搜档网
当前位置:搜档网 › 概率论与数理统计试卷及答案 (1)

概率论与数理统计试卷及答案 (1)

概率论与数理统计试卷及答案 (1)
概率论与数理统计试卷及答案 (1)

模拟试题一

一、

填空题(每空3分,共45分)

1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = P( A ∪B) =

2、设事件A 与B 独立,A 与B 都不发生的概率为1

9

,A 发生且B 不发生的概率与B 发生且

A 不发生的概率相等,则A 发生的概率为: ;

3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ;

4、已知随机变量X 的密度函数为:,0

()1/4,

020,2

x Ae x x x x ??

=≤

, 则常数A= , 分布函数F (x )= , 概率{0.51}P X -<<= ;

5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ;

6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , COV(2X-3Y, X)= ;

7、设125,,,X X X 是总体~(0,1)X N 的简单随机样本,则当k = 时,

~(3)Y t =

8、设总体~(0,)0X U θθ>为未知参数,12,,

,n X X X 为其样本,1

1n

i i X X n ==∑为样本均值,

则θ的矩估计量为: 。 9、设样本129,,

,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置

信度为95%的置信区间: ;

二、

计算题(35分)

1、 (12分)设连续型随机变量X 的密度函数为:

1,

02

()2

0,

x x x ??≤≤?=???其它

求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为

1/4,||,02,(,)0,

y x x x y ?<<

?其他

1) 求边缘密度函数(),()X Y x y ??; 2) 问X 与Y 是否独立?是否相关? 3) 计算Z = X + Y 的密度函数()Z z ?; 3、(11分)设总体X 的概率密度函数为:

1,

0(),000

x

e x x x θ?θθ

-?≥?=>??

X 1,X 2,…,X n 是取自总体X 的简单随机样本。

1) 求参数θ的极大似然估计量?θ;

2)

验证估计量?θ是否是参数θ的无偏估计量。

三、

应用题(20分)

1、(10分)设某人从外地赶来参加紧急会议,他乘火车、轮船、汽车或飞机来的概率分别是3/10,1/5,1/10和2/5。如果他乘飞机来,不会迟到;而乘火车、轮船或汽车来,迟到的概率分别是1/4,1/3,1/2。现此人迟到,试推断他乘哪一种交通工具的可能性最大?

2.(10分)环境保护条例,在排放的工业废水中,某有害物质不得超过0.5‰,假定有害物质含

量X服从正态分布。现在取5份水样,测定该有害物质含量,得如下数据:

0.530‰,0.542‰,0.510‰,0.495‰,0.515‰

能否据此抽样结果说明有害物质含量超过了规定(0.05

α=)?

附表:

模拟试题二

一、填空题(45分,每空3分)

1.设()0.5,(|)0.6,()0.1,

P A P B A P AB

===则()

P B=()

P AB=

2.设,,

A B C三事件相互独立,且()()(

P A P B P C

==,若

37

()

64

P A B C

??=,则

()

P A=。

3.设一批产品有12件,其中2件次品,10件正品,现从这批产品中任取3件,若用X表示取出的3件产品中的次品件数,则X的分布律为。

4.设连续型随机变量X的分布函数为

()a r c t a n(),

F x A B x x R

=+∈

则(,)

A B=,X的密度函数()x

?=。

5.设随机变量~[2,2]

X U-,则随机变量

1

1

2

Y X

=+的密度函数()

Y

y

?=

6.设,X Y的分布律分别为

X-1 0 1 Y0 1 P1/4 1/2 1/4 P1/2 1/2

且{0}0P X Y +==,则(,)X Y 的联合分布律为 。和{1}P X Y +==

7.设(,)~(0,25;0,36;0.4)X Y N ,则cov(,)X Y = ,1

(31)2

D X Y -+= 。

8.设1234(,,,)X X X X 是总体(0,4)N 的样本,则当a = ,b = 时,统计量

221234(2)(34)X a X X b X X =-+-服从自由度为2的2χ分布。

9.设12(,,

,)n X X X 是总体2

(,)N a σ的样本,则当常数k = 时,2

21

?()n

i i k X X σ

==-∑是参数2σ的无偏估计量。

10.设由来自总体2~(,0.9)X N a 容量为9的样本,得样本均值x =5,则参数a 的置信度为0.95

的置信区间为 。 二、计算题(27分)

1.(15分)设二维随机变量(,)X Y 的联合密度函数为

1

(),

02,02(,)8

0,

x y x y x y ??+≤≤≤≤?=???其它

(1) 求X Y 与的边缘密度函数(),()X Y x y ??; (2) 判断X Y 与是否独立?为什么? (3) 求Z X Y =+的密度函数()Z z ?。 2.(12分)设总体X 的密度函数为

(),()0,

x e x x x θθ

--?≥=?

是未知参数,12(,,

,)n X X X 为总体X 的样本,求

(1)参数θ的矩估计量1?θ; (2)θ的极大似然估计量2?θ。 三、应用题与证明题(28分)

1.(12分)已知甲,乙两箱中有同种产品,其中甲箱中有3件正品和3件次品,乙箱中仅有3

件正品,从甲箱中任取3件产品放入乙箱后, (1)求从乙箱中任取一件产品为次品的概率;

(2)已知从乙箱中取出的一件产品为次品,求从甲箱中取出放入乙箱的3件产品中恰有2

件次品的概率。

2.(8分)设某一次考试考生的成绩服从正态分布,从中随机抽取了36位考生的成绩,算得平均成绩66.5x =分,标准差15s =分,问在显著性水平0.05α=下,是否可以认为这次考试全体考生的平均成绩为70分,并给出检验过程。

3.(8分)设0()1P A <<,证明:A B 与相互独立?(|)(|)P B A P B A =。 附表:

0.950.9750.950.951.65, 1.96,(35) 1.6896,(36) 1.6883,u u t t ==== 0.9750.975(35) 2.0301,(36) 2.0281,t t ==

模拟试题三

一、填空题(每题3分,共42分)

1.设()0.3,()0.8,P A P A B =?= 若A B 与互斥,则()P B = ;

A B 与独立,则()P B = ;若A B ?,则()P AB = 。

2.在电路中电压超过额定值的概率为1p ,在电压超过额定值的情况下,仪器烧坏的概率为2p ,则由于电压超过额定值使仪器烧坏的概率为 ;

3.设随机变量X 的密度为34,01()0,

x x x ??<<=??其它,则使{}{}P X a P X a >=<成立的常数

a = ;{0.5 1.5}P X <<= ;

4.如果(,)X Y 的联合分布律为

Y 1 2 3

X

1 1/6 1/9 1/18

2 1/

3 α β

则,αβ应满足的条件是 01,01,1

/αβαβ≤≤≤≤+= ,若X Y 与独立,α= ,β= ,(31)E X Y +-= 。

5.设~(,)X B n p ,且 2.4, 1.44,EX DX == 则n = ,p = 。 6.设2~(,)X N a σ,则3

2

X Y -=

服从的分布为 。 7.测量铝的比重16次,得 2.705,0.029x s ==, 设测量结果服从正态分布2(,)N a σ,参数2,a σ未知,则铝的比重a 的置信度为95%的置信区间为 。 二、(12分)设连续型随机变量X 的密度为:

,0

()0,

0x ce x x x ?-?>=?≤?

(1)求常数c ; (2)求分布函数()F x ; (3)求21Y X =+的密度()Y y ?

三、(15分)设二维连续型随机变量(,)X Y 的联合密度为

,01,0(,)0,c x y x

x y ?<<<

?

其它

(1)求常数c ; (2)求X Y 与的边缘密度(),()X Y x y ??; (3)问X Y 与是否独立?为什么?

(4)求Z X Y =+的密度()Z z ?; (5)求(23)D X Y -。

(2) 参数θ的极大似然估计量2?θ;

五、(10分)某工厂的车床、钻床、磨床和刨床的台数之比为9:3:2:1,它们在一定时间内需要修理的概率之比为1:2:3:1,当有一台机床需要修理时,求这台机床是车床的概率。

六、(10分)测定某种溶液中的水份,设水份含量的总体服从正态分布2(,)N a σ,得到的10个测定值给出0.452,0.037x s ==,试问可否认为水份含量的方差20.04σ=?(0.05α=)

22220.9750.9750.950.95(10)20.483,(9)19.023,(10)18.307,(9)16.919,χχχχ====

模拟试题四

一、填空题(每题3分,共42分)

1、 设A 、B 为随机事件,()0.8P B =,()0.2P B A -=,则A 与B 中至少有一个不发生的

概率为 ;当A B 与独立时,则(())P B A B ?= 2、 椐以往资料表明,一个三口之家患某种传染病的概率有以下规律:()孩子得病P =

0.6,()孩子得病母亲得病P =0.5,()孩子得病母亲及父亲得病P =0.4,那么一个三口之家患这种传染病的概率为 。

四、(11分)设总体X 的密度为

(1),01

()0,

x x x θθ??+<<=??其它

其中1θ>-是未知参数,1(,

,)n X X 是来自总体X 的一个样本,求

(1) 参数θ的矩估计量1?θ; 附表:

2222

0.050.0250.050.05(10) 3.94,(10) 3.247,(9) 3.325,(9) 2.7,χχχχ====

3、设离散型随机变量X 的分布律为:,...)2,1,0(!

3)(===k k a k X P k

,则

a =_______=≤)1(X P 。

4、若连续型随机变量X 的分布函数为??

??

???>≤<-+-≤=3,

133,

3arcsin 3,

0)(x x x B A x x F

则常数=A ,=B ,密度函数=)(x ?

5、已知连续型随机变量X 的密度函数

为2

218

(),x

x f x e

x -+-=-∞<<+∞,则

=-)14(X E , =2EX 。()=<-21X P 。

6、设X ~]3,1[U , Y ~)2(P ,且X 与Y 独立, 则

)3(--Y X D )= 。

7、设随机变量Y X ,相互独立,同服从参数为分布)0(>λλ的指数分布,令

Y X V Y X U -=+=2,2的相关系数。则=),(V U COV , =V U ,ρ 。

(注:6915.0)5.0(,8143.0)1(=Φ=Φ) 二、计算题(34分)

1、 (18分)设连续型随机变量)(Y X ,的密度函数为

,01,01

(,)0,

x y x y x y ????

??+≤≤≤≤=其他

(1)求边缘密度函数)(),(y x Y X ??; (2)判断X 与Y 的独立性; (3)计算cov(,)X Y ;

(3)求),max(Y X Z =的密度函数)(z Z ?

2、(16分)设随机变量X 与Y 相互独立,且同分布于)10)(,1(<

,若为奇数

(1)求Z 的分布律;

(2)求)(Z X ,的联合分布律;

(3)问p 取何值时X 与Z 独立?为什么?

三、应用题(24分)

1、 (12分)假设一部机器在一天内发生故障的概率是0.2。若一周5个工作日内无故障则可获10万元;若仅有1天故障则仍可获利5万元;若仅有两天发生故障可获利0万元;若有3天或3天以上出现故障将亏损2万元。求一周内的期望利润。

2、 (12分)将A 、B 、C 三个字母之一输入信道,输出为原字母的概率为0.8,而输出为其它一字母的概率都为0.1。今将字母AAAA ,BBBB ,CCCC 之一输入信道,输入AAAA ,

BBBB ,CCCC 的概率分别为0.5,0.4,0.1。已知输出为ABCA ,问输入的是AAAA 的概率是多少?(设信道传输每个字母的工作是相互独立的)。

答案(模拟试题一)

四、填空题(每空3分,共45分)

1、0.8286 ,0.988 ;

2、2/3 ;

3、

142

126

6

11

12

C C?

6

12

6

6!

12

C

4、1/2, F(x)=

1

,0

2

1

,02

24

1,2

x

e x

x

x

x

?

?

?

?

+<≤

?

?

>

?

??

,{0.51}

P X

-<<=0.5

31

42

e-

-;

5、p = 1/3,Z=max(X,Y)的分布律:Z 0 1 2

P 8/27 16/27 3/27;

6、D(2X-3Y)= 43.92, COV(2X-3Y, X)= 3.96 ;

7、当k

~(3)

Y t

=;

8、θ的矩估计量为:2X。

9、[9.216,10.784];

五、计算题(35分)

1、解1)

9 {|21|2}{0.5 1.5}

16 P X P

X

-<=-<

<=

2

(0 ()

0,0

1

,04

4

0,

X X

Y

y y

y

y

??

?

+> =

?

?

≤≤

?

=?

??其它

3)

45 (21)2121

33 E X EX

-=-=?-=

2、解:1)1

,02,02()(,)4

20,0,

x X x x dy x x x x y dy ??+∞

--∞??<<<

?===?????

?

??其它

其它

2||11

,

||2

(2||),

||24

()(,)40,

0,

y Y dx y y y y x y dx ??+∞

-∞??<-

?????其它其它 2)显然,(,)()()X Y x y x y ???≠,所以X 与Y 不独立。

又因为EY=0,EXY=0,所以,COV(X,Y)=0,因此X 与Y 不相关。

3)

22()(,)1

1,04,044280,0,Z z z x z x dx

z dx z z ??+∞

-∞

=-??<<-<

?

??其它

其它

3、解1)1

1211

1

(,,

,,)n

i

i

i x x n

n n

i L x x x e

e

θ

θ

θθ

θ

=-

-=∑==

12ln (,,,,)ln n nx

L x x x n θθθ

=--

2ln 0d L n nx

d θθθ

=-+= 解出:?X θ= 2)?E EX EX θ

θ=== ?θ

θ∴是的无偏估计量。 六、 应用题(20分)

1解:设事件A1,A2,A3,A4分别表示交通工具“火车、轮船、汽车和飞机”,其概率分别等于3/10,1/5,1/10和2/5,事件B 表示“迟到”,

已知概率{|},1,2,3,4i P B A i =分别等于1/4,1/3,1/2,0 则4

1{)()(|)i i i P B P A P B A ===

∑23

120

111()(|)9(|)()23P A P B A P A B P B =

=,222()(|)8

(|)()23P A P B A P A B P B ==

333()(|)6(|)()23P A P B A P A B P B =

=,444()(|)

(|)0()

P A P B A P A B P B =

= 由概率判断他乘火车的可能性最大。

2. 解:0:0.5H a ≤(‰),1:0.5H a >

拒绝域为:00.95(4)}x t χ=> 计算0.5184,0.018x s ==

0.952.2857(4)t t =

=>, 所以,拒绝0H ,说明有害物质含量超过了规定。 附表:

答 案(模拟试题二)

一、填空题(45分,每空3分)

1.()0.4,

()0.4P B P AB == 2.1()4

P A =

3. X 0 1 2 P 6/11 9/22 1/22

4.11

(,)(,)2A B π

=, 21(),(1)x x R x ?π=

∈+

5.1

,

[0,2]()2

0,

[0,2]

Y y y y ??∈?=????

6.

3{1}4

P X Y +==

7.1

cov(,)12,(31)1982

X Y D X Y =-+=

8.11

,20100a b =

=

; 9.1

1

k n =-; 10. (4.412, 5.588)

二、计算题(27分)

1.(1)1

1

(1),

[0,2](1),

[0,2](),()4

4

0,

[0,2]

0,

[0,2]

X Y x x y y x y x y ????+∈+∈??==????????

(2)不独立

(3)2

1,0281

()(4),

2480,Z z z z z z z ??≤≤???=-≤≤?????

其它

2.(1)计算()1x EX xe dx θθ

θ+∞

--=

=+?

根据矩估计思想,1x EX θ==+

解出:1

?1X θ=-; (2)似然函数 ())

11,,(,

,,)0,0,i n x nx n i i i n e x e

x L x x θθθθθ---+=?≥?≥??==??

????

∏其它其它 显然,用取对数、求导、解方程的步骤无法得到θ的极大似然估计。用分析的方法。因为(1)x θ≤,所以(1)x

e e θ≤,即11(1)(,

,,)(,,,)n n L x x L x x x θ≤

所以,当2(1)1

?min(,,)n X X X θ==时,使得似然函数达最大。极大似然估计为2?θ。

三、1.解:(1)设i A 表示“第一次从甲箱中任取3件,其中恰有i 件次品”,(i=0,1,2,3) 设B 表示“第二次从乙箱任取一件为次品”的事件;

32112311

13333333

1233131311

66666661()()(|)04n

i i i C C C C C C C C C P B P A P B A C C C C C C C ===?+?+?+?=∑

(2)22()

(|)0.6()

P A B P A B P B =

= 2. 解: 0:70H a =(‰),1:70H a ≠ 拒绝域为:00.97570

{|

|36(35)}x t s

χ-=> … 根据条件66.5x =,15s =,计算并比较

0.97536 1.4(35) 2.0301x t s

=<= 所以,接受0H ,可以认为平均成绩为70分。

3.(8分)证明:因为(|)(|)P B A P B A = ? ()()()()P AB P A P AB P A =

()[1()][()()]()P AB P A P B P AB P A ?-=- ()()()P AB P B P A ?=

? A B 与相互独立

答 案(模拟试题三)

一、填空题(每题3分,共42分)

1. 0.5 ; 2/7 ; 0.5 。 2. 1p 2p

; 3{0.5 1.5}P X <<= 15/16; 4. 01,01,1/3αβαβ≤≤≤≤+=, α= 2/9 ,β= 1/9 , 17/3 。

5. n = 6 ,p = 0.4 。 6.2

3(,)24

a N σ-。 7. (2.6895, 2.7205) 。

二、解:(1)0

()11x

x dx ce

dx c ?+∞

+∞

--∞

=?

==??

(2)0

0,

0()()1,0x

x t x

x F x t dt e dt e x ?---∞≤??

==?=->???? (3)Y 的分布函数1

(){21}{}2

Y y F y P X y P X -=+<=<

11

2

20

,

11,

10,

1

0,

1y y x e dx y e y y y ----??

??>->==??

??≤≤???

1

21,

1()2

0,1

y Y e y y y ?--?>?∴=??≤?

三、解:(1)1

00

1(,)2

x

c

x y dxdy cdydx ?+∞

+∞

-∞

-∞

===

?

?

?

?

, 2c ∴= (2)022,01

()(,)0,

x

X dy x x x x y dy ??+∞

-∞

?=<

122(1),01

()(,)0,

y Y dy y y y x y dx ??+∞-∞

?=-<

(3)X Y 与不独立;

(4)/2

1

/2

2,01()(,)22,120,

z z X Y z dy z z z x z x dx dy z z ??+∞+-∞?=<

??

???其它

(5)1

1

2

2

300

2

1

2,

23

2

EX x dx EX x dx ====

?? 112

200112(1),2(1)36EY y y dy EY y y dx =-==-=??

22121111

(),()23186318

DX DY =-==-=

10012,4x

EXY xydydx ==?

? 1211c o v (,)4

3336

X Y E X Y E X E Y ∴=-?=

-?= 7

(23)492c o v (2,3)

18

D X Y DX DY X Y ∴-=+-= 四、解:(1)101

(1),2

EX x x dx θθθθ+=+=+?

令EX x =,即1

2

x θθ+=+

解得1

21?1X X

θ-=-。 (2)1

1

()(,)(1)(),01,1,2,...,n

n

n

i i i i i L x x x i n θθ?θθ====+<<=∏∏

1

ln ()ln(1)ln n

i i L n x θθθ==++∑,1ln ()ln 01n

i i L n

x θθθ=?=+=?+∑

解得2

1

?1ln n

i

i n

X

θ==--∑

五、解:设1A ={某机床为车床},19()15

P A =

; 2A ={某机床为钻床},21()5P A =

; 3A ={某机床为磨床},32

()15P A =;

4A ={某机床为刨床},41

()15P A =;

B ={需要修理},11(|)7P B A =,22(|)7P B A =,33(|)7P B A =,41

(|)7

P B A =

则4

1

22

()()(|)105

i i i P B P A P B A ===

∑ 111()(|)9

(|)()22

P A P B A P A B P B =

=。

六、解:2201:0.04,:0.04H H σσ=≠

拒绝域为:22/21/222

(1)(1){

(1)}{(1)}n S

n S

n n ααχχσ

σ

---<->-或

计算得

220

(1)(91)0.0370.27380.04

n s

σ--?==,查表得2

0.025

(9) 2.70.2738χ=>

数三概率论与数理统计教学大纲

数三《概率论与数理统计》教学大纲 教材:四川大学数学学院邹述超、何腊梅:《概率论与数理统计》,高等教育出版社出,2002年8月。 参考书:袁荫棠:《概率论与数理统计》(修订本),中国人民大学出版社。 四川大学数学学院概率统计教研室:《概率论与数理统计学习指导》 总学时:60学时,其中:讲课50学时,习题课10学时。 学分:3学分。 说明: 1.生源结构:数三的学生是由高考文科生和一部分高考理科生构成。有些专业全是文科生或含极少部分理科生(如:旅游管理,行政管理),有些专业约占1/4~1/3的理科生(国贸,财政学,经济学),有些专业全是理科生(如:国民经济管理,金融学)。 2.高中已讲的内容:高中文、理科都讲了随机事件的概率、互斥事件的概率、独立事件的概率,即教材第一章除条件概率以及有关的内容以外,其余内容高中都讲了。高中理科已讲离散型随机变量的概率分布(包括二项分布、几何分布)和离散型随机变量的期望与方差,统计基本概念、频率直方图、正态分布、线性回归。而高中文科则只讲了一点统计基本概念、频率直方图、样本均值和样本方差的简单计算。 3.基本要求:学生的数学基础差异大,不同专业学生对数学课重视程度的差异大,这就给讲授这门课带来一定的难度,但要尽量做到“分层次”培养学生。高中没学过的内容要重点讲解,学过的内容也要适当复习或适当增加深度。讲课时,既要照顾数学基础差的学生,多举基本例子,使他们掌握大纲要求的基本概念和方法;也要照顾数学基础好的学生,使他们会做一些综合题以及简单证明题。因为有些专业还要开设相关的后继课程(如:计量经济学),将用到较多的概率统计知识;还有一部分学生要考研,数三的概率考研题往往比数一的难。 该教材每一章的前几节是讲述基本概念和方法,习题(A)是针对基本方法的训练而编写的,因此,这一部分内容须重点讲解,并要求学生必须掌握;每一章的最后一节是综合例题,习题(B)具有一定的综合性和难度,可以选讲部分例题,数学基础好的学生可选做(B)题。 建议各章学时分配(+号后面的是习题课学时): 第一章随机事件及其概率 一、基本内容 随机事件的概念及运算。概率的统计定义、古典定义及公理化定义。概率的基本性质、加法公式、条件概率与乘法公式、全概率公式、贝叶斯公式。事件的独立性,独立随机试验、

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

概率论与数理统计学1至7章课后标准答案

第五章作业题解 5.1 已知正常男性成人每毫升的血液中含白细胞平均数是7300, 标准差是700. 使用切比雪 夫不等式估计正常男性成人每毫升血液中含白细胞数在5200到9400之间的概率. 解:设每毫升血液中含白细胞数为,依题意得,7300)(==X E μ,700)(==X Var σ 由切比雪夫不等式,得 )2100|7300(|)94005200(<-=<

概率论与数理统计试题库

《概率论与数理统计》试题(1) 一 、 判断题(本题共15分,每小题3分。正确打“√”,错误打“×”) ⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( ) ⑸ 样本方差2n S = n 121 )(X X n i i -∑=是母体方差DX 的无偏估计 ( ) 二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为 2101 31111115651530 X P -- 求2 Y X =的分布列. 五、(10分)设随机变量X 具有密度函数|| 1()2 x f x e -= ,∞< x <∞, 求X 的数学期望和方差. 六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布 1 ()(1) ,1,2,,01k P X k p p k p -==-=<< , 的样本,试求未知参数p 的极大似然估计.

第一章 概率论与数理统计1

概 率 论 第一章 随机事件与概率 例1 设B A ,为随机事件,已知() 4.0,6.0)(, 5.0)(===A B P B p A P ,求 1) )(B A P + 2) )(B A P 3) ()B A P 4) )(B A P - 5) )(B A P + 例2 6个不同的球,投入编号为1到7的7个空盒中,求下列事件的概率:1) 1号到6号盒中各有一个球 2) 恰有6个盒中各有1个球 3) 1号盒内有2个球 例3 袋中有两个5分的,三个贰分的,五个1分的钱币。任取其中5个,求钱额总数超过壹角的概率。 例4 验收一批共有60件的可靠配件,按验收规则,随机抽验3件,只要3件中有一件不合格就拒收整批产品,假设,检验时,不合格品被误判为合格品的概率为0.03 ,而合格品被判为不合格品的概率为0.01,如果在60件产品中有3件不合格品,问这批产品被接收的概率是多少? 例5 验收成箱包装的玻璃器皿,每箱24只装,统计资料表明,每箱最多有2件残品,且含0,1和2件残品的箱各占80%,15%和5%。现随意抽取一箱,从中随意检验4只,若未发现残品则通过验收,否则逐一检验并更换。试求:1)一次通过验收的概率 2)通过验收的箱中确无残品的概率。 例6 一个医生已知某疾病的自然痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定10人中至少有4人治好,则认为这种药有效,反之,则无效,求:1)虽然新药有效,且把痊愈的概率提高到35%,但经过验收被否定的概率;2)新药完全无效,但经过试验被认为有效的概率。 例7 设B A ,是两个事件,0)(,0)(21>=>=P B P P A P ,且121>+P P ,证明:1 211)(P P A B P --≥ 例8 已知161)()(,0)(,41)()()(==== ==BC P AB P AB P C P B P A P ,求C B A ,,全不发生的概率。 例9 在长度为a 的线段内任取两点,将其分成三段,求它们能构成三角形的概率。 例10 设有三门炮同时对某目标射击,命中的概率分别为0.2,0.3,0.5,目标命中一发被击毁的概率是0.2,命中两发被击毁的概率为0.6,命中三发被击毁的概率为0.9,求三门炮在一次射击中击毁目标的概率。 例11 假设一厂家生产的仪器,以概率0.70可以直接出厂,以概率0.30需进一步调试,调试后以概率0.80可以出厂,并以概率0.20定为不合格品而不能出厂。现该厂生产了) 2n(n ≥

概率论与数理统计模拟试题

模拟试题A 一.单项选择题(每小题3分,共9分) 1. 打靶3 发,事件表示“击中i发”,i = 0,1,2,3。那么事件 表示( )。 ( A ) 全部击中;( B ) 至少有一发击中; ( C ) 必然击中;( D ) 击中3 发 2.设离散型随机变量x 的分布律为则常数 A 应为 ( )。 ( A ) ;( B ) ;(C) ;(D) 3.设随机变量,服从二项分布B ( n,p ),其中0 < p < 1 ,n = 1,2,…,那么,对 于任一实数x,有等于( )。 ( A ) ; ( B ) ; ( C ) ; ( D ) 二、填空题(每小题3分,共12分) 1.设A , B为两个随机事件,且P(B)>0,则由乘法公式知P(AB) =__________ 2.设且有 ,,则 =___________。 3.某柜台有4个服务员,他们是否需用台秤是相互独立的,在1小时内每人需用台秤的概 率为,则4人中至多1人需用台秤的概率为:__________________。 4.从1,2,…,10共十个数字中任取一个,然后放回,先后取出5个数字,则所得5个数字全不相同的事件的概率等于___________。 三、(10分)已知,求证 四、(10分)5个零件中有一个次品,从中一个个取出进行检查,检查后不放回。直到查 到次品时为止,用x表示检查次数,求的分布函数: 五、(11分)设某地区成年居民中肥胖者占10% ,不胖不瘦者占82% ,瘦者占8% ,又知肥胖者患高血压的概率为20%,不胖不瘦者患高血压病的概率为10% ,瘦者患高血压病的概率为

5%, 试求: ( 1 ) 该地区居民患高血压病的概率; ( 2 ) 若知某人患高血压, 则他属于肥胖者的概率有多大? 六、(10分)从两家公司购得同一种元件,两公司元件的失效时间分别是随机变量和,其概率密度分别是: 如果与相互独立,写出的联合概率密度,并求下列事件的概率: ( 1 ) 到时刻两家的元件都失效(记为A), ( 2 ) 到时刻两家的元件都未失效(记为B), ( 3 ) 在时刻至少有一家元件还在工作(记为D)。 七、(7分)证明:事件在一次试验中发生次数x的方差一定不超过。 八、(10分)设和是相互独立的随机变量,其概率密度分别为 又知随机变量 , 试求w的分布律及其分布函数。 九、(11分)某厂生产的某种产品,由以往经验知其强力标准差为 7.5 kg且强力服从正态分布,改用新原料后,从新产品中抽取25 件作强力试验,算 得,问新产品的强力标准差是否有显著变化?( 分别 取和0.01,已知, ) 十、(11分)在考查硝酸钠的可溶性程度时,对一系列不同的温度观察它在100ml 的水中溶解的硝酸钠的重量,得观察结果如下:

概率论与数理统计答案精选

习 题二 1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的最大 号码,写出随机变量X 的分布律. 【解】 故所求分布律为 2.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出 的次品个数,求: (1) X 的分布律; (2) X 的分布函数并作图; (3) 133 {},{1},{1},{12}222 P X P X P X P X ≤<≤≤≤<<. 【解】 故X 的分布律为 (2) 当x <0时,F (x )=P (X ≤x )=0 当0≤x <1时,F (x )=P (X ≤x )=P (X =0)= 22 35 当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435 当x ≥2时,F (x )=P (X ≤x )=1 故X 的分布函数 (3) 3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】 设X 表示击中目标的次数.则X =0,1,2,3. 故X 的分布律为 分布函数 4.(1) 设随机变量X 的分布律为 P {X =k }=! k a k λ, 其中k =0,1,2,…,λ>0为常数,试确定常数a . (2) 设随机变量X 的分布律为 P {X =k }=a/N , k =1,2,…,N ,

试确定常数a . 【解】(1) 由分布律的性质知 故 e a λ -= (2) 由分布律的性质知 即 1a =. 5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率; (2) 甲比乙投中次数多的概率. 【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,0.6),Y~b (3,0.7) (1) ()(0,0)(1,1)(2,2)P X Y P X Y P X Y P X Y ====+==+==+ 331212 33 (0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++ (2) ()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+ =0.243 6.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)? 【解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道,则有 即 200 2002001 C (0.02)(0.98) 0.01k k k k N -=+<∑ 利用泊松近似 查表得N ≥9.故机场至少应配备9条跑道. 7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)? 【解】设X 表示出事故的次数,则X ~b (1000,0.0001) 8.已知在五重贝努里试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则 故 1 3 p = 所以 4451210(4)C ()33243 P X === . 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1) 设X 表示5次独立试验中A 发生的次数,则X ~6(5,0.3) (2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,0.3) 10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时 间间隔起点无关(时间以小时计). (1) 求某一天中午12时至下午3时没收到呼救的概率; (2) 求某一天中午12时至下午5时至少收到1次呼救的概率.

概率论与数理统计课程教学大纲

概率论与数理统计课程教学大纲 一、课程说明 (一)课程名称:概率论与数理统计 所属专业:物理学 课程性质:必修 学分:3 (二)课程简介、目标与任务; 《概率论与数理统计》是研究随机现象规律性的一门学科;它有着深刻的实际背景,在自然科学、社会科学、工程技术、军事和工农业生产等领域中有广泛的应用。通过本课程的学习,使学生掌握概率与数理统计的基本概念,并在一定程度上掌握概率论认识问题、解决问题的方法。同时这门课程的学习对培养学生的逻辑思维能力、分析解决问题能力也会起到一定的作用。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 先修课程:高等数学。后续相关课程:统计物理。《概率论与数理统计》需要用到高等数学中的微积分、级数、极限等数学知识与计算方法。它又为统计物理、量子力学等课程提供了数学基础,起了重要作用。 (四)教材与主要参考书。 教材: 同济大学数学系编,工程数学–概率统计简明教程(第二版),高等教 育出版社,2012. 主要参考书: 1.浙江大学盛骤,谢式千,潘承毅编,概率论与数理统计(第四版), 高等教育出版社,2008. 2.J.L. Devore, Probability and Statistics(fifth ed.)概率论与数 理统计(第5版)影印版,高等教育出版社,2004. 二、课程内容与安排 第一章随机事件 1.1 样本空间和随机事件; 1.2 事件关系和运算。

第二章事件的概率 2.1概率的概念;2.2 古典概型;2.3几何概型;2.4 概率的公理化定义。第三章条件概率与事件的独立性 3.1 条件概率; 3.2 全概率公式; 3.3贝叶斯公式;3.4 事件的独立性; 3.5 伯努利试验和二项概率。 第四章随机变量及其分布 4.1 随机变量及分布函数;4.2离散型随机变量;4.3连续型随机变量。 第五章二维随机变量及其分布 5.1 二维随机变量及分布函数;5.2 二维离散型随机变量;5.3 二维连续随机变量;5.4 边缘分布; 5.5随机变量的独立性。 第六章随机变量的函数及其分布 6.1 一维随机变量的函数及其分布;6.2 多元随机变量的函数的分布。 第七章随机变量的数字特征 7.1数学期望与中位数; 7.2 方差和标准差; 7.3协方差和相关系数; *7.4大数律; 7.5中心极限定理。 第八章统计量和抽样分布 8.1统计与统计学;8.2统计量;8.3抽样分布。 第九章点估计

概率论与数理统计试题库及答案(考试必做)

<概率论>试题A 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和 0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则A=______________ 7. 已知随机变量X 的密度为()f x =? ? ?<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________ 8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率

为8081 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。 15.已知)4.0,2(~2-N X ,则2(3)E X += 16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 相互独立,则(3)D X Y -= 17.设X 的概率密度为2 ()x f x -=,则()D X = 18.设随机变量X 1,X 2,X 3相互独立,其中X 1在[0,6]上服从均匀分 布,X 2服从正态分布N (0,22),X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,则D (Y )= 19.设()()25,36,0.4xy D X D Y ρ===,则()D X Y += 20.设12,,,,n X X X ??????是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或 X ~ 。特别是,当同为正态分布时,对于任意的n ,都精确有 X ~ 或~ . 21.设12,,,,n X X X ??????是独立同分布的随机变量序列,且i EX μ=,

概率论与数理统计教学大纲

《概率论与数理统计》教学大纲 一、内容简介 《概率论与数理统计》是从数量侧面研究随机现象规律性的数学理论,其理论与方法已广泛应用于工业、农业、军事和科学技术中。主要包括:随机事件和概率,一维和多维随机变量及其分布,随机变量的数字特征,大数定律与中心极限定理,参数估计,假设检验等内容。 二、本课程的目的和任务 本课程是理工学科和社会学科部分专业的基础课程。课程内容侧重于讲解概率论与数理统计的基本理论与方法,同时在教学中结合各专业的特点介绍性地给出在科研、生产、社会等各领域中的具体应用。课程的任务在于使学生建立随机现象的基本概念和描述方法,掌握运用概率论和统计学原理对自然和人类社会的现象进行观察、描述和预言的方法和能力。为学生树立基本的概率论和统计思维素养,以及进一步在相关方向深造,打下基础。 三、本课程与其它课程的关系 学生在进入本课程学习之前,应学过:高等数学、线性代数。这些课程的学习,为本课程提供了必需的数学基础知识。本课程学习结束后,学生可具备进一步学习相关课程的理论基础,同时由于概率论与数理统计的理论与方法向各基础学科、工程学科的广泛渗透,与其他学科相结

合发展成不少边缘学科,所以它是许多新的重要学科的基础,学生应对本课程予以足够的重视。 四、本课程的基本要求 概率论与数理统计是一个有特色的数学分支,有自己独特的概念和方法,内容丰富,结果深刻。通过对本课程的学习,学生应该建立用概率和统计的语言对随机现象进行描述的基本概念,熟练掌握概率论与数理统计中的基本理论和分析方法,能熟练运用基本原理解决某些实际问题。具体要求如下: (一)随机事件和概率 1、理解随机事件的概念,了解样本空间的概念,掌握事件之间的关系和 运算。 2、理解概率的定义,掌握概率的基本性质,并能应用这些性质进行概率 计算。 3、理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公 式、贝叶斯公式,并能应用这些公式进行概率计算。 4、理解事件的独立性概念,掌握应用事件独立性进行概率计算。 5、掌握伯努利概型及其计算。 (二)随机变量及其概率分布 1、理解随机变量的概念 2、理解随机变量分布函数的概念及性质,理解离散型随机变量的分布律 及其性质,理解连续型随机变量的概率密度及其性质,会应用概率分

《概率论与数理统计》课程教学大纲

《概率论与数理统计》课程教学大纲 一、课程基本信息 课程编号:450006 课程名称:概率论与数理统计 课程类别:公共基础课(必修) 学时学分:理论48学时/3学分 适用专业:计算机、自动化、经管各专业 开课学期:第一学期 先修课程:高等数学 后续课程: 执笔人: 审核人: 制(修)订时间:2015.9 二、课程性质与任务 概率论与数理统计是研究随机现象客观规律性的数学学科,是高等学校理、工、管理类本科各专业的一门重要的基础理论课。通过本课程的教学,应使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机事件的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。 三、课程教学基本要求 本课程以课堂讲授为主,致力于讲清楚基本的概率统计思想,使学生掌握基本的概率、统计计算方法。注意培养基本运算能力、分析问题和解决实际问题的能力。讲授中运用实例来说明本课程应用的广泛性和重要性。每节课布置适量的习题以巩固所学知识,使学生能够运用概率统计思想和方法解决一些实际问题。 四、课程教学内容及各教学环节要求 (一)概率论的基本概念

1、教学目的 理解随机现象、样本空间、随机事件、概率等概念,掌握事件的关系与运算,掌握古典概犁及其计算、条件概率的计算、全概率公式和贝叶斯公式的应用。 2、教学重点与难点 (1)教学重点 ① 概率、条件概率与独立性的概念; ② 加法公式;乘法公式;全概率公式;贝叶斯公式。 (2)教学难点 ① 古典概型的有关计算;② 全概率公式的应用; ③ 贝叶斯公式的应用。 3、教学方法 采用传统教学方式,以课堂讲授为主,课堂讨论、多媒体演示、课下辅导等为辅的教学方法。加强互动教学,学生对课程的某一学术问题通过检索资料、实际调查来提高自学能力和实践应用能力。 4、教学要求 (1)理解随机试验、样本空间、随机事件等基本概念;熟练掌握事件的关系及运算 (2)理解频率和概率定义;熟练掌握概率的基本性质 (3)理解等可能概型的定义性质;,会计算等可能概型的概率 (4)理解条件概率的定义;熟练掌握加法公式、乘法公式、全概率公式和贝叶斯公式(5)理解事件独立性概念,掌握应用独立性进行概率计算 (二)随机变量及其分布 1、教学目的 了解随机变量的概念;理解离散型随机变量的分布律和连续型随机变量的概率密度的概念及性质,会利用性质确定分布律和概率密度;理解分布函数的概念及性质,会利用此概念和性质确定分布函数,会利用概率分布计算有关事件的概率;掌握正态分布、均匀分布、指数分布、0-1分布、二项分布、泊松分布,会求简单的随机变量函数的分布 2、教学重点与难点 (1)教学重点 ① 随机变量及其概率分布的概念; ② 离散型随机变量分布律的求法;

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案

;第一章 一、填空题 1.若事件A?B且P(A)=0.5, P(B) =0.2 , 则P(A -B)=(0.3 )。 2.甲、乙各自同时向一敌机炮击,已知甲击中敌 机的概率为0.7,乙击中敌机的概率为0.8.求 敌机被击中的概率为(0.94 )。 3.设A、B、C为三个事件,则事件A,B,C中 不少于二个发生可表示为(AB AC BC ++)。 4.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率 为(0.496 )。 5.某人进行射击,每次命中的概率为0.6 独立 射击4次,则击中二次的概率为 ( 0.3456 )。 6.设A、B、C为三个事件,则事件A,B与C都 不发生可表示为(ABC)。 7.设A、B、C为三个事件,则事件A,B,C中 不多于一个发生可表示为(AB AC BC I I); 8.若事件A与事件B相互独立,且P(A)=0.5, P(B) =0.2 , 则P(A|B)=(0.5 );

9.甲、乙各自同时向一敌机炮击,已知甲击中敌机 的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(0.8 ); 10.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A-)=(0.5 ) 11.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为(0.864 )。 12.若事件A?B且P(A)=0.5, P(B) =0.2 , 则 P(B A)=(0.3 ); 13.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A)=(0.5 ) 14.A、B为两互斥事件,则A B= U(S )15.A、B、C表示三个事件,则A、B、C恰 有一个发生可表示为 (ABC ABC ABC ++) 16.若()0.4 P AB A B= U P AB=0.1则(|) P B=,() P A=,()0.2 ( 0.2 ) 17.A、B为两互斥事件,则AB=(S ) 18.保险箱的号码锁定若由四位数字组成,则一次 )。 就能打开保险箱的概率为(1 10000

概率论与数理统计1_8课后习题答案

第一章 思 考 题 1.事件的和或者差的运算的等式两端能“移项”吗?为什么? 2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个 能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么? 3.圆周率ΛΛ1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把 它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表: 67 5844625664686762609876543210出现次数数字 你能说出他产生怀疑的理由吗? 答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等, 或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由. 4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗? 5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不 相容事件又有何区别和联系? 6.条件概率是否是概率?为什么? 习 题 1.写出下列试验下的样本空间: (1)将一枚硬币抛掷两次 答:样本空间由如下4个样本点组成{(,)(,)(,)(,)}Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次 答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω== (3)调查城市居民(以户为单位)烟、酒的年支出 答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时, 样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥ 2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件: (1) “甲未中靶”: ;A (2) “甲中靶而乙未中靶”: ;B A (3) “三人中只有丙未中靶”: ;C AB (4) “三人中恰好有一人中靶”: ;C B A C B A C B A Y Y (5)“ 三人中至少有一人中靶”: ;C B A Y Y

概率论与数理统计复旦大学出版社第一章课后参考答案

精心整理 第一章 1.见教材习题参考答案. 2.设A ,B ,C 为三个事件,试用A ,B ,C (1)A 发生,B ,C 都不发生; (2)A , B , C 都发生; (3)A ,B ,C (4)A , B , C 都不发生; (5)A ,B ,C (6)A ,【解】(1(B C (4)ABC B C (5)ABC ∪ABC ∪ABC ABC =AB BC AC 3. . 4.设A ,?B )=0.3,求P (. 【解】P 5.设A ,(A )=0.6,P (B )=0.7, (1AB (2AB 【解】(1)()0.6AB P A ==,()P AB 取到最大值为(2)当()()()0.3P A P B P A B =+-= 6.设A ,B ,P (C )=1/3P (AC )至少有一事件发生的概率. )=0, 由加法公式可得 =14+14+13?112=34 7.52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少? 【解】设A 表示“取出的13张牌中有5张黑桃,3张红心,3张方块,2张梅花”, 则样本空间Ω中样本点总数为13 52n C =,A 中所含样本点533213131313k C C C C =,所求概率为 8. (1)求五个人的生日都在星期日的概率;(2)求五个人的生日都不在星期日的概率; (3)求五个人的生日不都在星期日的概率. 【解】(1)设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故

P (A 1)= 5 17 =(17)5(亦可用独立性求解,下同) (2)设A 2={五个人生日都不在星期日},有利事件数为65,故 P (A 2)=5567=(67 )5 (3)设A 3={五个人的生日不都在星期日} P (A 3)=1?P (A 1)=1?(1 7 )5 9..见教材习题参考答案. 10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n

(完整版)概率论与数理统计课程标准

《概率论与数理统计》课程标准 一、课程概述 (一)课程定位 《概率论与数理统计》(Probability Theory and Mathematical Statistics),由概率论和数理统计两部分组成。它是研究随机现象并找出其统计规律的一门学科,是广泛应用于社会、经济、科学等各个领域的定量和定性分析的科学体系。从学科性质讲,它是一门基础性学科,它为建筑专业学生后继专业课程的学习提供方法论的指导。 (二)先修后续课程 《概率论与数理统计》的先修课程为《高等数学》、《线性代数》等,这些课程为本课程的学习奠定了理论基础。 《概率论与数理统计》的后续课程为《混凝土结构设计》、《地基与基础》等课程。通过该课程的学习可为这些课程中的模型建立等内容的知识学习奠定良好的基础,在教学中起到了承上启下的作用。 二.课程设计思路 本课程的基本设计思路是极力用较为通俗的语言阐释概率论的基本理论和数理统计思想方法;理论和方法相结合,以强调数理统计理论的应用价值。总之,强调理论与实际应用相结合的特点,力求在实际应用方面做些有益的探索,也为其它学科的

进一步学习打下一个良好的基础。 三、课程目标 《概率论与数理统计》是一门几乎遍及所有的科学技术领域以及工农业生产和国民经济各部门之中。通过学习该课程使学生掌握概率、统计的基本概念,熟悉数据处理、数据分析、数据推断的各种基本方法,并能用所掌握的方法具体解决工程实践中所遇到的各种问题。 (一)能力目标 力求在简洁的基础上使学生能从整体上了解和掌握该课程的内容体系,使学生能够在实际工作中、其它学科的学习中能灵活、自如地应用这些理论。 (二)知识目标 1.理解掌握概率论中的相关概念和公式定理; 2.学会应用概率论的知识解决一些基本的概率计算; 3.理解数理统计的基本思想和解决实际问题的方法。 (三)素质目标 1.培养学生乐于观察、分析、不断创新的精神; 2.培养具有较好的逻辑思维、较强的计划、组织和协调能力; 3.培养具有认真、细致严谨的职业能力。 四、课程内容 根据能力培养目标的要求,本课程的主要内容是随机事件、随机变量、随机向量、数字特征、极限定理。具体内容和学时分配见表4-1。 表4-1 课程内容和学时分配

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案
第 1 章 概率论的基本概念
§1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢 3 次,观察正面 H﹑反面 T 出现的情形. 样本空间是:S=
(2) 一枚硬币连丢 3 次,观察出现正面的次数. 样本空间是:S= 2.(1) 丢一颗骰子. A:出现奇数点,则 A= ;B:数点大于 2,则 B= (2) 一枚硬币连丢 2 次, A:第一次出现正面,则 A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则 C= ;b5E2RGbCAP ;p1EanqFDPw .DXDiTa9E3d .
§1 .2 随机事件的运算
1. 设 A、B、C 为三事件,用 A、B、C 的运算关系表示下列各事件: (1)A、B、C 都不发生表示为: .(2)A 与 B 都发生,而 C 不发生表示为: .RTCrpUDGiT (3)A 与 B 都不发生,而 C 发生表示为: .(4)A、B、C 中最多二个发生表示为: .5PCzVD7HxA (5)A、B、C 中至少二个发生表示为: .(6)A、B、C 中不多于一个发生表示为: .jLBHrnAILg 2. 设 S ? {x : 0 ? x ? 5}, A ? {x : 1 ? x ? 3}, B ? {x : 2 ?? 4}:则 (1) A ? B ? (4) A ? B = , (2) AB ? , (5) A B = , (3) A B ? 。 ,
xHAQX74J0X
§1 .3 概率的定义和性质
1. 已知 P( A ? B) ? 0.8, P( A) ? 0.5, P( B) ? 0.6 ,则 (1) P( AB) ? , (2)( P( A B) )= 则 P( AB) = , (3) P( A ? B) = . .LDAYtRyKfE
2. 已知 P( A) ? 0.7, P( AB) ? 0.3,
§1 .4 古典概型
1. 某班有 30 个同学,其中 8 个女同学, 随机地选 10 个,求:(1)正好有 2 个女同学的概率, (2)最多有 2 个女同学的概率,(3) 至少有 2 个女同学的概率. 2. 将 3 个不同的球随机地投入到 4 个盒子中,求有三个盒子各一球的概率.
§1 .5 条件概率与乘法公式
1.丢甲、乙两颗均匀的骰子,已知点数之和为 7, 则其中一颗为 1 的概率是 2. 已知 P( A) ? 1 / 4, P( B | A) ? 1 / 3, P( A | B) ? 1 / 2, 则 P( A ? B) ? 。 。
§1 .6 全概率公式
1.
有 10 个签,其中 2 个“中” ,第一人随机地抽一个签,不放回,第二人再随机地抽一个签,说明两人 抽“中‘的概率相同。Zzz6ZB2Ltk 1 / 19

相关主题