺点:受电动机机械强度和换向火花的限制,转速不能太高,调速范围不大。

四.思考题 1.并励电动机的速率特性n=f(I a)为什么是略微下降?是否会出现上翘现象?为什么?上翘的速率特性对电动机运行有何影响? 答:根据并励电动机的速率特性公式,若忽略电枢反应,当电枢回路电流I a增加时,转速n下降;若考虑电枢反应的去磁效应,磁通Φ下降可能引起转速n的上升,即出现上翘现象。这样的变化与电枢回路电流I a增大引起的转速n降低抵消,使电动机的转速n变化很小。 2.当电动机的负载转矩和励磁电流不变时,减小电枢端压,为什么会引起电动机转速降低? 答:由直流电动机机械特性的表达式可知,转速n与电枢电压Ua成正比、与磁通量Φ成反比,所以减小电压时,转速n下降。 3.当电动机的负载转矩和电枢端电压不变时,减小励磁电流会引起转速的升高,为什么? 答:由于磁通与励磁电流在额定磁通以下时基本成正比,所以励磁电流I f减小时,主磁通也随着减小。由机械特性的表达式可知,当磁通Φ减小时,转速n升高。 4.并励电动机在负载运行中,当磁场回路断线时是否一定会出现“飞速”?为什么? 答:不一定。因为当电动机负载较轻时,电动机的转速将迅速上升直至超过允许值,造成“飞车”;但若电动机的负载为重载时,则电动机的电磁转矩将小于负载转矩,使电动机转速减小,但电枢电流将飞速增大,超过电动机允许的最大电流值,烧毁电枢绕组。

直流电机的保养

大型直流电动机的维护和管理时间:2010-06-20来 源:本站整理作者:电工之家 大型直流电动机系指电枢直径超过1m的直流电动机,因其结构复杂、价格昂贵、对使用环境要求高、维修周期长,一旦出现重大故障就会造成经济损失。因此,加强对大型直流电动机的维护和管理工作势在必行。 一、大型直流电动机的维护 对于24h连续使用的大型直流电动机,停机定期维护期一般为7~10天,平时应对电机负载的变化情况、换向器表面质量、火花的状态、绕组的温度及风、水、油系统等诸方面因素作好记录。维护工作主要有以下几方面。 1.换向器 (1)吹扫和清擦换向器表面,保证清洁。 (2)建立电机负载合理分配的生产工艺,保证换向器表面建立良好的薄膜(又称氧化膜)。发现换向器表面状态恶化,火花较大,应考虑停车,用细砂纸打磨其表面,使之重新建立起氧化膜。 (3)检查云母槽是否清洁,换向片棱角应光滑无毛刺。 (4)在保证换向器表面质量的条件下,还需要在日常运行中,仔细地观察和监视换向火花。通常情况下,点状、粒状火花(呈白色或微带蓝色和黄色)是稀疏而均匀地分布在大部分电刷上,属于正常换向火花。而响声状、火球或飞溅状火花(呈暗黄色、红色或绿色)属于有害火花。当环火状火花发生时,电机不宜继续运行。 2.电刷、滑动接触 (1)用空压气吹净电刷、刷盒和换向器上的碳粉。

(2)检查电刷接触弧面是否有烧灼点,接触面是否均匀、光滑,如有缺陷应立即更换。 (3)检查电刷在刷盒内是否浮动灵活。 (4)检查电刷的压力大小是否均匀适当,通常情况下电刷压力为 (1.76~2.25)×104Pa,根据电刷的截面积算出每个电刷压力,再与实际测出的压力进行比较。无论电刷的长短,其压力都应达到要求。 (5)检查电刷的磨损高度,当电刷磨损到原高度的1/3时应予更换。 需要注意:电刷一次性更换数量不宜过多,成批更换电刷易破坏原换向器表面的氧化膜。只需将磨短的或有问题的电刷换下即可。 在同一台电机上,绝不允许使用不同牌号的电刷,即使同一牌号的电刷,因制造时间不同,性能也有明显差异,所以也不允许使用。 (6)检查刷辫的固定是否可靠,电刷振动和压力不均都容易引起各电刷电流分配不均。 (7)检查刷盒压脚和弹簧是否软化或断裂。 3.电机绕组 (1)送电前应对绕组进行绝缘电阻的测量(用l000V兆欧表),绝缘电阻值一般不应低于R=V/(1000 P/100) (MΩ)的数值,V为电机绕组的额定电压(V),P为电机的额定功率(kW)。但最小值≥0.5MΩ。如测量绝缘电阻较低,则应进行干燥处理。 (2)检查绕组与机座的连接线是否有绝缘损伤或相互短路等情况。 (3)注意观察主极绕组和换向极绕组的温升是否正常。

相关主题