搜档网
当前位置:搜档网 › 轴向拉伸与压缩习题集及讲解

轴向拉伸与压缩习题集及讲解

轴向拉伸与压缩习题集及讲解
轴向拉伸与压缩习题集及讲解

第二章 轴向拉伸和压缩 第一节 轴向拉压杆的内力

1.1 工程实际中的轴向受拉杆和轴向受压杆

在工程实际中,经常有承受轴向拉伸荷载或轴向压缩荷载的等直杆。例如图2-1a 所示桁架的竖杆、斜杆和上、下弦杆,图2-1b 所示起重机构架的各杆及起吊重物的钢索,图2-1c 所示的钢筋混凝土电杆上支承架空电缆的横担结构,BC 、AB 杆,此外,千斤顶的螺杆,连接气缸的螺栓及活塞连杆等都是轴间拉压杆。

钢木组合桁架

d

起重机

工程实际中的轴向受拉(压)杆

1.2 轴向拉压杆的内力——轴力和轴力图

b

c

x

图用截面法求杆的内力

为设计轴向拉压杆,需首先研究杆件的内力,为了显示杆中存在的内力和计算其大小,我们采用在上章中介绍过的截面法。(如图2-2a )所示等直杆,假想地用一截面m -m 将杆分割为I 和II 两部分。取其中的任一部分(例如I )为脱离体,并将另一部分(例如II )对脱离体部分的作用,用在截开面上的内力的合力N 来代替(图2-2b ),则可由静力学平衡条件:

0 0X N P =-=∑

求得内力N P =

同样,若以部分II 为脱离体(图2-2c ),也可求得代表部分I 对部分II 作用的内力为N =P ,它与代表部分II 对部分I 的作用的内力等值而反向,因内力N 的作用线通过截面形心 即沿杆轴线作用,故称为轴力..。 轴力量纲为[力],在国际单位制中常用的单位是N (牛)或kN (千牛)。

为区别拉伸和压缩,并使同一截面内力符号一致,我们规定:轴力的指向离开截面时为正号轴力;指向朝向截面时为负号轴力。即拉力符号为正,压力符号为负。据此规定,图2-2所示m-m 截面的轴力无论取左脱离体还是右脱离体,其符号均为正。

1.3 轴力图

当杆受多个轴向外力作用时,杆不同截面上的轴力各不相同。为了形象表示轴力沿杆轴线的变化情况,以便于对杆进行强度计算,需要作出轴力图,通常用平行于杆轴线的坐标表示截面位置,用垂直杆轴线的坐标表示截面上轴力大小,从而给出表示轴力沿截面位置关系的图例,即为轴力图...

。 下面用例题说明轴力的计算与轴力图的作法。

例题2-1:变截面杆受力情况如图2-3所示,试求杆各段轴力并作轴力图。 解:(1)先求支反力

固定端只有水平反力,设为X A ,由整个杆平衡条件

0X =∑,-X A

+5-3+2=0,X A

=5+2-3=4kN

(2)求杆各段轴力

力作用点为分段的交界点,该题应分成AB 、BD 和DE 三段。在AB 段内用任一横截面1-1将杆截开后,研究左段杆的平衡。在截面上假设轴力N 1为拉力(如图2-3(b ))。由平衡条件

0X =∑得

N 1-X A =0,N 1=4kN 。结果为正,说明原假设拉力是正确的。

x

x

x

1X X X A

N 2N 2kN

N

图2-3 例题2-1图

c b e

拉伸与压缩试题

第二章 拉伸与压缩 一、是非题 2-1 、当作用于杆件两端的一对外力等值反向共线时则杆件产生轴向拉伸或压缩变形。( ) 2-2 、关于轴力有下列几种说法: 1、轴力是作用于杆件轴线上的载荷( ) 2、轴力是轴向拉伸或压缩时杆件横截面上分布内力系的合力( ) 3、轴力的大小与杆件的横截面面积有关( ) 4、轴力的大小与杆件的材料无关( ) 2-3、 同一材料制成的阶梯杆及其受力如图 2-1CD 段的横截面面积为ABC 和DE 段均为 2A 分别用和表示截面上的轴力和正应力则有 1、轴力321N N N F F F >> 。( ) 2、正应力1σ>2σ>3σ。( ) 2-4、 轴力越大,杆件越容易拉断,因此轴力 的大小可以用来判断杆件的强度。( ) 2-5 、一轴向拉伸的钢杆材料弹性模量E=200GP a ,比例极限p σ=200MP a ,今测得其轴向线应变ε=0.0015,则由胡克定律得其应力εσE ==300MP a 。( ) 2-6 、关于材料的弹性模量E ,有下列几种说法: 1、E 的量纲与应力的量纲相同。( ) 2、E 表示弹性变形能力的大小。( ) 3、各种牌号钢材的E 值相差不大。( ) 4、橡皮的E 比钢材的E 值要大。( ) 5、从某材料制成的轴向拉伸试样,测的应力和相应的应变,即可求的其σ=E 。( ) 2-7 、关于横向变形系数(泊松比)μ,有下列几种说法: 1、为杆件轴向拉、压时,横向应变ε'与纵向应变ε之比的绝对值。( ) 2、 μ值越大,其横向变形能力越差。( ) 3、各种材料的μ值都满足:0<μ≤0.5。( ) 2-8、 受轴向拉、压的等直杆,若其总伸长为零,则有 1、杆内各处的应变必为零。( ) 2、杆内各点的位移必为零。( ) 3、杆内各点的正应力必为零。( ) 4、杆的轴力图面积代数和必为零。( ) 2-9、 打入土内的木桩如图2-2沿轴线单位长度的摩擦力2 ky f =(k 为常数),木桩横截面面积为A 弹性模量为E 则木桩总变形的计算式为()() EA pl EA ky y p EA dy y N l l l 4020=?-==???。( ) 2-10、 空心圆截面在弹性范围内进行压缩试验时,其外径增大,内径减小。所以在同 一截面上,内、外径处的径向线应变是反号的。( ) 2-11、 图2-3示均质圆杆在自重作用下,若以mn V 和mn U 表示任意两横截面m -m 和n

轴向拉伸与压缩

第七章 轴向拉伸和压缩 一、内容提要 轴向拉伸与压缩是杆件变形的基本形式之一,是建筑工程中常见的一种变形。 (一)、基本概念 1. 内力 由于外力的作用,而在构件相邻两部分之间产生的相互作用力。这里要注意产生内力的前提条件是构件受到外力的作用。 2. 轴力 轴向拉(压)时,杆件横截面上的内力。它通过截面形心,与横截面相垂直。拉力为正,压力为负。 3. 应力 截面上任一点处的分布内力集度称为该点的应力。与截面相垂直的分量σ称为正应力,与截面相切的分量τ称为切应力。轴拉(压)杆横截面上只有正应力。 4. 应变 单位尺寸上构件的变形量。 5. 轴向拉(压) 杆件受到与轴线相重合的合外力作用,产生沿着轴线方向的伸长或缩短的变形,称为轴向拉(压)。 6. 极限应力 材料固有的能承受应力的上限,用σ0表示。 7. 许用应力与安全系数 材料正常工作时容许采用的最大应力,称为许用应力。极限应力与许用应力的比值称为安全系数。 8. 应力集中 由于杆件截面的突然变化而引起局部应力急剧增大的现象,称为应力集中。 (二)、基本计算 1. 轴向拉(压)杆的轴力计算 求轴力的基本方法是截面法。用截面法求轴力的三个步骤:截开、代替和平衡。 求出轴力后要能准确地画出杆件的轴力图。 画轴向拉(压)杆的轴力图是本章的重点之一,要特别熟悉这一内容。 2. 轴向拉(压)杆横截面上应力的计算 任一截面的应力计算公式 A F N =σ 等直杆的最大应力计算公式 A F max N max = σ 3. 轴向拉(压)杆的变形计算 虎克定律 A E l F l N = ?εσE =或 虎克定律的适用范围为弹性范围。 泊松比 εε=μ' 4. 轴向拉(压)杆的强度计算 强度条件 塑性材料: σma x ≤[σ] 脆性材料: σt ma x ≤[σt ] σ c ma x ≤[σc ] 强度条件在工程中的三类应用

第二章轴向拉伸与压缩练习题

第二章 轴向拉伸与压缩练习题 一.单项选择题 1、在轴向拉伸或压缩杆件上正应力为零的截面是( ) A 、横截面 B 、与轴线成一定交角的斜截面 C 、沿轴线的截面 D 、不存在的 2、一圆杆受拉,在其弹性变形范围内,将直径增加一倍,则杆的相对变形将变为原来的( )倍。 A 、41; B 、21 ; C 、1; D 、2 3、由两杆铰接而成的三角架(如图所示),杆的横截面面积为A ,弹性模量为E ,当在节点C 处受到铅垂载荷P 作用时,铅垂杆AC 和斜杆BC 的变形应分别为( ) A 、EA Pl ,EA Pl 34; B 、0, EA Pl ; C 、EA Pl 2,EA Pl 3 D 、EA Pl ,0 4、几何尺寸相同的两根杆件,其弹性模量分别为E1=180Gpa,E2=60 Gpa,在弹性变形的范围内两者的轴力相同,这时产生的应变的比值21 εε 应力为( ) A 、31 B 、1; C 、2; D 、3 5、所有脆性材料,它与塑性材料相比,其拉伸力学性能的最大特点是( )。 A 、强度低,对应力集中不敏感; B 、相同拉力作用下变形小; C 、断裂前几乎没有塑性变形; D 、应力-应变关系严格遵循胡克定律 6、构件具有足够的抵抗破坏的能力,我们就说构件具有足够的( ) A 、刚度, B 、稳定性, C 、硬度, D 、强度。 7、构件具有足够的抵抗变形的能力,我们就说构件具有足够的( ) A 、强度, B 、稳定性, C 、刚度, D 、硬度。 8、单位面积上的内力称之为( ) A 、正应力, B 、应力, C 、拉应力, D 、压应力。

9、与截面垂直的应力称之为( ) A、正应力, B、拉应力, C、压应力, D、切应力。 10、轴向拉伸和压缩时,杆件横截面上产生的应力为( ) A、正应力, B、拉应力, C、压应力, D、切应力。 二、填空题 1、杆件轴向拉伸或压缩时,其受力特点是:作用于杆件外力的合力的作用线与杆件轴线相________。 2、轴向拉伸或压缩杆件的轴力垂直于杆件横截面,并通过截面________。 3、杆件轴向拉伸或压缩时,其横截面上的正应力是________分布的。 4、胡克定律的应力适用范围若更精确地讲则就是应力不超过材料的________极限。 5、杆件的弹必模量E表征了杆件材料抵抗弹性变形的能力,这说明杆件材料的弹性模量E值越大,其变形就越________。 6、在国际单位制中,弹性模量E的单位为________。 7、在应力不超过材料比例极限的范围内,若杆的抗拉(或抗压)刚度越________,则变形就越小。 8、为了保证构件安全,可靠地工作在工程设计时通常把________应力作为构件实际工作应力的最高限度。 9、安全系数取值大于1的目的是为了使工程构件具有足够的________储备。 10、设计构件时,若片面地强调安全而采用过大的________,则不仅浪费材料而且会使所设计的结构物笨重。 11、正方形截而的低碳钢直拉杆,其轴向向拉力3600N,若许用应力为100Mpa,由此拉杆横截面边长至少应为________mm。 12、轴力是指通过横截面形心垂直于横截面作用的内力,而求轴力的基本方法是_______________。 13、在低碳钢拉伸曲线中,其变形破坏全过程可分为______个变形阶段,它们依次

轴向拉伸与压缩习题及解答1

轴向拉伸与压缩习题及解答1

轴向拉伸与压缩习题及解答 一、判断改错 1、构件内力的大小不但与外力大小有关,还与材料的截面形状有关。 答:错。 静定构件内力的大小之与外力的大小有关,与材料的截面无关。 2、杆件的某横截面上,若各点的正应力均为零,则该截面上的轴力为零。 答:对。 3、两根材料、长度都相同的等直柱子,一根的横截面积为1A ,另一根为2A ,且21A A 。如图所示。 两杆都受自重作用。则两杆最大压应力相等,最大压缩量也相等。 答:对。 自重作用时,最大压应力在两杆底端,l A 2 A 1 (a (b

即max max N Al l A A νσν=== 也就是说,最大应力与面积无关,只与杆长有关。所以两者的最大压应力相等。 最大压缩量为 2max max 22N Al l l l A EA E νν??=== 即最大压缩量与面积无关,只与杆长有关。所以两杆的最大压缩量也相等。 4、受集中力轴向拉伸的等直杆,在变形中任意两个横截面一定保持平行。所以宗乡纤维的伸长量都相等,从而在横截面上的内力是均匀分布的。 答:错 。在变形中,离开荷载作用处较远的两个横截面才保持平行,在荷载作用处,横截面不再保持平面,纵向纤维伸长不相等,应力分布复杂,不是均匀分布的。 5、若受力物体内某电测得x 和y 方向都有线应变x ε和y ε,则x 和y 方向肯定有正应力x σ和y σ。 答:错, 不一定。由于横向效应作用,轴在x 方向受拉(压),则有x σ;y 方向不受力,但横向效应使y 方向产生线应变,y x ε ενε'==-。 二、填空题

1、轴向拉伸的等直杆,杆内的任一点处最大剪应力的方向与轴线成(45o ) 2、受轴向拉伸的等直杆,在变形后其体积将(增大) 3、低碳钢经过冷做硬化处理后,它的(比例)极限得到了明显的提高。 4、工程上通常把延伸率δ>(5%)的材料成为塑性材料。 5、 一空心圆截面直杆,其内、外径之比为0.8,两端承受力力作用,如将内外径增加一倍,则其抗拉刚度将是原来的(4)倍。 6、两根长度及截面面积相同的等直杆,一根为钢杆,一根为铝杆,承受相同的轴向拉力,则钢杆的正应力(等于)铝杆的正应力,钢杆的伸长量(小于)铝杆的伸长量。 7、 结构受力如图(a )所示,已知各杆的材料和横截面面积均相同,面积2 200A mm =,材料的弹性模量E=200GPa ,屈服极限280s MPa σ =,强度极限460b MPa σ=,试填写下列空格。 当F=50kN ,各杆中的线应变分别为1ε= (46.2510-?),2ε=(0),3 ε=(4 6.2510-?),这是节点B 的水平位移Bx δ=(43.6110m -?),竖直位移By δ=

工程力学-轴向拉伸与压缩

第6章轴向拉伸与压缩 6.1 轴向拉伸与压缩的概念 受力特征:杆端作用两个力,大小相等、方向相反、外力的作用线与轴线重合。 变形特征:轴向伸长或缩短 6.2 轴向拉伸与压缩时的内力 6.2.1 内力截面法轴力 1.内力【理解】 内力:由外力作用引起的、物体内部相邻部分之间分布内力系的合成。(因抵抗变形所引起的内力的变化量,只与外力有关) 内力有四种形式: (1)沿轴线方向,称为轴力,用N表示; (2)沿横截面切向,称为剪力,用V表示; (3)绕轴线方向转动,称为扭矩,用T表示; (4)绕切面方向力偶,称为弯矩,用M表示。 2.截面法【掌握】 ——假想地用一个截面将构件截开,从而揭示内力并确定内力的方法。 利用截面法求内力的四字口诀是: 截(切)、弃(抛)、代、平。 一切:在求内力的截面处,假想把构件切为两部分; 二弃:弃去一部分,留下一部分作为研究对象。 三代:用内力代替弃去部分对保留部分的作用力。 四平:研究的保留部分在外力和内力的共同作用下也应平衡,建立平衡方程,由已知外力求出各内力分量。 3.轴力【掌握】 定义:轴向拉压杆的内力称为轴力。其作用线与杆的轴线重合,用符号N 表示。 符号:轴力方向离开截面为正,反之为负,即:拉伸为正,压缩为负。 单位:N,kN 计算轴力的法则:任意横截面的内力(轴力)等于截面一侧所有外力的代数和。 6.2.2 轴力图 以一定的比例尺,用平行于轴线的坐标表示横截面的位置,垂直于杆轴线的坐标表示横截面上轴力的数值,以此表示轴力与横截面位置关系的几何图形,称为轴力图。

画轴力图的意义: ① 反映出轴力与截面位置的变化关系,较直观; ② 反映出最大轴力的数值及其所在面的位置,即危险截面位置,为强度计算提供依据。 轴力图的突变规律: (1) 在两个外力之间的区段上,轴力为常数,轴力图为与基线平行的直线; (2) 在外力施加处轴力图要发生突变,突变值等于外力值。 (3) 轴力突变的方向与外力对构件的作用有关,外力使构件受拉/压,轴力向正/负方向突变。 画轴力图注意事项: (1)轴力图应封闭; (2)图中直线表示截面位置对应的轴力数值,因此,应垂直于轴线,而不是阴影线,画时也可省略; (3)轴力图的位置应和杆件的位置相对应。轴力的大小,按比例画在坐标上,并在图上标出代表点数值。 (4)轴力图应标出轴力数值、正负号、单位。 (5)习惯上将正值(拉力)的轴力图画在坐标的正向;负值(压力)的轴力图画在坐标的负向。 6.3 轴向拉伸与压缩时的应力 应力——截面上分布内力的集度。 6.3.1 轴向拉压杆件横截面的应力 应力求解公式:N F A σ= 应力符号规定:当轴向力为正时,正应力为正(拉应力),反之为负(压应力)。 由公式可以看出,截面积有变化、轴力有变化处,应力可能有变化,需要单独计算。 6.3.2 斜截面的应力 2cos ασσα= s i n 22 ασ τα= 斜截面上剪应力方向规定:取保留截面内任一点为矩心,当对矩心顺时针转动时为正,反之为负。 讨论 (1)ασ、ατ均为α的函数,随斜截面的方向而变化。 (2)当0=α°时,σ=σαmax 、0=τα横截面上。 当45=α°时,2σ= ταmax 、2 σ=σα

轴向拉伸和压缩作业集及解

第二章 轴向拉伸和压缩 第一节 轴向拉压杆的内力 1.1 工程实际中的轴向受拉杆和轴向受压杆 在工程实际中,经常有承受轴向拉伸荷载或轴向压缩荷载的等直杆.例如图2-1a 所示桁架的竖杆、斜杆和上、下弦杆,图2-1b 所示起重机构架的各杆及起吊重物的钢索,图2-1c 所示的钢筋混凝土电杆上支承架空电缆的横担结构,BC 、AB 杆,此外,千斤顶的螺杆,连接气缸的螺栓及活塞连杆等都是轴间拉压杆. 钢木组合桁架 2 d 起重机 图 工程实际中的轴向受拉(压)杆 1.2 轴向拉压杆的内力——轴力和轴力图 b c x 图用截面法求杆的内力

为设计轴向拉压杆,需首先研究杆件的内力,为了显示杆中存在的内力和计算其大小,我们采用在上章中介绍过的截面法.(如图2-2a )所示等直杆,假想地用一截面m -m 将杆分割为I 和II 两部分.取其中的任一部分(例如I )为脱离体,并将另一部分(例如II )对脱离体部分的作用,用在截开面上的内力的合力N 来代替(图2-2b ),则可由静力学平衡条件: 0 0X N P =-=∑ 求得内力N P = 同样,若以部分II 为脱离体(图2-2c ),也可求得代表部分I 对部分II 作用的内力为N =P ,它与代表部分II 对部分I 的作用的内力等值而反向,因内力N 的作用线通过截面形心 即沿杆轴线作用,故称为轴力... 轴力量纲为[力],在国际单位制中常用的单位是N (牛)或kN (千牛). 为区别拉伸和压缩,并使同一截面内力符号一致,我们规定:轴力的指向离开截面时为正号轴力;指向朝向截面时为负号轴力.即拉力符号为正,压力符号为负.据此规定,图2-2所示m-m 截面的轴力无论取左脱离体还是右脱离体,其符号均为正. 1.3 轴力图 当杆受多个轴向外力作用时,杆不同截面上的轴力各不相同.为了形象表示轴力沿杆轴线的变化情况,以便于对杆进行强度计算,需要作出轴力图,通常用平行于杆轴线的坐标表示截面位置,用垂直杆轴线的坐标表示截面上轴力大小,从而给出表示轴力沿截面位置关系的图例,即为轴力图... . 下面用例题说明轴力的计算与轴力图的作法. 例题2-1:变截面杆受力情况如图2-3所示,试求杆各段轴力并作轴力图. 解:(1)先求支反力 固定端只有水平反力,设为X A ,由整个杆平衡条件 0X =∑,-X A +5-3+2=0,X A =5+2-3=4kN (2)求杆各段轴力 力作用点为分段的交界点,该题应分成AB 、BD 和DE 三段.在AB 段内用任一横截面1-1将杆截开后,研究左段杆的平衡.在截面上假设轴力N 1为拉力(如图2-3(b )).由平衡条件 0X =∑得 N 1-X A =0,N 1=4kN .结果为正,说明原假设拉力是正确的. x x x N 1X X X A N 2N 2kN N 图2-3 例题2-1图 c b e

轴向拉伸与压缩练习题

第二章轴向拉伸与压缩练习题 ?单项选择题 1、 在轴向拉伸或压缩杆件上正应力为零的截面是( ) A 、横截面 B 、与轴线成一定交角的斜截面 C 、沿轴线的截面 D 、不存在的 2、 一圆杆受拉,在其弹性变形范围内,将直径增加一倍,则杆的相对变形将变为原 来的( )倍。 1 1 A 、4 ; B 2 ; C 、1 ; D 2 变形的范围内两者的轴力相同,这时产生的应变的比值 2应力为( ) A 、3 B 、1 ; C 2; D 、3 5、 所有脆性材料,它与塑性材料相比,其拉伸力学性能的最大特点是( )。 A 、 强度低,对应力集中不敏感; B 、 相同拉力作用下变形小; C 、 断裂前几乎没有塑性变形; D 、 应力-应变关系严格遵循胡克定律 6、 构件具有足够的抵抗破坏的能力,我们就说构件具有足够的 ( ) A 、刚度, B 、稳定性, C 、硬度, D 、强度。 7、 构件具有足够的抵抗变形的能力,我们就说构件具有足够的 ( ) A 、强度, B 、稳定性, C 、刚度, D 、硬度。 &单位面积上的内力称之为 ( ) 为( ) Pl 4Pl Pl Pl Pl Pl A 、 EA 3EA ? B 0, EA ; C 2EA 3EA 5 D EA ,0 3、 由两杆铰接而成的三角架(如图所示) ,杆的横截面面积为 A ,弹性模量为 E ,当在节点C 处受到铅垂载荷 P 作用时,铅垂杆 AC 和斜杆BC 的变形应分别 4、几何尺寸相同的两根杆件, 其弹性模量分别为 E 仁180Gpa,E2=60 Gpa 在弹性

A、正应力, B、应力, 9、与截面垂直的应力称之为( ) C、拉应力,D压应力。

轴向拉伸与压缩习题及解答

轴向拉伸与压缩习题及解 答 Prepared on 22 November 2020

轴向拉伸与压缩习题及解答 一、判断改错 1、构件内力的大小不但与外力大小有关,还与材料的截面形状有关。 答:错。 静定构件内力的大小之与外力的大小有关,与材料的截面无关。 2、杆件的某横截面上,若各点的正应力均为零,则该截面上的轴力为零。 答:对。 3、两根材料、长度都相同的等直柱子,一根的横截面积为1A ,另一根为2A ,且21A A >。如图所示。两杆都受自重作用。则两杆最大压应力相等,最大压缩量也相等。 答:对。 自重作用时,最大压应力在两杆底端,即max max N Al l A A νσν= == 也就是说,最大应力与面积无关,只与杆长有关。所以两者的最大压应力相等。 最大压缩量为 2 max max 22N Al l l l A EA E νν??=== 即最大压缩量与面积无关,只与杆长有关。所以两杆的最大压缩量也相等。 A 1 (a) (b)

4、受集中力轴向拉伸的等直杆,在变形中任意两个横截面一定保持平行。所以宗乡纤维的伸长量都相等,从而在横截面上的内力是均匀分布的。 答:错 。在变形中,离开荷载作用处较远的两个横截面才保持平行,在荷载作用处,横截面不再保持平面,纵向纤维伸长不相等,应力分布复杂,不是均匀分布的。 5、若受力物体内某电测得x 和y 方向都有线应变x ε和y ε,则x 和y 方向肯定有正应力x σ和y σ。 答:错, 不一定。由于横向效应作用,轴在x 方向受拉(压),则有x σ;y 方向不受力,但横向效应使y 方向产生线应变,y x εενε'==-。 二、填空题 1、轴向拉伸的等直杆,杆内的任一点处最大剪应力的方向与轴线成(45) 2、受轴向拉伸的等直杆,在变形后其体积将(增大) 3、低碳钢经过冷做硬化处理后,它的(比例)极限得到了明显的提高。 4、工程上通常把延伸率δ>(5%)的材料成为塑性材料。 5、 一空心圆截面直杆,其内、外径之比为,两端承受力力作用,如将内外径增加一倍,则其抗拉刚度将是原来的(4)倍。 6、两根长度及截面面积相同的等直杆,一根为钢杆,一根为铝杆,承受相同的轴向拉力,则钢杆的正应力(等于)铝杆的正应力,钢杆的伸长量(小于)铝杆的伸长量。 7、 结构受力如图(a )所示,已知各杆的材料和横截面面积均相同,面积 2200A mm =,材料的弹性模量E=200GPa ,屈服极限280s MPa σ=,强度极限 460b MPa σ=,试填写下列空格。

轴向拉伸与压缩

§2-1轴向拉伸与压缩杆件及实例 轴向拉伸和压缩的杆件在生产实际中经常遇到,虽然杆件的外形各有差异,加载方式也不同,但一般对受轴向拉伸与压缩的杆件的形状和受力情况进行简化,计算简图如图2-1。轴向拉伸是在轴向力作用下,杆件产生伸长变形,也简称拉伸;轴向压缩是在轴向力作用下,杆件产生缩短变形,也简称压缩。实例如图2-2所示用于连接的螺栓;如图2-3所示桁架中的拉杆;如图2-4所示汽车式起重机的支腿;如图2-5所示巷道支护的立柱。

通过上述实例得知轴向拉伸和压缩具有如下特点: 1. 受力特点:作用于杆件两端的外力大小相等,方向相反,作用线与杆件轴线重合,即称轴向力。 2. 变形特点:杆件变形是沿轴线方向的伸长或缩短。

§2-2横截面上的内力和应力 1.内力 在图2-6所示受轴向拉力P 的杆件上作任一横截面m —m ,取左段部分,并以内力 的合力N 代替右段对左段的作用力。由平衡条件 ,得 0=∑X 0=?P N 0>=P N 由于(拉力),则 0>P 合力N 的方向正确。因而当外力沿着杆件的轴线作用时,杆件截面上只有一个与轴线重合 的内力分量,该内力(分量)称为轴力,一般用N 表示。 若取右段部分,同理0=∑X ,知 0=N -P 得 0>=P N 图中N 的方向也是正确的。 材料力学中轴力的符号是由杆件的变形决定,而不是由平衡坐标方程决定。习惯上将轴力N 的正负号规定为:拉伸时,轴力N 为正;压缩时,轴力N 为负。

2.轴力图 轴力图可用图线表示轴力沿轴线变化的情况。该图一般以杆轴线为横坐标表示截面位置,纵轴表示轴力大小。 例2-1 求如图2-7所示杆件的内力,并作轴力图。 解: (1)计算各段内力 AC 段:作截面1—1,取左段部分(图b )。由0=∑X 得 kN (拉力) 51=N CB 段:作截面2—2,取左段部分(图c ),并假设方向如图所示。由2N 0=∑X 得 05152=?+N 则

轴向拉伸与压缩习题及解答

cos sin 3 Ay F F F θθ轴向拉伸与压缩习题及解答 计算题1: 利用截面法,求图2. 1所示简支梁m — m 面的内力分量。 解: (1)将外力F 分解为两个分量,垂直于梁轴线的分量F sin θ,沿梁轴线的分量F cos θ. (2)求支座A 的约束反力: x F ∑=0, Ax F ∑=cos F θ B M ∑=0, Ay F L=sin 3 L F θ Ay F = sin 3 F θ (3)切开m — m ,抛去右半部分,右半部分对左半部分的作用力N F ,S F 合力偶M 代替 (图1.12 )。 图 2.1 图2.1(a) 以左半段为研究对象,由平衡条件可以得到 x F ∑=0, N F =—Ax F =—cos F θ(负号表示与假设方向相反) y F ∑=0, s F =Ay F = sin 3 F θ 左半段所有力对截面m-m 德形心C 的合力距为零 sin θ C M ∑=0, M=Ay F 2L =6 FL sin θ 讨论 对平面问题,杆件截面上的内力分量只有三个:和截面外法线重合的内力称为轴力,矢量与外法线垂直的力偶距称为弯矩。这些内力分量根据截面法很容易求得。在材料力学课程中主要讨论平面问题。

计算题2: 试求题2-2图所示的各杆1-1和2-2横截面上的轴力,并作轴力图。 解 (a )如图(a )所示,解除约束,代之以约束反力,作受力图,如题2-2图(1a )所示。利用静力学平衡条件,确定约束反力的大小和方向,并标示在题2-2图(1a )中。作杆左端面的外法线n ,将受力图中各力标以正负号,凡与外法线指向一致的力标以正号,反之标以负号,轴力图是平行于杆轴线的直线。轴力图在有轴力作用处,要发生突变,突变量等与该处轴力的数值,对于正的外力,轴力图向上突变,对于负的外力,轴力图向下突变,如题2-2图(2a )所示,截面1和截面2上的轴力分别为1N F =F 和2N F =—F 。

第一章轴向拉伸和压缩习题

第一章轴向拉伸和压缩习题 一、单项选择题 1、构件具有足够的抵抗破坏的能力,我们就说构件具有足够的 A、刚度, B、稳定性, C、硬度, D、强度。 2、构件具有足够的抵抗变形的能力,我们就说构件具有足够的 A、强度, B、稳定性, C、刚度, D、硬度。 3、单位面积上的内力称之为 A、正应力, B、应力, C、拉应力, D、压应力。 4、与截面垂直的应力称之为 A、正应力, B、拉应力, C、压应力, D、切应力。 5、轴向拉伸和压缩时,杆件横截面上产生的应力为 A、正应力, B、拉应力, C、压应力, D、切应力。 6、胡克定律在下述哪个范围内成立? A、屈服极限, B、比例极限, C、强度极限, D、名义屈服极限。 时,试样将 7、当低碳钢试样横截面上的实验应力σ =σ s A、完全失去承载能力, B、断裂, C、产生较大变形, D、局部出现颈缩。 8、脆性材料具有以下哪种力学性质? A、试样拉伸过程中出现屈服现象, B、抗冲击性能比塑性材料好, C、若构件开孔造成应力集中现象,对强度没有影响。 D、抗压强度极限比抗拉强度极限大得多。 9、灰铸铁压缩实验时,出现的裂纹 A、沿着试样的横截面, B、沿着与试样轴线平行的纵截面, C、裂纹无规律, D、沿着与试样轴线成45。角的斜截面。 10、横截面都为圆的两个杆,直径分别为d和D ,并且d=0.5D。两杆横截面上轴力相

等两杆横截面上应力之比 D d σσ为 A 、2倍, B 、4倍, C 、8倍, D 、16倍。 二、填空题 1、求内力常用的方法是 。 2、轴向拉伸和压缩时,虎克定律的两种表达形式为 , 3、通过低碳钢拉伸试验可知,反映材料抵抗弹性变形能力的指标是 ;反映材料强度的指标是 ;反映材料塑性的指标是 。 4、σ0.2表示材料的 。 5、与截面平行的应力称为 ;与截面垂直的应力称之为 。 6、 钢的弹性模量E=200Gpa ,铝的弹性模量E=71Gpa,试比较在同一应力作用下,哪种材料应变大? 。 7、轴向拉伸和压缩时,杆上所受外力或外力的合力与杆件的轴线 。而杆的纵向变形为,沿杆的轴线 或 。 8、延伸率(伸长率)δ是代表材料塑性的性能指标。一般δ>5﹪的材料称为 材料,δ<5﹪的材料称为 材料。 9、两根材料不同横截面不同的拉杆,受相同的拉力,它们横截面上的内力是否相同? 。 10、轴力和横截面面积相等,而横截面形状和材料不同,它们横截面上的应力是否相同? 。 11、塑性材料许用应力由式[σ]= s n s σ 确定,式中的σS 表示材料的 极限。脆性材料许用应力由式[σ]= b b n σ确定,式中的σb 表示材料的 极限。 12、理论力学中所讲的《力的可传性》,能否应用到材料力学中的受力杆件? 。

第二章 轴向拉伸和压缩

第二章 轴向拉伸和压缩 2.1 若将图(a )中的P 力由D 截面移到C 截面(图b ),则有( )。 (A )整个杆的轴力都不变化 (B )AB 段的轴力不变,BC 段、CD 段的轴力变为零 (C )AB 、BC 段轴力不变,CD 段轴 力变为零 (D )A 端的约束反力发生变化 (注:分别画出a 图和b 图的轴力图) 2.2在下列各杆中,n -n 横截面面积均为A 。n -n 横截面上各点正应力均匀分布, 且为P σ=的是( )。 (A ) (B ) (C ) (D ) 图2.2 2.3受轴向外力作用的等直杆如图所示,其m -m 横截面上的轴力为( )。 (A )P (B )-P (C )2 P (D )3 P 图2.3 a a a 2.4横截面面积为A ,长度为l ,材料比重为γ的立柱受力如图所示。若考虑材料的自重,则立柱的轴力图是( )。 图2.1 (b) (a)图2.4 ( D ) ( C ) ( B )( A ) P+γAl P+γAl P+γAl P-γAl P P P

2.5等直杆两端受轴向荷载作 用,其横截面面积为A ,则n -n 斜截面上的正应力和剪应力为( )。 (A )2cos 30P A σ=? , sin 602P A τ=? (B )2cos (30)P A σ=-? ,sin(60)2P A τ=-? (C ) 2cos 60P A σ=? ,sin1202P A τ=? (D )2cos (60)P A σ=-? ,sin(120)2P A τ=-? 2.6图示等直杆各段的抗拉(压)刚度相同,则变形量最大的为( )。 (A )AB 段 (B )BC 段 (C )CD 段 (D )三段变形量相等 2.7图示杆件的横截面面积为A ,弹性模量 为E ,则AB 、BC 段的变形分别为 AB l ?= ,BC l ?= 。A 、B 截面的位移分别为A δ= , B δ= 。 2.8变截面钢杆受力如图所示。已知P 1=20kN ,P 2=40kN ,l 1=300mm ,l 2=500mm ,横截面面积A 1=100mm 2,A 2=200mm 2,弹性模量E =200GPa 。 (1)杆件的总变形量。(注:写计算过程) (2)C 截面的位移是( )。 (A )10.3mm C l δ=?= (B )120.55mm()C l l δ=?-?=→ (C )120.05mm()C l l δ=?+?=→ (D )0C δ= 2.9图示结构中,杆1的材料是钢,E 1=206GPa ;杆 的材料是铝,E 2=70GPa 。已知两杆的横截面面积相等,则在P 力作用下,节点A ( )。 (A )向左下方移动 (B )向右下方移动 (C )沿铅垂方向向下移动 (D )水平向右移动 图2.5a a a 图2.6图2.7 图2.8 图2.9

轴向拉伸和压缩的变形计算

教学课题 轴向拉伸与压缩的变形、虎克定律 课时 教学目标或要求 1纵向变形与横向变形 2绝对变形与相对变形(应变) 3虎克定律 4 教学重点、难点 教学方法、手段 教学过程及内容 轴向拉伸与压缩的变形计算 一、变形和应变 杆件在轴向拉伸压缩过程中,其轴向尺寸和横向尺寸都要发生变化,设等截面直杆的原长为l ,横向尺寸为b 。发生轴向拉伸后的长度为1l ,横向尺寸为1b 。下面讨论杆件的变形。 1.绝对变形 杆件长度的伸长量称为纵向绝对变形,用l ?表示,则 l l l -=?1 横向绝对变形用b ?表示,其计算为:b b b -=?1 2.相对变形 绝对变形的大小与杆件的长度有关,为消除长度对变形量的影响,引入相对变形的概念。相对变形指单位长度的变形,又称线应变,用ε表示,则纵向的线应变: l l ?=ε 图13.1.1

横向线应变用1ε表示,其计算为 : b b ?=1ε 3.泊松比 杆件的横向变形和纵向变形是有一定的联系的,大量的实验证明,对于同一种材料,在弹性变形范围内,其横向相对变形与纵向相对变形的比值为一常数,称为泊松比,用表示。因为横向应变与纵向应变恒为相反数,故比值为负,因此泊松比取其绝对值。即 εεμ1 = 二、虎克定律 实验表明,杆件在轴向拉伸和压缩过程中,当应力不超过一定的限度时,杆件的轴向变形与轴力及长度成正比,与杆件的横截面面积成反比,这一关系称为虎克定律。即A Nl l ∝? 引入比例常数E ,则有 EA Nl l =? εσ?=E 表明在弹性限度内,应力和应变成正比。 E---为弹性模量,表明了材料抵抗拉压变形的能力,其单位与应力的单位相同。 EA---抗拉刚度 应用注意: 1.虎克定律只在弹性范围内成立; 2.应用公式时在杆长l 内,轴力N 、弹性模量E 及截面面积A 都应为常数,如果不满足的话,应分段考虑。具体分析见下面的例子。 例:一阶梯钢杆如图,已知AC 段的截面面积为A=500mm 2,CD 段的截面面积为 A200mm 2,杆的受力情况及各段长度如图13.1.2所示,材料的弹性模量为E=200GPa ,试求杆的总变形量。 解:轴力图----以作用点及截面突变处为分界点---求各段变形量---代数和求总变形量.

轴向拉伸与压缩习题及解答1

轴向拉伸与压缩习题及解答 一、判断改错 1、构件内力的大小不但与外力大小有关,还与材料的截面形状有关。 答:错。 静定构件内力的大小之与外力的大小有关,与材料的截面无关。 2、杆件的某横截面上,若各点的正应力均为零,则该截面上的轴力为零。 答:对。 3、两根材料、长度都相同的等直柱子,一根的横截面积为1A ,另一根为2A ,且21A A >。如图所示。两杆都受自重作用。则两杆最大压应力相等,最大压缩量也相等。 答:对。 自重作用时,最大压应力在两杆底端,即max max N Al l A A νσν= == 也就是说,最大应力与面积无关,只与杆长有关。所以两者的最大压应力相等。 最大压缩量为 2 max max 22N Al l l l A EA E νν??=== 即最大压缩量与面积无关,只与杆长有关。所以两杆的最大压缩量也相等。 4、受集中力轴向拉伸的等直杆,在变形中任意两个横截面一定保持平行。所以宗乡纤维的伸长量都相等,从而在横截面上的内力是均匀分布的。 答:错 。在变形中,离开荷载作用处较远的两个横截面才保持平行,在荷载作用处,横截面不再保持平面,纵向纤维伸长不相等,应力分布复杂,不是均匀分布的。 5、若受力物体内某电测得x 和y 方向都有线应变x ε和y ε,则x 和y 方向肯定有正应力x σ和y σ。 答:错, 不一定。由于横向效应作用,轴在x 方向受拉(压),则有x σ;y 方向不受力,但横向效应使y 方向产生线应变,y x εενε'==-。 A 1 (a) (b)

二、填空题 1、轴向拉伸的等直杆,杆内的任一点处最大剪应力的方向与轴线成(45) 2、受轴向拉伸的等直杆,在变形后其体积将(增大) 3、低碳钢经过冷做硬化处理后,它的(比例)极限得到了明显的提高。 4、工程上通常把延伸率δ>(5%)的材料成为塑性材料。 5、 一空心圆截面直杆,其内、外径之比为0.8,两端承受力力作用,如将内外径增加一倍,则其抗拉刚度将是原来的(4)倍。 6、两根长度及截面面积相同的等直杆,一根为钢杆,一根为铝杆,承受相同的轴向拉力,则钢杆的正应力(等于)铝杆的正应力,钢杆的伸长量(小于)铝杆的伸长量。 7、 结构受力如图(a )所示,已知各杆的材料和横截面面积均相同,面积2 200A mm =,材料的弹性模量E=200GPa ,屈服极限280s MPa σ=,强度极限460b MPa σ=,试填写下列空格。 当F=50kN ,各杆中的线应变分别为1ε=(46.2510-?),2ε=(0),3ε=(4 6.2510-?),这是节点B 的水平位移Bx δ=(4 3.6110m -?),竖直位移By δ=(4 6.2510-?m ),总位移B δ=(4 7.2210m -?),结构的强度储备(即安全因素)n=(2.24) 三、选择题 1、下列结论正确的是(C )。 A 论力学主要研究物体受力后的运动效应,但也考虑物体变形效应。 B 理论力学中的四个公理在材料力学都能应用。 C 材料力学主要研究杆件受力后的变形和破坏规律。 D 材料力学研究的为题主要是静止不动的荷载作用下的问题。 析: 理论力学的研究对象是质点、质点系和刚体,不研究变形效应,理论力学中的二力平衡公理、加减平衡力系公理及他们的力的可传性原理都适用于刚体,而不适用于变形体,所以材料力学中不能用以上公理及原理。材料力学中的荷载主要是静载,产生的加速度不会影响材料的力学性能。所以静载不是静止不动的荷载。 2、理论力学中的“力和力偶可传性原理”在下面成立的是(D ) A 在材料力学中仍然处处适用 B 在材料力学中根本不能适用 C 在材料力学中研究变形式可以适用 D 在材料力学研究平衡问题时可以适用 析:力与力偶可传性原理适用于刚体,所以在考虑变形式不适用。但在求支座反力、杆的内力时不牵涉到变形,可以应用以上两个原理。 3、 下列结论中正确的是(B ) A 外力指的是作用与物体外部的力 B 自重是外力 C 支座约束反力不属于外力

第二章 轴向拉伸与压缩

第二章轴向拉伸与压缩(王永廉《材料力学》作业参考答案(第1-29题)) 2012-02-26 00:02:20| 分类:材料力学参答|字号订阅 第二章轴向拉伸与压缩(第1-29题) 习题2-1试绘制如图2-6所示各杆的轴力图。 图2-6 解:由截面法,作出各杆轴力图如图2-7所示 图2-7 习题2-2 试计算图2-8所示结构中BC杆的轴力。 图2-8 a) 解:(a)计算图2-8a中BC杆轴力

截取图示研究对象并作受力图,由∑M D=0,即得BC杆轴力 =25KN(拉) (b)计算图2-8 b中BC杆轴力 图2-8b 截取图示研究对象并作受力图,由∑MA=0,即得BC杆轴力 =20KN(压) 习题2-3在图2-8a中,若杆为直径的圆截面杆,试计算杆横截面上的正应力。解:杆轴力在习题2-2中已求出,由公式(2-1)即得杆横截面上的正应力 (拉) 习题2-5图2-10所示钢板受到的轴向拉力,板上有三个对称分布的铆钉圆孔,已知钢板厚度为、宽度为,铆钉孔的直径为,试求钢板危险横截面上的应力(不考虑铆钉孔引起的应力集中)。

解:开孔截面为危险截面,其截面面积 由公式(2-1)即得钢板危险横截面上的应力 (拉) 习题2-6如图2-11a所示,木杆由两段粘结而成。已知杆的横截面面积A=1000 ,粘结面的方位角θ=45,杆所承受的轴向拉力F=10KN。试计算粘结面上的正应力和切应力,并作图表示出应力的方向。 解:(1)计算横截面上的应力 = = 10MPa (2)计算粘结面上的应力 由式(2-2)、式(2-3),得粘结面上的正应力、切应力分别为 45=cos245,=5 MPa 45= sin(2*45。)=5MPa 其方向如图2-11b所示 习题2-8 如图2-8所示,等直杆的横截面积A=40mm2,弹性模量E=200GPa,所受轴向载荷F1=1kN,F2=3kN,试计算杆内的最大正应力与杆的轴向变形。 解:(1)由截面法作出轴力图

4第四章___轴向拉伸和压缩习题+答案

第四章轴向拉伸和压缩 一、填空题 1、杆件轴向拉伸或压缩时,其受力特点是:作用于杆件外力的合力的作用线与杆件轴线相________。 2、轴向拉伸或压缩杆件的轴力垂直于杆件横截面,并通过截面________。 4、杆件轴向拉伸或压缩时,其横截面上的正应力是________分布的。 7、在轴向拉,压斜截面上,有正应力也有剪应力,在正应力为最大的截面上剪应力为________。 8、杆件轴向拉伸或压缩时,其斜截面上剪应力随截面方位不同而不同,而剪应力的最大值发生在与轴线间的夹角为________的斜截面上。 9、杆件轴向拉伸或压缩时,在平行于杆件轴线的纵向截面上,其应力值为________。 10、胡克定律的应力适用范围若更精确地讲则就是应力不超过材料的________极限。 11、杆件的弹必模量E表征了杆件材料抵抗弹性变形的能力,这说明杆件材料的弹性模量E值越大,其变形就越________。 12、在国际单位制中,弹性模量E的单位为________。 13、在应力不超过材料比例极限的范围内,若杆的抗拉(或抗压)刚度越________,则变形就越小。 15、低碳钢试样据拉伸时,在初始阶段应力和应变成________关系,变形是弹性的,而这种弹性变形在卸载后能完全消失的特征一直要维持到应力为________极限的时候。 16、在低碳钢的应力—应变图上,开始的一段直线与横坐标夹角为α,由此可知其正切tgα在数值上相当于低碳钢________的值。 17、金属拉伸试样在屈服时会表现出明显的________变形,如果金属零件有了这种变形就必然会影响机器正常工作。 18、金属拉伸试样在进入屈服阶段后,其光滑表面将出现与轴线成________角的系统条纹,此条纹称为________。 19、低碳钢试样拉伸时,在应力-应变曲线上会出现接近水平的锯齿形线段,若试样表面磨光,则在其表面上关键所在可看到大约与试样轴线成________倾角的条纹,它们是由于材料沿试样的________应力面发生滑移而出现的。 20、使材料试样受拉达到强化阶段,然后卸载,在重新加载时,其在弹性范围内所能随的最大荷载将________,而且断裂后的延伸率会降低,此即材料的________现象。 21、铸铁试样压缩时,其破坏断面的法线与轴线大致成________的倾角。 22、铸铁材料具有________强度高的力学性能,而且耐磨,价廉,故常用于制造机器底座,床身和缸体等。 25、混凝土,石料等脆性材料的抗压强度远高于它的________强度。 26、为了保证构件安全,可靠地工作在工程设计时通常把________应力作为构件实际工作应力的最高限度。 27、安全系数取值大于1的目的是为了使工程构件具有足够的________储备。 28、设计构件时,若片面地强调安全而采用过大的________,则不仅浪费材料而且会使所设计的结构物笨重。 29、正方形截而的低碳钢直拉杆,其轴向向拉力3600N,若许用应力为100Mpa,由此拉杆横截面边长至少应为________mm。

轴向拉伸与压缩试验

轴向拉伸与压缩试验:(4学时) (点击下载实验报告) 一、实验目的: ①测定低碳钢的两个强度指标:屈服极限σs、强度极限σ b 和两个塑性指标:延伸率δ、断面收缩率ψ。 ②测定铸铁的强度极限σb。 ③观察低碳钢和铸铁压缩时的变形和破坏现象,并进行比较。 二、实验要求: 了解实验设备的构造及工作原理,要求学生亲自动手操作设备;观察低碳钢、铸铁试件的拉伸和压缩的破坏过程;测定低碳钢的屈服极限σs、强度极限σb、延伸率δ、断面收缩率ψ;测定铸铁的强度极限σb;验证虎克定律;认真观察实验过程中出现的各种实验现象,分析实验结果。 三、试件 按GB228—76规定,本实验试件采用圆棒长试件。取d0=10,L=100,如图所示:实验原理及方法

四、实验设备及仪器 1、液压式万能材料实验机; 2、游标卡尺; 3、划线机(铸铁试件不能使用)。 (一)低碳钢的拉伸实验 1屈服极限σs的测定 P—ΔL曲线 实验时,在向试件连续均匀地加载过程中。当测力的指针出现摆动,自动绘图仪绘出的P—ΔL 曲线有锯齿台阶时,说明材料屈服。记录指针摆动时的最小值为屈服载荷P s,屈服极限σs计算公式为 σs=P s/A 2、强度极限σb的测定

实验时,试件承受的最大拉力Pb所对应的应力即为强度极限。试件断裂后指针所指示的载荷读数就是最大载荷Pb,强度极限σb 计算公式为: σb=P b/A0 3、延伸率δ和断面收缩率Ψ的测定 计算公式分别为:δ=(L1-L)/L x 100% Ψ=(A0-A1)/A0 x 100% L:标距(本实验L=100) L1:拉断后的试件标距。将断口密合在一起,用卡尺直接量出。 A0:试件原横截面积。 A1:断裂后颈缩处的横截面积,用卡尺直接量出。 实验步骤 1.试件准备:量出试件直径d0,用划线机划出标距L和量出L; 2.按液压万能实验机操作规程1——8条进行; 3.加载实验,加载至试件断裂,记录Ps 和Pb ,并观察屈服现象和颈缩现象; 4.按操作规程10——14进行; 将断裂的试件对接在一起,用卡尺测量d1和L1 ,并记录。 (二)铸铁与低碳钢的压缩实验 1)测定铸铁的抗压强度极限σb,低碳钢压缩时的屈服极限σs 2)观察铸铁和低碳钢压缩时的破坏现象 3)通过实验,比较塑性材料和脆性材料机械性质的区别

相关主题