搜档网
当前位置:搜档网 › 碳纳米管分散

碳纳米管分散

碳纳米管分散
碳纳米管分散

Aging behavior of the matrix of aluminum –magnesium –silicon alloy including carbon nanotubes

Hiroyuki Fukuda a ,?,Katsuyoshi Kondoh b ,Junko Umeda b ,Bunshi Fugetsu c

a Graduate School of Engineering,Osaka University,1Yamadaoka,Suita,Osaka,565-0871,Japan

b Joining and Welding Research Institution,Osaka University,11-1Mihogaoka,Ibaraki,Osaka,567-0047,Japan c

Hokkaido University,5Niow,Kita-ku,Sapporo,Hokkaido,060-0810,Japan

a b s t r a c t

a r t i c l e i n f o Article history:

Received 22January 2011Accepted 5March 2011

Available online 11March 2011Keywords:Sintering

Powder technology Carbon nanotubes Metallic composites

The mechanical behavior of the non-aged and the aged Al –Mg –Si alloy composites reinforced with CNTs was evaluated with tensile test and Vickers hardness test.The composites showed higher mechanical strength than the pristine Al alloy before the aging,although exhibiting lower mechanical strength after the aging.The aging treatment was ineffective to strengthen the Al –Mg –Si alloy composites reinforced with CNTs.EDS elemental mapping clari ?ed the Mg and O concentration around CNTs.The reduction of Al oxide species formed around CNTs facilitated the Mg concentration.Due to the Mg consumption around CNTs,Mg elements in Al matrix decreased,and resulted in the incomplete matrix strengthening after the aging.

?2011Elsevier B.V.All rights reserved.

1.Introduction

High strength Al matrix composites have been industrialized in many applications.Since Al serves low density of 2.7g/cm 3,their applications are mainly to the structural components of transportation needing high fuel ef ?ciency.The recent attempts for air planes are one of well-known examples.Thus,Al matrix composites having higher mechanical properties have been studied extensively and widely.Under such circumstances,using carbon nanotubes (CNTs)[1]as reinforcements was regarded as one of promising topics.Since CNTs were nano-scale ?ne particles having extraordinary mechanical property [2],thermal conduc-tivity [3],and aspect ratio [1],several reports have been already reported the effectiveness of CNT incorporation into Al matrix [4–9].For instance,Kwon et al.improved the strength of pure Al matrix about twice by incorporating CNTs [4].However,quite a few reports have been reported about the strength of the Al composites reinforced with CNTs after hardening treatment while industrialized Al alloys are usually hardened before their applications [10,11].Therefore,in this study,T6treatment in ?uences on the strength of the A6063Al alloy composites reinforced with CNTs were evaluated by tensile test and Vickers hardness test at ambient temperature.It was clari ?ed that T6treatment hardly hardened Al matrix of the composites due to the concentration of alloying Mg in the vicinity of CNTs.

2.Material and methods

In this study,Al alloy composites reinforced with CNTs were produced with A6063Al alloy powders having chemical compositions of Si,0.58;Mg,0.57;Fe,0.08in wt.%and multi-walled CNTs commercially named NC7000,which were the product of Nanocyl CO.LTD.Both raw materials were presented in Fig.1(a)and (b).According to the data sheet,mean diameter and length of the CNT were 9.5nm and 1.5μm,respectively.While the powder metallurgy route with wet-process [12,13]was employed in the fabrication process,instead of water based one,isopropyl alcohol (IPA)based zwitterionic surfactant solution containing individual CNTs was used in the present study.By using the solution,formation of brittle hydroxide or oxide which probably causes the poor bonding between powders could be avoided.The composite fabrication conditions were almost same with the previous research [12]but slightly optimized for the A6063Al alloy matrix.The as-received powders were mixed with the zwitterionic surfactant solution containing CNTs and the paste-like composite powders coated with individual CNTs were dried at 80°C for 3h.To eliminate the residual surfactant from the powder surface,the powders were heated at 500°C for 1h.The decomposition temperature of the surfactant residues were investigated at approximately 500°C as reported in references [12,14].Then,the composite powders were consolidated into the columnar billets via spark plasma sintering (SPS)process [15]at 550°C for 30min under the pressure of 30MPa in vacuumed atmosphere,and subsequently,hot extruded into the extrusion rods having 7mm diameter and 1m length at 350°C with the extrusion speed of 0.3mm/s.Additionally,some portion of the extruded composites was heat treated with the T6treatment consisting of both solutionization at 500°C for 3h and subsequent aging at 220°C for 7h [10]in Ar gas atmosphere.After the solutionization,the composites were immediately

Materials Letters 65(2011)1723–1725

?Corresponding author.Fax:+81668798669.

E-mail address:fukkun-fukuda@jwri.osaka-u.ac.jp (H.

Fukuda).0167-577X/$–see front matter ?2011Elsevier B.V.All rights reserved.doi:

10.1016/j.matlet.2011.03.023

Contents lists available at ScienceDirect

Materials Letters

j o u r na l ho m e p a g e :w w w.e l s ev i e r.c o m /l o c a t e /m a t l e t

water-quenched from 500°C to ambient temperature.Since no other carbon (C)sources were included in the composites,CNT content of each composite was regarded as C content measured by the infrared-absorption technique.For convenience,the composites were coded depending on the CNT content;(1),(2),and (3)are pristine A6063powder material,A6063with 0.56,and 1.22vol.%CNTs,respectively.The fabricated composites were machined into rod type specimens with 15mm in gauge length and 3mm in diameter,and then,evaluated with the tensile test at room temperature under the strain ratio of 5.0×10?4/s.Further,Vickers hardness of the materials was evaluated by using diamond indenter with loading weight of 5.0×10?2kgf for 15s holding time.The hardness of the materials in this study was average value of 10times the indentation.3.Results and discussion

Fig.2gives the information of the nominal tensile curves of the composites;(a)and (b)are the one without and with the T6treatment,respectively.As shown in Fig.2(a),the strength of the as-extruded A6063Al alloy was improved by CNT addition;increase of yield stress and ultimate tensile strength was 6.3and 11.6MPa for sample 2and 5.6and 11.5MPa for sample 3,respectively.However,T6treatment scarcely enhanced the strength of the composites with CNTs,samples 2and 3,being successfully strengthened pristine A6063powder material,sample 1,as shown in Fig.2(b);by the T6treatment,yield stress and ultimate tensile strength increased only 1.2and 7.0MPa for sample 2and ?12.0and ?6.1MPa for sample 3though those of sample 1highly increased 49.0and 46.2MPa,respectively.Vickers hardness was also measured with the materials both without and with the T6treatment as tabulated in Table 1.By the T6treatment,Vickers hardness increased 3.4and ?1.5HV for samples 2and 3,respectively though that increased 15.1HV for

sample 1.This evidence indicated that the poor tensile properties of the composites reinforced with CNTs after the T6treatment was derived from the failure of A6063Al alloy matrix hardening.Since the hardness of the materials after T6treatment tended to decrease with CNT content,it was obvious that CNTs negatively affected the T6hardening of the A6063Al alloy matrix.In this point,Guo and Yuan already reported the negative in ?uence of graphite incorporation into 6013Al alloy on the T6hardening [16].Their composites clearly exhibited the lower hardness than the pristine material after the T6treatment,while showing higher hardness before the T6treatment.

Fig.3(a)and (b)shows EDS elemental mapping of sample 3before (a)and after (b)the T6treatment,respectively;in both ?gures,CNTs were located almost at the center where elemental C was highly identi ?ed.Besides,elemental Mg was evidently concentrated at the identical positions.De ?nitely,this Mg concentration around CNTs causes Mg depletion in the Al matrix.Since the matrix hardening of Al alloys with both Mg and Si after T6treatment was due to the uniform precipitation of Mg 2Si ?ne particles during the aging process [11],the Mg depletion in the Al matrix directly causes insuf ?cient matrix hardening.Furthermore,elemental oxygen (O)was also concentrated around CNTs as shown in Fig.3(a)and (b).Since the identi ?ed positions of O were identical to that of Mg,the elemental signals of O were derived from the oxide species containing Mg such as MgO and MgAl 2O 4.Several articles reported the adsorption of water and O 2in CNTs at ambient temperature [17,18].According to a reference [18],adsorbed O 2experience desorption by heating CNTs

over

Fig.1.As-received A6063Al alloy powder (a)and MWCNTs

(b).

Fig.2.Nominal stress and strain curves of each sample.Panels (a)and (b)represent the one before and after the T6treatment,respectively.

Table 1

Vickers hardness of each https://www.sodocs.net/doc/ec542920.html,T (vol.%)As-ext.(HV)After T6(HV)10.0052.467.520.5655.759.13

1.22

55.2

53.7

1724H.Fukuda et al./Materials Letters 65(2011)1723–1725

approximately 200°C.The released water or O 2at such temperature could more or less oxidize the Al matrix during the sample fabrication process.Also,Kimura et al.reported Mg diffusion toward the surface of Al alloy powder containing both elemental Mg and Si [19].They observed the reduction of surface oxide layer of the Al alloy powder by the diffused Mg from the powder inside over 500°C.Holub and Matienzo also identi ?ed the similar phenomenon by heating their sample over 370°C [20].It is obvious that high temperature heating facilitates the reduction of surface oxide into Mg oxide species such as MgO and MgAl 2O 4[19,20].Therefore,the Mg concentration around CNTs could be reasonably concluded due to the reduction of Al oxide species formed by the desorbed water and O 2from CNTs during the sample fabrication process.4.Conclusions

A6063Al alloy reinforced with CNTs was hardly strengthened by the T6treatment.Since Vickers hardness of the composites tended to decrease with CNT content,the strengthening failure resulted from incomplete hardening of the Al matrix.Since EDS elemental mapping clari ?ed elemental Mg concentration around CNTs,the decrease of Mg element in Al matrix caused the incomplete hardening.Besides,elemental O was also concentrated around CNTs.This means that Mg concentration around CNTs was due to the reduction of Al oxide species formed by the desorbed water and O 2from CNTs during the sample fabrication process.

References

[1]Iijima S.Nature 1991;354:56.

[2]Mylvaganam K,Zhang LC.Carbon 2004;42:2025.[3]Xue QZ.Nanotechnology 2006;17:1655.

[4]Kwon H,Estili M,Takagi K,Miyazaki T,Kawasaki A.Carbon 2009;47:570.

[5]Laha T,Agarwal A.Mater Sci Eng Struct Mater Prop Microstruct Process 2008;480:323.[6]Laha T,Agarwal A,McKechnie T,Seal S.Mater Sci Eng,A 2004;381:249.

[7]Morsi K,Esawi AMK,Borah P,Lanka S,Sayed A,Taher M.Mater Sci Eng Struct Mater Prop Microstruct Process 2010;527:5686.

[8]Uozumi H,Kobayashi K,Nakanishi K,Matsunaga T,Shinozaki K,Sakamoto H,et al.Mater Sci Eng Struct Mater Prop Microstruct Process 2008;495:282.[9]Deng CF,Zhang XX,Wang DZ,Lin Q,Li AB.Mater Lett 2007;61:1725.

[10]Das G,Das M,Ghosh S,Dubey P,Ray AK.Mater Sci Eng Struct Mater Prop Microstruct Process 2010;527:1590.

[11]Munitz A,Cotler C,Talianker M.J Mater Sci 2000;35:2529.

[12]Kondoh K,Fukuda H,Umeda J,Imai H,Fugetsu B,Endo M.Mater Sci Eng Struct Mater Prop Microstruct Process 2010;527:4103.

[13]Kondoh K,Threrujirapapong T,Imai H,Umeda J,Fugetsu https://www.sodocs.net/doc/ec542920.html,pos Sci Technol 2009;69:1077.

[14]Fukuda H,Szpunar JA,Kondoh K,Chromik R.Corros Sci 2010;52:3917.[15]Olevsky EA,Kandukuri S,Froyen L.J Appl Phys 2007;102.

[16]Guo J,Yuan X.Mater Sci Eng Struct Mater Prop Microstruct Process 2009;499:212.[17]Fujiwara A,Ishii K,Suematsu H,Kataura H,Maniwa Y,Suzuki S,et al.Chem Phys Lett 2001;336:205.

[18]Maniwa Y,Kataura H,Abe M,Suzuki S,Achiba Y,Kira H,et al.J Phys Soc Jpn 2002;71:2863.

[19]Kimura A,Shibata M,Kondoh K,Takeda Y,Katayama M,Kanie T.Appl Phys Lett 1997;70:3615.

[20]

Holub KJ,Matienzo LJ.Appl Surf Sci

1981;9:22.

Fig.3.EDS elemental mapping of Al,C,Mg,Si,and O in sample 3.Panels (a)and (b)are the one for sample before and after the T6treatment,respectively.

1725

H.Fukuda et al./Materials Letters 65(2011)1723–1725

湿法机械解团聚分散碳纳米管的方法与相关技术

本技术提供了一种湿法机械解团聚分散碳纳米管的方法,包括:A)将碳纳米管分散于溶液中,得到混合体系,通过调节混合体系温度使得部分溶剂或溶质发生可控的液/固相转变,得到固含量周期性动态变化的固/液两相流体系;B)在所述体系中施加机械力,使碳纳米管解团聚,得到良好分散的高质量的碳纳米管分散液。本技术通过特定温度和液相环境中将碳纳米管解团聚得到良好分散的碳纳米管。制备过程中无有毒害的有机添加剂等,绿色环保,成本低,工艺简单,生产效率高、分散稳定性好,且设备便宜,易于规模化放大等。本技术制备的碳纳米管分散液具有良好的应用前景。 技术要求 1.一种湿法机械解团聚分散碳纳米管的方法,包括: A)将碳纳米管加入溶液中,得到混合体系,通过调节混合体系温度使得部分溶剂或溶质 发生可控的液/固相转变,得到固含量周期性动态变化的固/液两相流体系; B)在所述体系中施加机械力,使碳纳米管解团聚,得到良好分散的碳纳米管分散液。 2.根据权利要求1所述的方法,其特征在于,所述碳纳米管选自单壁碳纳米管、双壁碳纳米管和多壁碳纳米管中的一种或几种。 3.根据权利要求1所述的方法,其特征在于,所述溶液包括有机溶剂、表面活性剂、可溶性聚合物和可溶性固体中的一种或几种。 4.根据权利要求3所述的方法,其特征在于,所述有机溶剂选自N-烷基-吡咯烷酮类、酰胺类、醇类、酮类、吡啶、N-甲酚哌啶、1,3-二甲基-2-咪唑啉酮、n-甲基吗啉、N-甲基吗啉-N-氧化物、溴苯、苄腈、苯甲酸苄酯、N,N-二甲基丙烯脲、Y-丁内酯、DMSO、二苄基醚、氯仿、氯苯、1-3二氧戊环、乙酸乙醇、喹啉、苯甲醛、邻苯二甲酸二乙酯、邻苯二 甲酸二甲醋、醋酸乙烯酯、水、氨和二氧化碳中的一种或几种; 所述表面活性剂选自海藻酸钠、胆酸钠、十二烷基硫酸锂、十二烷基硫酸钠、十二烷基 苯磺酸钠、氢氧化四乙基铵、十六烷基三甲基溴化铵、脱氧胆酸盐、牛磺脱氧胆酸盐、 聚氧乙烯(40)壬基苯基醚、支化(IGEPAL CO-890和聚乙二醇p-(1,1,3,3-四甲基丁基)苯基醚(Triton-x 100(TX-100))中的一种或几种;

关于碳纳米管的研究进展综述

关于碳纳米管的研究进展 1、前言 1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新 的“大碳结构”概念诞生了。之后,人们相继发现并分离出C 70、C 76 、C 78 、C 84 等。 1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。1996年,我国科学家实现了碳纳米管的大面积定向生长。1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。1999年,韩国的一个研究小组制成了碳纳米管阴极彩色显示器样管。2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。 2、碳纳米管的制备方法 获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。因此对碳纳米管制备工艺的研究具有重要的意义。目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。化学气相沉积法是实现工业化大批量生产碳纳米管的有效方法,但由于生长温度较低,碳纳米管中通常含有

碳纳米管科普

碳纳米管科普 骞伟中?
一 心细如发,发真得够细吗??
中国有句谚语为"心细如发",用来形容一个人的心思缜密,细微程度达 到了头发丝的尺寸。 在古人的眼里, 头发丝已经是非常细的东西的代表了。 或者, 人们形容薄时,爱用“薄如蝉翼” ,但蝉翼真得够薄吗?然而,大家知识头发丝 的直径或蝉翼的厚度是什么尺度的吗?仅仅是几十微米而已。 有没有比头发丝更 细的丝及比蝉翼更薄的纸吗? 事实上还多得很。 比如铜丝,现代的加工技术可以将铜丝拉伸到小于 10 微米的级别。用于光 导通讯的玻璃纤维丝,也能达到这个级别。 而更绝的是,用激光刻蚀可以在硅片上刻出几十纳米(nm)的细槽,从而成 为现代超级计算机的基础。 但你可能更加想不到的是, 人类真得造出了直径仅 0.4‐1nm 的碳丝(图 1), 而 且还是中空结构。这种材料与头发丝相比,直径小了 1 万倍。另外一种比喻可以 让你进一步想象 1nm 有多大,人的指甲的生长速度几乎是不为人察觉的。人一 般觉得指甲长了,总得一周左右 的时间。但即使这样,您的指甲 仍以每秒 1nm 的速度在不停地生 长。但由于一个分子的大小也就 在 0.3nm(如氢气分子)到 0.6 nm(如苯分子),所以你可以想象 这种碳丝在本质上就是一种原子 线或分子线。但它的确构成了一 种长径比巨大的固体材料,成为 一种实物,而不再是无所束缚的, 到处乱跑的分子或原子。
图1 碳纳米管的三种卷曲结构 (从上而下的英文 字形结构;手性结构)?
armchair
zigzag
chiral
为:扶手椅式结构;Z

实际上, 这种神奇的材料的发现是基于非常偶然的机缘。 在 1985‐1990 年间, 科学家热衷于制造一种形状像足球的由 60 个碳组成的分子。这种分子通常是用 电弧放电,将石墨靶上的碳原子进行激发,然后进行自组装而得。而在偶然的机 缘里,科学家发现,只要能量足够,这些碳原子就会自动连接起来,形成一条碳 链。而利用放大倍数在 10 万倍至 100 万倍的电子显微镜下,科学家惊异地发现 这个丝状的材料竟然是中空的管状材料,所以,根据其元素,尺寸与形状,科学 家形象地称这种材料为“碳纳米管” 。应该说这种丝状材料与头发相比,才是真 正算得上细与小。当然如果说一个人“心细如碳纳米管” ,则恐怕不只是“心细 如发”的赞许与褒扬,而或许带有一种调侃或讽刺意味的“小心眼”了。由此可 见,社会科学中的词语包含了粗与细的平衡,什么事都得适可而止,非常玄妙。 然而,在追求真理与真知的“实心眼”科学家那里,却不是这样,自从 C60 与碳纳米管的发现,人类正式进行了纳米时代,可能大家都听过“纳米领带” , “纳米洗衣机” 或 “纳米药物” 。 不论这些东西是否属实, 却毫无疑问地夸耀 “细” 与“小”的作用。 事实上,追求细小或细微或精细,是人类科技进步的一条主线。 从人类走过的路程可以看到,从旧石器时代,新石器时代,以及青铜时代, 铁器时代,到火车轮船时代,以及飞机及计算机时代。从手工打造,铸造,到普 通车床加工, 再到数字车床加工, 激光刻蚀。 比如, 普通汽车与拖拉机的发动机, 一般有成千至万个零件。而飞机或火箭的发动机则有上百万个零件组成。而保证 这个零件良好组合或密封,以及长时间工作不损伤的关键因素,就在加工结构的 精细化与细微化。一般来说,汽车与拖拉机对应的加工精度为微米级,而计算机 与手机等通讯产品中硅片的加工精度则为纳米级。人类加工的产品越来越精细, 也就越来越有功能。而到达纳米级后,计算机硅片的加工要求又从 100 nm,小 到 60?nm,直到目前的 15?nm。这些数字减小的后面,是一代一代计算机的更新 换代与巨大的产业价值。 而我们故事的主人公:碳纳米管,竟然可以小至 0.4‐1nm。大家可以想见, 如果计算机的加工基础可以小到这个程度,或由这么小的材料来组装器件,则现 代的工业革命又将会发生什么样的变化。 在此开篇,有必要向大家介绍一下时空的概念。在时间尺度上,生物的新陈

多壁碳纳米管的表面修饰及其在溶剂中的分散性

第37卷第6期2009年6月化 工 新 型 材 料N EW CH EMICAL MA TERIAL S Vol 137No 16 ?61? 基金项目:江西省自然科学基金(24064001)和江西省教育厅科技重点项目(20072126)资助作者简介:周小平(1983-),男,在读硕士研究生,主要研究方向:碳纳米管及其复合材料。联系人:侯豪情。 多壁碳纳米管的表面修饰及其在溶剂中的分散性 周小平 余腊妹 郭乔辉 周政平 侯豪情3 (江西师范大学化学化工学院,南昌330022) 摘 要 利用高温催化裂解生长多壁碳纳米管,用硝酸氧化使其表面羧酸化,并经酰氯化后与十二烷基胺反应形成表面酰胺化,通过红外、核磁、微量热天平等方法进行表征。结果表明:硝酸氧化后的碳纳米管在水等强极性溶剂中有良好的分散性;酰胺化后,十二烷基脂肪链使碳纳米管表面极性大为降低,因此在氯仿等弱极性溶剂中有良好的分散性。 关键词 碳纳米管,表面修饰,分散性,十二烷基酰胺 Surface modif ication of multiw alled carbon nanotubes and their dispersion in solvents Zhou Xiaoping Yu Lamei Guo Qiaohui Zhou Zhengping Hou Haoqing (Instit ute of Chemist ry and Chemical Engineering ,Jiangxi Normal University ,Nanchang 330022)Abstract Multiwalled carbon nanotubes ,formed by catalysis pyrolysis ,were dealt with concentrated nitric acid to produce the surface 2carboxylated carbon nanotubes.The later was treated with thionyl chloride and dodecyl amine to form the surface 2amidated carbon nanotubes.Characterized using IR 、NMR 、T GA.The carbon nanotubes ,treated with nitric acid had a good dispersion in strong 2polar solvent i.e.water due to the strong polarity on their surface ;The surface 2amid 2ated ,had a low polarity ,which made them a good dispersion in low 2polar solvent i.e.chloroform. K ey w ords carbon nanotube ,surface modification ,dispersion ,dodecyl amide 碳纳米管(CN Ts )自发现以来因其优良的力学、电学和热学性能受到广泛关注[1]。随着碳纳米管的合成技术和纯化研究的不断完善[2],人们的研究兴趣主要集中在碳纳米管的应用领域。但碳纳米管是既不溶于水也不溶于有机溶剂,而悬浮液又易团聚的物质,这种难于分散的性质限制了其在许多领域的应用。对碳纳米管进行表面化学修饰,改善其表面性能是解决碳纳米管分散性和溶解性的有效途径[3]。化学修饰法是使碳纳米管与改性剂[4]之间进行化学反应,改变碳纳米管的表面结构和状态,达到改性目的。常用的是强酸或混酸使碳纳米管表面的缺陷氧化成羧基,然后利用醇类或胺类化合物与之作用形成酯或酰胺[5],而改善碳纳米管的溶解性和分散性。 Liu Jie 等[6]用浓硫酸和浓硝酸的混合物氧化碳纳米管, 将之裁剪成端头上带羧基的150~180nm 的“短管”。在此基础上,Chen Jian 等[7]通过羧基和氨基的反应,在碳纳米管的端头连接上了十八胺和42十四烷基苯胺。这些经修饰的碳纳米管可溶于氯仿、二氯甲烷及芳香族溶剂等。此法在引入羧基的同时,碳纳米管的尺寸被截断得较短,降低了其长径比,也破坏了碳纳米管的部分管壁结构。Shi Zujin 等[8]成功制备出了碳纳米管的水溶胶并测定了它的三阶光学非线性,证明碳纳米管在光信息过程中有潜在应用价值。这些工作为研究碳纳米管的表面修饰和化学改性开辟了新途径。 本实验以甲苯为碳源,二茂铁为催化剂制备碳纳米管,用浓HNO 3将其羧酸化,并将羧基酰氯化后与十二胺反应,形成脂肪族烷基酰胺修饰的碳纳米管。这样修饰的碳纳米管在三氯甲烷等有机溶剂中具有良好的溶解性和分散性,为制备高性能的聚合物/碳纳米管复合材料,如电纺聚酰亚胺/碳纳米管复合纳米纤维,奠定了基础。 1 实验部分 111 仪器及试剂 红外光谱分析仪(FTIR ):WQ F 2410型(Bruker );热失重 分析仪(T GA ):XM T 21型(上海祖发实业有限公司);旋转蒸发仪:RE 252AA (上海亚荣生化仪器厂);核磁共振仪:AV400,400M Hz (Bruker 公司);高温反应炉(上海电炉厂),配有110cm 长,45cm 内径的钢质管式反应器。 碳纳米管(CN Ts ):自制;二茂铁(AR ),广东省汕头市西陇化工厂;甲苯(AR ),天津市福晨化学试剂厂;十二胺(98%,AR ),阿法埃莎化学有限公司;氯化亚砜(SOCl 2,AR ),北京化学试剂厂;浓硝酸,南昌市鑫光化学试剂厂;N ,N 2二甲基甲酰胺(DMF ,AR ),天津市福晨化学试剂厂;H 2(99199%),华东特种气体有限公司;氩气(99199%),华东特种气体有限公司。 112 碳纳米管的合成及表面修饰 11211 碳纳米管的合成

碳纳米技术发展综述

碳纳米管技术发展概况 学院:电子信息工程学院 专业:通信工程 姓名:彭昱 学号:3013204217 【摘要】随着社会经济的飞速发展,碳纳米材料的应用日趋广泛,以富勒烯、石墨烯和碳纳米管为代表的碳纳米材料。在经历20世纪90年代的研究高潮后,如今也已经进入了平稳扎实的研究阶段。随着研究的不断深入,碳纳米材料在人类生产生活中显示出越来越多不可替代的重要作用。碳纳米管(CNT)也是“纳米世界”中的重要一员,因其独特的结构和优异的物理化学性能,具有广阔的应用前景和商业价值。本文综述了碳纳米管的发展历程、结构性能,应用及其发展前景及展望。 【关键词】碳纳米管;发展历程;结构;特性;应用;前景 碳纳米管的发展历程 1985 年英国萨塞克斯大学的波谱学家Kroto 教授与美国莱斯大学的Smalley和Curl 两教授在合作研究中,发现碳元素可以形成由60 个或70 个碳原子构成的高度对称性笼状结构的C60和C70分子,被称为巴基球(Buckyballs);1991 年,日本NEC 科学家Iijima 在制取C60的阴极结疤中首次采用高分辨隧道电子显微镜发现一种外径为515nm、内径为213nm,仅由两层同轴类石墨圆柱面叠而成的碳纳米管;1992年,科研人员发现碳纳米管壁曲卷结构不同而呈现出半导体或良导体的特异导电性;1995年,科学家研究并证实其优良的场发射性能;1996年,我国科学家实现碳纳米管大面积定向生长;1998年,科研人员应用碳纳米管作电子管阴极,同年,科学家使用碳纳米管制作室温工作的场效应晶体管;1999年,韩国一个研究小组制成碳纳米管阴极彩色显示器样管;2000年,日本科学家制成高亮度的碳纳米管场发射显示器样管。 碳纳米管的结构 碳纳米管是由单层或多层石墨片绕中心按一定角度卷曲而成的无缝、中空纳米管。按照所含石墨片层数的不同,碳纳米管可分为:单壁碳纳米管和多壁碳纳米管。单壁管典型直径在0.6-2nm,多壁管最内层可达0.4nm,最粗可达数百纳米,但典型管径为2-100nm。下图为常见的碳纳米管结构图。虽然从本质上讲,碳纳米管都是有相同的石墨层构成的但它们的导电特性却并不一样,具体情况取决于起的是金属还是半导体的作用。 碳纳米管的特性 碳纳米管的独特结构决定了它具有许多特殊的物理和化学性质。组成碳纳米管的C=C 共价键是自然界最稳定的化学键,所以使得碳纳米管具有非常优异的力学性能。理论计算表明,碳纳米管具有极高的强度和极大的韧性。其理论值估计杨氏模量可达5TPa,强度约为钢的100 倍,而重量密度却只有钢的1/6。Treacy 等首次利用了TEM 测量了温度从室温到800 度变化范围内多壁碳纳米管的均方振幅,从而推导出多壁碳纳米管的平均杨氏模量约为1.8Tpa。而Salvetat 等测量了小直径的单壁碳纳米管的杨氏模量,并导出其剪切模量为1Tpa。Wong 等用原子力显微镜测量多壁碳纳米管的弯曲强度平均值为14.2±10.8GPa,而碳纤维的弯曲强度却仅有1GPa。碳纳米管无论是强度还是韧性,都远远优于任何纤维,被认为是未来的“超级纤维”。直径、螺旋角以及层间作用力等存在的差异是碳纳米管兼导体和半导体的特性;独特的螺旋分子结构使碳纳米管构筑的吸波材料具有比一般吸收材料高的吸收率。此外,碳纳米管还具有独特的光学性能,良好的热传导性,极高的耐酸、碱性和热稳定性。

碳纳米管分散综述

碳纳米管的研究 摘要:综述了碳纳米管/聚合物复合材料制备过程中碳纳米管预先分散所使用的方法。为实现碳纳米管在聚合物中的分散,首先要求加入的碳纳米管本身具备足够的分散度。碳纳米管的分散方法主要有:表面化学修饰、分散剂分散、超声分散、机械分散、溶剂分散。 引言:自从1991年日本电镜专家Iijima首先在高分辨透射电子显微镜(HRTEM)下发现碳纳米管以来,碳纳米管优异的各项性能已经激起了众多研究人员对其结构、性能、应用的研究,并已取得了显著进展。纳米材料由于其尺寸处在原子簇和宏观物体交界的过渡区域,具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等特性,展现出许多独特的物理化学性质。20世纪80年代初期纳米材料这一概念形成以后,世界各国都给予了极大关注。它所具有的独特性质,给物理、化学、材料、生物、医药等领域的研究带米新的机遇。近年来,新型纳米材料和纳米技术在涂料工业中获得了大量应用,为提高涂料性能和赋予其特殊功能开辟了一条新途径。作为一种极具发展潜力的新型纳米材料,碳纳米管(CarbonNanotubes,CNTs)具有金属或半导体的导电性、极高的机械强度、储氢能力、吸附能力和较强的微波吸收能力等特性,将其应用于涂料领域,可使传统涂层的性能得到提升并赋予其新的功能。 1、碳纳米管的合成制备 1.1、碳纳米管主要制备法方法有电弧法、热解法和激光刻蚀法。其中电弧法(与Wolfgang-Kratschmer 法制备富勒烯类似)为在惰性气体气氛中,两根石墨电极直流放电,阴极上产生碳纳米管。热解法就是采用过渡金属作催化剂,700-1600K 的条件下,通过碳氢化合物的分解得到碳纳米管。激光刻蚀法采用激光刻蚀高温炉中的石墨靶子,碳纳米管就存在于惰性气体夹带的石墨蒸发产物中。碳纳米管的形成过程游离态的碳原子或者碳原子团,发生重新排布的过程。制备SWNT 时,必须添加一定数量的催化剂,如过渡元素(Ni、Co、Fe 等),或者镧系元素(Ld、Nd、La、Y 等),或者它们的混合物。催化剂在SWNTs 的生长过程中,能够降低弯曲应力,促进碳原子排列整齐并且阻止SWNTs 两端的富勒烯分子的形成。得到的碳纳米管的直径和直径分布主要取决于制备方法、催化剂的种类、生长温度等反应条件。 1.2、碳纳米管的进一步加工--- CNTs 的功能化(以SWNTs 为例): 目的:提高CNT 的溶解度,有助于纯化,并引入新的性能。 方式(与图中对照): ·共价功能化: A:端口功能化B:侧壁功能化 ·非共价功能化: C:表面活化剂功能化D:聚合物功能化E:内腔功能化

超声波碳纳米管分散设备应用解析

超声波碳纳米管分散设备应用解析 产品简介品牌其他品牌类型乳化分散机速度类别有级变速(多速)调速范围0~3000r/min变速方式电磁变速速度范围1200rpm以上整机重量145Kg应用领域医疗/卫生,环保/水工业,生物产业,石油/化工,能源杭州精浩机械的超声波碳纳米管分散设备具有:一键式启动,操作方便,可24小时连续工作;自带循环系统;双层不锈钢设计,带滚轮支架,方便移动等优点。 详细介绍碳纳米管坚固而柔韧性好,但内聚力强。它们很难分散到液体中,例如水,乙醇,油,聚合物或环氧树脂。超声波是获得离散的(单分散的)碳纳米管的有效方法。碳纳米管(CNT)用于粘合剂,涂料和聚合物,以及用作塑料中的导电填料,以消散电气设备和可静电喷涂的汽车车身面板中的静电荷。通过使用纳米管,可以使聚合物更耐温度,苛刻的化学药品,腐蚀性环境,极端压力和磨损。碳纳米管分为两类:单壁纳米管(SWNT)和多壁纳米管(MWNT)。碳纳米管通常可以作为干燥材料获得,例如为了充分利用纳米管的最大潜力,需要一种简单,可靠且可扩展的解团聚方法。对于高达100,000cP的液体,超声波碳纳米管分散设备可非常有效的将纳米管以低或高浓度分散在水,油或聚合物中。超声空化产生的液体射流克服了纳米管之间的键合力,并使管子分开。由于超声产生的剪切力和微湍流,超声也可以协助纳米管与其他材料的表面涂层和化学反应。通常,首先通过机械搅拌将粗纳米管分散体预混合,然后在超声流通池反应器中均质。 超声波碳纳米管分散设备功能: 1.自动谐振点和功率可控无需手动调节功率。 2.高速搅拌电机,转速0~3000rpm可调。 3.独立开/关脉冲定时器确保高强度处理温度敏感产品,可24小时连续工作。 4.自动振幅补偿,确保在超声工作中探头振幅不因承载的变化而变化。 5.设备时刻处于自动保护状态。 产品参数: 频率:20Khz超声功率3000W输入电压220V/110V,50Hz/60Hz振幅范围10~100μm 振幅精度≤1μm空化强度4~4.5w/㎡反应釜容积50L(可定制)电机功率3000W 电机转速0~3000rpm输送流速0~3T/H(可定制)温控范围-10~100℃(可定制)温控方

碳纳米管功能化的途径、机理和表面特征

第43卷第8期 当 代 化 工 Vol.43,No.8 2014年8月 Contemporary Chemical Industry August,2014 收稿日期: 2014-01-16 作者简介: 江盛玲,女,硕士,讲师,研究方向:高分子物理和分析测试。 通讯作者: 吕亚非(1955-),男,研究员,博士,研究方向:功能高分子及其复合材料。E-mail:ylu623@https://www.sodocs.net/doc/ec542920.html,。 碳纳米管功能化的途径、机理和表面特征 江盛玲1,齐士成1,员荣平2 ,张孝阿1,李 娟3,吕亚非1 (1. 碳纤维与功能高分子教育部重点实验室,北京化工大学,北京 100029; 2. 北京化工大学高新技术研究院, 北京 100029; 3. 盐城工学院材料工程学院,江苏 盐城 224300) 摘 要:由碳纳米管的功能化有共价键和非共价键两种方法。共价键功能化的机理是通过氧化或还原反应在碳纳米管表面生成极性或反应性基团(表面基团化),继而通过化学反应使碳纳米管表面有机化或聚合物化。非共价键功能化的机理是基于碳纳米管表面的π体系和疏水性可与含π电子的芳烯化合物发生π-π相互作用或与含疏水链的表面活性剂发生物理吸附。本文综述碳纳米管功能化的研究进展,完善了Kim 等提出的碳纳米管功能化表面的代数表示:表面基团化的为1G,表面有机化的为2G,表面聚合物化的为3G。 关 键 词:碳纳米管;共价键功能化;非共价键功能化;表面特征 中图分类号:TQ 127.1 文献标识码: A 文章编号: 1671-0460(2014)08-1425-04 Functionalization Approaches, Mechanisms and Surface Features of Functionalized Carbon Nanotubes JIANG Sheng-ling 1, QI Shi-cheng 1, YUN Rong-ping 2, ZHANG Xiao-a 2, LI Juan 3, LV Y a-fei 1 (1. Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029,China; 2. High-Tech Research Institute, Beijing University of Chemical Technology, Beijing 100029,China; 3. College of Materials Engineering, Yancheng Institute of Technology, Jiangsu Yancheng 224300,China) Abstract : Two approaches for surface modification of carbon nanotubes (CNT) are covalent functionalization and non-covalent functionalization. The mechanism of covalent approach is to attach the reactive groups to the surface of CNT by oxidative or reduced reactions firstly, then transforming the groups to organic moieties, or to polymeric chains by grafting from or click reactions. The mechanism of non-covalent functionalization of carbon nanotubes involves the π-π interactions between π- system of carbon nanotubes and π-containing organic moieties or polymers and adsorption of surfactants on surface of carbon nanotubes. The surface features of functionalized carbon nanotubes suggested by Kim et al. can be expressed as the surface containing reactive groups is the 1st generation (1G), the attachment of organic moieties on CNT is 2G and the surface linked with polymeric chains is 3G . Key words : carbon nanotubes (CNT); covalent functionalization; non-covalent functionalization; surface features 1991年Iijima 发现了碳纳米管(CNT )。碳纳米 管包括单壁(MWCNT)和多壁碳纳米管(SWCNT) 是第一个具有管状形态(1维)、直径为纳米尺度的 碳材料(图1)[1]。碳纳米管具有优异电、光、磁等 功能和极高力学性能,在纳米电子学、纳米生物学 和纳米材料学等领域有广泛应用,在纳米材料与技 术发展史中占有重要地位[2,3]。但碳纳米管还具有表 面化学惰性和在范德瓦尔力作用下易团聚的特征, 在制备各种功能和高性能纳米复合材料时需要功能 化(表面改性),以解决基体的界面粘合性和分散性 差的问题。对碳纳米管功能化的研究证明功能化有 利于碳纳米管在聚合物基体中的分散,有利于碳纳 米管在复合材料中起增强和增韧作用。碳纳米管功 能化主要有两种方法[4]: (1)共价键功能化包括氧化、还原等多种化学反应、单体接枝聚合和聚合物接枝反应以及点击化学反应;(2)非共价键功能化包括π-π相互作用和物理吸附。 图1 扫描通道显微镜观察的单壁碳纳米管表面形貌 Fig.1 Morphology of SWNT observed by STM

碳纳米管

碳纳米管“太空天梯” 未来的“太空天梯” 碳纳米管是由石墨分子单层绕同轴缠绕而成或由单层石墨圆筒沿同轴层层套构而成的管状物。其直径一般在一到几十个纳米之间,长度则远大于其直径。1991年,日本NEC公司基础研究实验室的电子显微镜专家饭岛在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了这一特别的分子结构。 碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。作为人类发现的力学性能最好的材料,碳纳米管有着极高的拉伸强度、杨氏模量和断裂伸长率。例如,碳纳米管的单位质量上的拉伸强度是钢铁的276倍,远远超过其他任何材料。 目前碳纳米管的研究现状 自从1991年碳纳米管被正式报道以来,为了提高其长度,全世界的碳纳米管研究者进行了大量艰辛的探索。然而一直到2009年,碳纳米管的最大长度只有18.5厘米,直到目前成功制备出单根长度达到半米以上的碳纳米管。这种有限的长度极大地限制了碳纳米管的实际应用。 碳纳米管的优点。 (1)界面层的存在和界面层厚度的增大均降低

碳纳米管和界面层的应力传递效率随长径比的变化了应力传递效率和纤维的饱和应力, 但同时增大了碳纳米管纤维的有效长度。所以界面层比较明显地承担了应力载荷, 则在碳纳米管复合材料中应该考虑界面层存在和界面层厚度的影响。 (2)碳纳米管的长径比只在较小时影响有效长度和应力传递效率。 长径比所影响的具体范围不同, 对碳纳米管有效长度为小于50 , 而对于应力传递效率则小于10 。 (3)碳纳米管的应力传递效率要远比界面层的应力传递效率大。 在碳纳米管复合材料中虽应要考虑界面层的影响, 但应力载荷的最主要承担者仍是碳纳米管纤维。对碳纳米管复合材料的应力场、纤维的饱和应力和应力传递效率以及有效长度的分析, 为碳纳米管复合材料力学性能的分析、结构优化和功能化设计以及寿命预测等做好必要的准备。 碳纳米管的缺点 (1)如何实现高质量碳纳米管的连续批量工业化生产。 碳纳米管的制备现状大致是:MWNTs能较大量生产,SWNTs多数处于实验室研制阶段,某些制备方法得到的碳纳米管生长机理还不明确,对碳纳米管的结构(管径、管长、螺旋度、壁厚等)还不能做到任意调节和控制,影响碳纳米管的产量、质量及产率的因素太多。 (2)有限的长度极大地限制了碳纳米管的实际应用。 提高了碳纳米管的长度,唯一的途径就是尽可能地提高其催化剂活性概率。对于碳纳米管的生长而言,在其生长过程中催化剂失活从而使其停止生长是一个不可逆转的规律,从而造成了超长碳纳米管很难达到很长的长度,并且也使其单位宽度上的生长密度急剧下降。 (3) 对人体的毒害作用 碳纳米管对人体存在一定的毒性作用,目前研究主要集中在肺脏毒性和细胞毒性,表现为可引起肺脏炎症、肉芽肿和细胞凋亡、活力下降、细胞周期改变等。其毒力大小与碳纳米管的特性有关,如结构、长度、表面积、制备方法、浓度、

碳纳米管的制备工艺与生长机理_朱宝华

?建筑材料及应用? 文章编号:100926825(2007)3320174202 碳纳米管的制备工艺与生长机理 收稿日期:2007206219 作者简介:朱宝华(19772),男,重庆交通大学硕士研究生,重庆 400074 朱宝华 摘 要:针对碳纳米管的独特结构和性能,介绍了电弧法、激光蒸发法和化学气相沉积法三种制备碳纳米管的方法,并建 立不同的物理模型,详细阐述了以上三种方法的生长机理,为研究碳纳米管技术提供了参考借鉴。关键词:碳纳米管,生长机理,制备工艺中图分类号:TU551文献标识码:A 碳纳米管(简称CN Ts )自1991年由Iijima 发现以来,立即受 到全球科学家的关注,很快就变成研究最多的纳米材料。碳纳米管分为单壁和多壁两种,由于多壁碳纳米管结构的复杂性,单壁碳纳米管作为理论计算的研究对象,根据形成碳纳米管的石墨面的卷曲方式,它可以分为非螺旋型和螺旋型两类,对于非螺旋型结构,管壁上原子六元环碳链的排列方向平行于管轴时为“椅式”结构,而当其排列方向垂直于管轴则为“齿式”结构。实际上对于大多数碳纳米管而言,管壁上任何碳原子六元环链的排列方向大都既不平行也不垂直于碳纳米管的轴线方向,而是相对于碳纳米管的轴线方向具有一定的螺旋角,碳六元环以这样的方式排列形成的纳米管就是螺旋型的碳纳米管。螺旋型的碳纳米管具有手性的区别,因此也被称为具有“手性”结构的碳纳米管。 碳纳米管的管状结构和较大长度直径比,使其成为理想的和有前途的准一维材料,而且理论预言这种纯碳分子所构成的直径最细、结构多变的纳米管具有很多奇异的性质,必将在纳米材料科学、分子电子器件及纳米生命科学中发挥重要作用。 1 单壁碳纳米管的制备1.1 电弧法 电弧是一种气体放电现象,当电极两端的电流功率较大时, 电极间的气体被击穿,产生几千度甚至上万度的高压,电能在瞬间转化为光能和热能。将石墨棒作阳极插入反应室,与室内已装有的石墨棒(或短铜棒)阴极接触产生电弧后,在电弧区生成的碳纳米管落下,沉积在筒的底部,反应室内充满液氮。此法的突出优点在于液氮提供保护性气氛及缓冲气源,使得产物在惰性气氛下易保存输运,避免了复杂的真空密封装置。1993年,S ?Iijima 等人就是首次用此方法成功合成单壁碳纳米管。 1.2 激光蒸发法 激光蒸发法制备单壁碳纳米管是将一根金属催化剂和石墨混合的石墨靶放置于一长形石英管中间,该管则置于一加热炉内。当炉温升到1473K 时,将惰性气体充入管内,并将一束激光聚焦于石墨靶上。石墨靶在激光照射下将生成气态碳,这些气态碳和 4 混凝土的早期养护 实践证明,混凝土常见的裂缝,大多数是不同深度的表面裂缝,其主要原因是温度梯度造成寒冷地区的温度骤降也容易形成裂缝。因此说混凝土的保温对防止表面早期裂缝尤其重要。 从温度应力观点出发,保温应达到下述要求:1)防止混凝土内外温度差及混凝土表面梯度,防止表面裂缝。2)防止混凝土超冷,应该尽量设法使混凝土的施工期最低温度不低于混凝土使用期的稳定温度。3)防止旧混凝土过冷,以减少新旧混凝土间的约束。 混凝土的早期养护,主要目的在于保持适宜的温湿条件,以达到两个方面的效果:a.使混凝土免受不利温、湿度变形的侵袭,防止有害的冷缩和干缩。b.使水泥水化作用顺利进行,以期达到设计的强度和抗裂能力。 适宜的温湿度条件是相互关联的。混凝土的保温措施常常也有保湿的效果。 从理论上分析,新浇混凝土中所含水分完全可以满足水泥水 化热的要求而有余。但由于蒸发等原因常引起水分损失,从而推迟或防碍水泥的水化,表面混凝土最容易而且直接受到这种不利影响。因此混凝土浇筑后的最初几天是养护的关键时期,在施工过程中应切实重视起来。 5 结语 以上对混凝土的施工温度与裂缝之间的关系进行了理论和实践上的初步探讨,虽然学术界对于混凝土裂缝的成因和计算方法有不同的理论,但对于具体的预防和改善措施意见还是比较统一,同时在实践中的应用效果也是比较好的。在施工中要靠多观察、多比较,出现问题后多分析、多总结,结合多种预防处理措施,混凝土的裂缝是完全可以避免的。参考文献: [1]李惠强.高层建筑施工技术[M ].北京:机械工业出版社, 2005.5. [2]赵建光.浅谈施工质量管理的若干要素[J ].建筑学报,2004 (2):31233. R easons of temperature and cracks during construction of pouring concrete L I Feng 2jun JIANG Chu ang 2feng CHENG Xia Abstract :It analyzes the reasons of cracks in pouring concrete.Through analysis of temperature stress ,it brings forward some measures of controlling temperature and protecting cracks ,and elaborates the early maintaining of concrete ,s o as to av oid the happening of concrete cracks.K ey w ords :pouring concrete ,temperature cracks ,early maintaining ,temperature stress ? 471?第33卷第33期2007年11月 山西建筑SHANXI ARCHITECTURE Vol.33No.33Nov. 2007

碳纳米管在电化学中的应用

碳纳米管在电化学中的应用 【摘要】对碳纳米管修饰电极的制备方法、应用以及碳纳米管修饰电极的发展趋势作比较全面的综述。 【关键词】碳纳米管;化学修饰电极 Application of the Carbon nanotube in electrochemistry Abstract The methods of preparation, applications and developing trends of carbon nanotube modified electrodes in the field of electrochemistry were reviewed. Key words Electrochemistry Carbon nanotube modified electrodes 碳纳米管,又名巴基管(buckytube),是1991年由日本科学家饭岛澄男(Sumio Iijima)在高分辨透射电镜(HRTEM)下发现的一种针状的管形碳单质。它以特有的力学、电学和化学性质,以及独特的准一维管状分子结构和在未来高科技领域中所具有的潜在应用价值,迅速成为化学、物理及材料科学等领域的研究热点。目前,碳纳米管在理论计算、制备和纯化生长机理、光谱表征、物理化学性质以及在力学电学、化学和材料学等领域的应用研究方兴未艾,在一些方面已取得重大突破。碳纳米管(CNT)的发现,开辟碳家族的又一同素异形体和纳米材料研究的新领域。 由于CNT具有良好的导电性、催化活性和较大的比表面积,可使过电位大大降低及对部分氧化还原蛋白质能产生直接电子转移现象,因此被广泛用于修饰电极的研究。碳纳米管在作为电极用于化学反应时能促进电子转移。碳纳米管的电化学和电催化行为研究已有不少报道。 1碳纳米管的分类 CNT属于富勒碳系,管状无缝中空,具有完整的分子结构,由碳六元环构成的类石墨平面卷曲而成,其中每个碳原子通过sp2杂化与周围3个碳原子发生完全键合,各单层管的顶端有五边形或七边形参与封闭。CNT的径向尺寸为纳米量级,轴向尺寸为微米量级,具有较大的长径比。由单层石墨片卷积而成的称为单壁碳纳米管(SWNT),制备时管径可控,一般在1~6 nm之间,当管径>6 nm后CNT 结构不稳定,易塌陷。SWNT轴向长度可达几百纳米甚至几个微米。由两层以上柱状碳管同轴卷积而成的称为多壁碳纳米管(MWNT),层间距约为0.34 nm。

碳纳米管的研究进展

碳纳米管制备方法的研究进展 碳纳米管是一种具有独特结构的一维量子材料,由石墨碳原子层卷曲而成。由于拥有潜在的优越性能,碳纳米管无论在物理、化学还是在材料学领域都将有重大发展前景。近年来,美国、日本、德国和中国等国家相继成立了纳米材料研究机构,碳纳米管的研究进展随之加快,并在制备方面取得了突破性进展。 1.电弧法 石墨电弧法是最早的、最典型的碳纳米管合成方法。其原理为电弧室充惰性气体保护,两石墨棒电极靠近,拉起电弧,再拉开,以保持电弧稳定【1】。放电过程中阳极温度相对阴极较高,所以阳极石墨棒不断被消耗,同时在石墨阴极上沉积出含有碳纳米管的产物【2】.。由于电弧放电剧烈,难以控制进程和产物,合成物中有碳纳米颗粒、无定形炭或石墨碎片等杂质,杂质很难分离。所以研究者在优化电弧法制取碳纳米管方面做了大量的工作。为减少相互缠绕的碳纳米管在阴极上的烧结,D.T.Collbert【3】将将石墨阴极与水冷铜阴极座连接,大大减少了碳纳米管的缺陷。C.Journet【2】等在阳极中填入石墨粉末和铱的混合物,实现了SWNTs的大量制备。研究发现,铁组金属、一些稀土金属和铂族元素或以单个金属或以二金属混合物均能催化SWNTs合成。 近年来,人们除通过调节电流、电压,改变气压及流速,改变电极组成,改进电极进给方式等优化电弧放电工艺外,还通过改变打弧介质,简化电弧装置。 2.催化裂解法。 催化裂解法亦称为化学气相沉积法,其原理是通过烃类或含碳氧化物在催化剂的催化下裂解而成【4】。目前对化学气相沉积法制备碳纳米管的研究表明,选择合适的催化剂、碳源以及反应温度十分关键。K.Hernadi等【5】发现碳源的催化活化顺序为:乙炔>丙酮>乙烯>正茂烷>丙烯≥甲醇=甲苯≥甲烷。 Ren[6]等在666℃条件下,在玻璃上通过等频磁控管喷镀法镀上厚度为40nm的金属镍,以 乙炔气体作为碳源,氨气作为催化剂,采用等离子体热流体化学蒸气分解沉积法,得到了在镀有镍层的玻璃上排列整齐的阵列式碳纳米管管束。此种方法生长的碳纳米管不会缠绕在一起, 易于分散。 近年来,有些研究组鉴于碳纳米管制备方法的不连续性,进行了连续制备碳纳米管的研究, 在催化裂解方法的基础上改进,得到一种新方法,即催化裂解无基体法。此种方法与原有的有机物催化裂解法的主要区别是没有催化剂载体以及催化剂的制备工艺,催化剂前驱体(二茂 铁等)在载气的带动下进入反应炉;产品能够连续取出,为连续制备创造了实验条件;配有气 体涡流装置。该方法可连续制备碳纳米管,而且制备出的碳纳米管质量较好,管径可得到有效控制,多是直管且平行成束,催化剂颗粒及其它杂质较少。 3.激光蒸发法 其原理是利用激光束照射至含有金属的石墨靶上,将其蒸发,同时结合一定的反应气体,在基底和反应腔壁上沉积出碳纳米管。Smalley【7】等制备C60时,在电极中加入一定量的催化剂,得到了单壁碳纳米管。Thess【8】等改进实验条件,采用该方法首次得到相对较大数量的单壁碳纳米管。实验在1 473 K条件下,采用50ns的双脉冲激光照射含Ni/Co催化剂颗粒的石墨靶,获得高质量的单壁碳纳米管管束。这种方法易于连续生产,但制备出的碳纳米管的纯度低,易缠结,且需要昂贵的激光器,耗费大。 4.低温固态热解法 低温固态热解法是通过制备中间体来生产碳纳米管的。首先制备出亚稳定状态的纳米级氮化碳硅(Si-C-N)陶瓷中间体,然后将此纳米陶瓷中间体放在氮化硼坩埚中,在石墨电阻炉 中加热分解,同时通入氮气作为保护性气体,大约加热1h左右,纳米中间体粉末开始热解碳原

相关主题