搜档网
当前位置:搜档网 › 重点高中立体几何证明方法及例题

重点高中立体几何证明方法及例题

重点高中立体几何证明方法及例题
重点高中立体几何证明方法及例题

重点高中立体几何证明方法及例题

————————————————————————————————作者:————————————————————————————————日期:

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。

1. 线线、线面、面面平行关系的转化:

线线∥

线面∥

面面∥

公理

4

(a//b,b//c ?a c

//)

线面平行判定 αβ

αγβγ

//,//I I ==????

a b a b

面面平行判定1

a b a b a //,//????

??ααα

面面平行性质

a b a b A a b ??=?????

?ααββαβ

,//,////I 线面平行性质

a a

b a b

////αβαβ?=????

?

?I 面面平行性质1

αβαβ

////a a ???

?

?

面面平行性质

αγβγαβ

//////??

??

A b

α

a

β a

b

α

2. 线线、线面、面面垂直关系的转化:

线线⊥ 线面⊥

面面⊥

三垂线定理、逆定理

PA AO PO a a OA a PO a PO a AO

⊥?⊥?⊥⊥?⊥ααα

,为在内射影则

线面垂直判定1 面面垂直判定 a b a b O l a l b l ,,?=⊥⊥?⊥??

?

?

?αα

I a a ⊥??⊥?

??

α

βαβ 线面垂直定义

l a l a

⊥??⊥?

??α

α

面面垂直性质,推论2

αβ

αββα⊥=?⊥?⊥???

?

?I b a a b a , αγβγαβ

γ⊥⊥=?⊥?

??

?

?I a a

面面垂直定义

αβαβαβI =--?⊥?

??

l l ,且二面角成直二面角

线线∥线面⊥面面∥

线面垂直判定2面面平行判定2

线面垂直性质2面面平行性质3

a b

a

b

//

?⊥

?

?

?

α

α

a

b

a b

?

?

?

?

α

α

//

a

a

?

?

?

?

α

β

αβ

//

αβ

α

β

//

a

a

?

?

?

a

4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。”

5. 唯一性结论:

1. 三类角的定义:

(1)异面直线所成的角θ:0°<θ≤90°

(2)直线与平面所成的角:0°≤θ≤90°

(3)二面角:二面角的平面角θ,0°<θ≤180°

2. 三类角的求法:转化为平面角“一找、二作、三算”

即:(1)找出或作出有关的角;(2)证明其符合定义;

(3)指出所求作的角;(4)计算大小。

【典型例题】

(一)与角有关的问题

例1. (1)如图,E 、F 分别为三棱锥P —ABC 的棱AP 、BC 的中点,PC =10,AB =6,EF =7,则异面直线AB 与PC 所成的角为( )

A. 60°

B. 45°

C. 30°

D. 120°

解:取AC 中点G ,连结EG 、FG ,则

EG PC FG AB

∥∥,==1212

∴∠EGF 为AB 与PC 所成的角

在△EGF 中,由余弦定理,

cos ∠··EGF EG FG EF EG FG =+-=+-??=-

222222

25372531

2

∴AB 与PC 所成的角为180°-120°=60°

∴选A

(2)已知正四棱锥以棱长为1的正方体的某个面为底面,且与该正方体有相同的全面积,则这一正四棱锥的侧棱与底面所成的角的余弦值为( )

A B C D .

.

.

.

1313

36

33

2626

解:

设正四棱锥的高为,斜高为h h h '=

+?? ???

2

2

12

由题意:1241121612

222

??+?? ????? ?

???+=?h

∴h 2

6=

∴侧棱长PB h OB

=+=+

?

?

?

?

?=

22

2

6

2

2

26

2

∴∠

cos PBO

OB

PB

===

2

2

26

2

13

13

∴选A

()如图,在正方体中,为上的一个定点,为3

111111

ABCD A B C D P A D Q

-

A B E F CD EF

11

上的任意一点,、为上任意两点,且的长为定值,有下列命题:

①点P到平面QEF的距离为定值;

②直线PQ与平面PEF所成的角为定值;

③二面角P—EF—Q的大小为定值;

④三棱锥P—QEF的体积为定值

其中正确命题的序号是___________。

解:

平面即是平面

QEF A B CD

11

∴上定点到面的距离为定值

A D P A

B CD

1111

∴①对,②错

二面角——,即面与面所成的角,且平面角∠为定

P EF Q PDF A B CD PDA

111

值,∴③对

因为∥,且为定值,∴为定值

A B DC EF S

QEF

11?

又点到平面的距离为定值,∴为定值,∴④对

P QEF V

P QEF

-

综上,①③④正确。

例2. 图①是一个正方体的表面展开图,MN和PQ是两条面对角线,请在图(2)的正方体中将MN,PQ画出来,并就这个正方体解答下列各题:

(1)求MN和PQ所成角的大小;

(2)求四面体M—NPQ的体积与正方体的体积之比;

(3)求二面角M —NQ —

P 的大小。

解:(1)如图②,作出MN 、PQ

∵PQ ∥NC ,又△MNC 为正三角形 ∴∠MNC =60°

∴PQ 与MN 成角为60°

()·21

3V V S MQ M NPQ Q PMN PMN --==

?

=

==1621

61

6···正方体

S MQ S MQ V PMN PMDN ?

即四面体M —NPQ 的体积与正方体的体积之比为1:6

(3)连结MA 交PQ 于O 点,则MO ⊥PQ

又NP ⊥面PAQM ,∴NP ⊥MO ,则MO ⊥面PNQ 过O 作OE ⊥NQ ,连结ME ,则ME ⊥NQ ∴∠MEO 为二面角M —NQ —P 的平面角 在Rt △NMQ 中,ME ·NQ =MN ·MQ

设正方体的棱长为a

ME a a a

a MO a =

==23632

2·,又 在中,∠Rt MEO MEO MO

ME

a

a ?sin =

==226332

∴∠MEO =60°

即二面角M —NQ —P 的大小为60°。

例3. 如图,已知四棱锥P —ABCD ,PB ⊥AD ,侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°。 (1)求点P 到平面ABCD 的距离; (2)求面APB 与面CPB 所成二面角的大小。

解:(1)作PO ⊥平面ABCD ,垂足为O ,连结OB 、OA 、OD ,OB 与AD 交于点E ,连结PE

∵AD ⊥PB ,∴AD ⊥OB (根据___________) ∵PA =PD ,∴OA =OD

于是OB 平分AD ,点E 为AD 中点 ∴PE ⊥AD

∴∠PEB 为面PAD 与面ABCD 所成二面角的平面角

∴∠PEB =120°,∠PEO =60°

又,∴·

PE PO PE o

====36033232sin

即为P 点到面ABCD 的距离。

(2)由已知ABCD 为菱形,及△PAD 为边长为2的正三角形 ∴PA =AB =2,又易证PB ⊥BC 故取PB 中点G ,PC 中点F 则AG ⊥PB ,GF ∥BC 又BC ⊥PB ,∴GF ⊥PB

∴∠AGF 为面APB 与面CPB 所成的平面角 ∵GF ∥BC ∥AD ,∴∠AGF =π-∠GAE 连结GE ,易证AE ⊥平面POB

又,为中点PE BE G PB ==3

∴∠∠PEG PEB o =

=1260

∴GE PE o

==?

=cos603123

2

在中,Rt AGE AE AD ?==1

21

∴∠tan GAE GE AE =

=32

∴∠GAE =arctan

32

∴∠AGF =-πarctan

32

所以所求二面角的大小为π-arctan

32

(2)解法2:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA

P B (,,

),(,,)003203320

PB G AG 的中点的坐标为(,

,),连结03343

4

又(,

,),(,,)A C 1320233

20-

由此得到(,,),(,,),GA PB →

=-

-→=-1343403323

2

BC →

=-(,,)200

于是·,·GA PB BC PB →→=→→=00 ∴⊥,⊥GA PB BC PB →→→→

∴、的夹角为所求二面角的平面角GA BC →→

θ

于是··cos ||||θ=→→→→=-GA BC GA BC 27

7

∴所求二面角大小为π-arccos

27

7

(二)与距离有关的问题

例4. (1)已知在△ABC 中,AB =9,AC =15,∠BAC =120°,它所在平面外一点P 到△ABC 三个顶点的距离都是14,那么点P 到平面ABC 的距离是( )

A. 13

B. 11

C. 9

D. 7 解:设点P 在△ABC 所在平面上的射影为O

A

B C O R

∵PA =PB =PC ,∴O 为△ABC 的外心

△ABC 中,AB =9,AC =15,∠BAC =120°

∴BC o

=+-???=91529151202122cos

,∴a

A

R R sin ==?

=221232

73

()

∴PO =-=1473

7

2

2

()在直三棱柱中,,,∠2221111ABC A B C AB BC BB ABC -====

90E F o

,、分别为、的中点,沿棱柱的表面从到两点的最短路径的AA C B E F 111

长度为___________。

解:(采用展开图的方法)

将平面沿旋转使两矩形与在同一平面内B BCC B B A ABB B BCC 1111111

连接,则为所求的最短路径EF EF

如图①,EF A E A F =+=+?? ?

??

=

121222

132222

2

如图②展开,EF =++?? ??

?

=

+()212272222

2

如图③展开,EF =?? ???++?? ?

?

?

=

321213222

2

比较这三种方式展开,可见沿表面从到的最短路径长度为

。E F 3

22

点评:此类试题,求沿表面运动最短路径,应展开表面为同一平面内,则线段最短。但必须注意的是,应比较其各种不同展开形式中的不同的路径,取其最小的一个。

(3)在北纬45°圈上有甲、乙两地,它们的经度分别是东经140°与西经130°,设地球半径为R ,则甲、乙两地的球面距离是( )

A R

B R

C R

D R .

.

.

.

1

2

14

32

13ππππ

解:

()

由题意∠AO B o o o o

136014013090=-+=

(O 1为小圆圆心)

又由题意O A O B R 112

2==

则中,?O 1AB AB R =

∴△AOB 为正三角形(O 为球心)

∴∠AOB =

π3

∴、两点球面距离为

A B R π3

∴选D

例5. 如图,四棱锥P —ABCD ,底面ABCD 是矩形,PA ⊥平面ABCD ,E 、F 分别是AB 、PD 中点。 (1)求证:AF ∥平面PEC ;

()若=,,二面角——为,求点到平面2AD 2CD P CD B F PEC o

=2245

距离。

解:G 为PC 中点,连结FG 、EG 又∵F 为PD 中点

∴,又∥∥FG CD AE CD

==121

2

∴∥FG AE =

∴四边形AEGF 为平行四边形

∴∥,又面,面AF EG EG PEC AF PEC ??

∴AF ∥平面PEC

(2)∵CD ⊥AD ,又PA ⊥面ABCD ∴AD 为PD 在面ABCD 上射影 ∴CD ⊥PD

∴∠PDA 为二面角P —CD —B 的平面角,且∠PDA =45° 则△PAD 为等腰直角三角形 ∴AF ⊥PD ,又CD ⊥平面PAD ∴CD ⊥AF ∴AF ⊥面PCD

作FH ⊥PC 于H ,则AF ⊥FH 又EG ∥AF ,∴EG ⊥FH

∴FH ⊥面PEC ,∴FH 为F 到面PEC 的距离

在Rt △PEG 中,FH ·PG =PF ·FG

∴FH =

?+=2222

1

2

2

方法2:(体积法)

∵AF∥面PEC,故只要求点A到面PEC的距离d

由即··

V V S d S PA

A PEC P AEC PEC AEC

--

==

1

3

1

3

??

易证AF⊥面PCD,∴EG⊥面PCD

∴EG⊥PC

()

∴·

S PC EG

PEC

?

==++?=

1

2

1

2

2222222

222

S AE BC

AEC

?

=?=??

=

1

2

1

2

222

·

d

S PA

S

AEC

PEC

==

?

=

?

?

22

22

1

(三)对命题条件的探索

例6. (1)如图已知矩形ABCD中,AB=3,BC=a,若PA⊥平面ABCD,在BC边上取点E,使PE ⊥DE,则满足条件E点有两个时,a的取值范围是()

A a

B a

..

>≥

66

C a

D a

..

0606

<<<≤

解:∵PA⊥面ABCD,PE⊥DE

由三垂线定理的逆定理知PE的射影AE⊥BE

所以满足条件的点E是以AD为直径的圆与BC的交点,要有两个交点,则

AD>2AB=6

∴选A

(2)如图,在三棱柱ABC-A'B'C'中,点E、F、H、K分别为AC'、CB'、A'B、B'C'的中点,G为△ABC的重心,从K、H、G、B'中取一点作为P,使得该棱柱恰有2条棱与平面PEF平行,则P为()

A. K

B. H

C. G

D. B

分析:从题目中的“中点”条件,联想到“中位线”。

而平面PEF 中,EF 为定直线,连BC'则F 为BC'中点

故中,∥∥平面,∥平面?AC B EF AB AB PEF A B PEF '''?

考虑到若P 为K 点,则还有AA'、BB'、CC'都平行于FK 即它们也都平行于平面PEF ,不合题意。 同理P 也不能为H 点,若P 为B'点时,EF 与B'A'共面也不符合题意(这时只有一条棱平行于平面PEF ),可见只能取G 点。 故选C

例7. 如图,是棱长为的正方体11111ABCD A B C D -

()线段上是否存在一点使得⊥平面若存在,确定的位111A B P A B PAC P ?置;若不存在,

说明理由。

()点在线段上,若二面角——的大小是,求点位221P A B C AP B P arctan 置;

()点在对角线上,使∥平面,求。

3111Q B D A B QAC B Q

QD

解:(1)(用反证法)

假设⊥面,则⊥BA PAC A B AC 11

∵∥,易知与成A C AC A B A C o

1111160 即与成角,与⊥矛盾A B AC A B AC o

1160

∴不垂直于平面A B PAC 1

∴不存在点P 满足题目条件

(2)过B 作BH ⊥AP 于H ,连CH

由于⊥面,故⊥CB ABB A CH

AP 11

即∠BHC 是二面角C —AP —B 的平面角

∴∠tan BHC BC

BH ==2

即AB

BH =2

即在中,

Rt BHA BH AB ?=1

2

∴∠BAH =30°

在中,

,又?ABP PB AB

AB sin sin 301051

?=?=

∴PB =

+=-12624

622

()由于∥,∴∥面31111A B D C A B D AC ∴点是直线与面的交点Q B D D AC 11

下面求Q 点的位置。

设∩,显然∽AC BD O QOD QD B =??11

B Q QD B D DO 111

2==

(四)对命题结论的探索

例8. ()正方体中,点在侧面及其边界上运动,1111111ABCD A B C D P BCC B - 并且总保持AP ⊥BD 1,则动点P 的轨迹是( ) A B C .线段1 B BC .线段1

C BB CC .11中点与中点连成的线段

D BC B C .中点与中点连成的线段1

分析:从条件AP ⊥BD 1出发,可知AP 必在过A 点且与BD 1垂直的平面B 1AC 上 ∴点P 必在B 1C 上

∴选A

(2)如图,斜三棱柱ABC —A 1B 1C 1中,∠BAC =90°,BC 1⊥AC ,则C 1在底面ABC 上的射影H 必在( )

A. 直线AB 上

B. 直线BC 上

C. 直线CA 上

D. △ABC 内部

解:连结AC 1

∵AC ⊥AB ,又AC ⊥BC 1 ∴AC ⊥面ABC 1

又面,∴面⊥面且为交线AC ABC ABC ABC AB ?1

则C 在面ABC 上的射影必在交线AB 上

∴选A

例9. 在四面体ABCD 中,AB ⊥BC ,AB ⊥BD ,BC ⊥CD ,且AB =BC =1。 (1)求证:平面CBD ⊥平面ABD ; (2)是否存在这样的四面体,使二面角C —AD —B 的平面角为30°?如果存在,求出CD 的长;如果不存在,请找出一个角θ,使得存在这样的四面体,使二面角C —AD —B 的平面角为θ。

解:(1)∵AB ⊥BC ,AB ⊥BD

∴⊥平面,又面AB BCD AB ABD ?

∴面

ABD ⊥面CBD

(2)设CD =x ,在面CBD 内作CE ⊥BD 于E 由(1)知平面ABD ⊥面BCD ,且BD 为交线 ∴CE ⊥平面ABD

作EF ⊥AD 于F ,连结CF ,则CF ⊥AD

∴∠CFE 为“二面角”C —AD —B 的平面角,且∠CFE =30°

又在Rt △BCD 中,CE ·BD =CB ·CD

∴CE x x x x =

?+=

+11

122

又∵CD ⊥BC ,又BC 为AC 在面BCD 上射影 ∴CD ⊥AC

则在Rt △ACD 中,CF ·AD =AC ·CD

∴CF x x =

+222

在中,∠·Rt CEF CFE CE

CF

x x x x x x ?sin ==

++=++=

2

22

2

122

221

12

解出,无实数解。x 2

3=-

故不存在这样的四面体,使二面角C —AD —B 的平面角为30°

又∠·,sin CFE x x x =

++=

+

+∈?? ???2

22

221

12

11

1221

∴∠,CFE ∈?? ???

π

π42

故θ可以取45°~90°之间的任意角。

点评:本题是一道存在性的探索问题。常常假定结论成立,再判断它与已知条件是否符合。

【模拟试题】

一. 选择题。

1. PA 、PB 、PC 是从P 引出的三条射线,两两成60°,则PC 与平面PAB 所成角的余弦值是( )

A. 12

B. 32

C. 33

D. 63

2. 在边长为1的菱形ABCD 中,∠ABC =60°,将菱形沿对角线AC 折起,使折起后BD =1,则二面角B —AC —D 的余弦值为( )

A. 13

B. 12

C. 223

D. 32

3. 三棱锥的三条侧棱两两垂直,底面上一点到三个侧面的距离分别是2,3,6,则这个点到三棱锥顶点的距离是( )

A.

11

B.

41

C. 7

D.

61

4. 已知A 、B 、C 是球面上的三点,且AB =6,BC =8,AC =10,球 心O 到平面ABC 的距离为11,则球的表面积为( )

A. 36π

B. 72π

C. 144π

D. 288π

5. △ABC 边上的高线为AD ,BD a CD b ==,,且a b <,将△ABC 沿AD 折成大小为θ的二面角B

—AD —C ,若

cos θ=

a

b ,则三棱锥A —BCD 的侧面△ABC 是( )

A. 锐角三角形

B. 钝角三角形

C. 直角三角形

D. 形状与a ,b 的值有关的三角形

6. 有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体的下底面的四个顶点是下层正方体上底面各边的中点,已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面积)超过39,则该塔中正方体的个数至少是( )

A. 4

B. 5

C. 6

D. 7

二. 填空题。

7. 如图,在三棱锥P —ABC 中,PA PB PC BC ===,且∠BAC =

π

2,则PA 与底面ABC 所成角

的大小为___________。

8. 如图,矩形ABCD 中,AB BC ==43,,沿AC 把△DAC 折起,当四面体的体积最大时,直线AD 与平面ABG 所成角的正弦值是___________。

9. 如图,正方体ABCD A B C D -1111棱长为1,M 、N 分别为B C D C 1111、中点,则点C 到截面MNDB 的距离是___________。

三. 解答题。

10. 如图,正三角形ABC 的边长为3,过其中心G 作BC 边的平行线,分别交AB 、AC 于B C 11、,将

?AB C 11沿B C 11折起到?A B C 111的位置,使点A 1在平面BB C C 11上的射影恰是线段BC 的中点M ,求:

(1)二面角A B C M

111

--的大小;

(2)异面直线A B

11与

CC

1所成角的大小。(用反三角函数表示)

11. 如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点。

(1)求证:AM∥平面BDE;

(2)求二面角A—DF—B的大小;

(3)试在线段AC上确定一点P,使得PF与BC所成的角是60°。

11.解:(1)记AC与BD交于点O,连结OE

立体几何证明垂直专项含练习题及答案

立体几何证明------垂直 一.复习引入 1.空间两条直线的位置关系有:_________,_________,_________三种。 2.(公理4)平行于同一条直线的两条直线互相_________. 3.直线与平面的位置关系有_____________,_____________,_____________三种。 4.直线与平面平行判定定理:如果_________的一条直线和这个平面的一条直线平行, 那么这条直线和这个平面平行 5.直线与平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这 个平面相交,那么_________________________. 6.两个平面的位置关系:_________,_________. 7.判定定理1:如果一个平面有_____________直线都平行于另一个平面,那么这两 个平面平行. 8.线面垂直性质定理:垂直于同一条直线的两个平面________. 9.如果两个平行平面同时和第三个平面相交,那么它们的________平行. 10.如果两个平面平行,那么其中一个平面的所有直线都_____于另一个平面. 二.知识点梳理 要点诠释:定义中“平面的任意一条直线”就是指“平面的所有直线”,这与“无数条直线”不同(线 线垂直线面垂直) Ⅰ.二面角:从一条直线出发的两个半平面所组成的图形叫二面角(dihedral angle ). 这条直线叫做二 面角的棱,这两个半平面叫做二面角的面. 记作二面角AB αβ--. (简记P AB Q --)

二面角的平面角的三个特征: ⅰ. 点在棱上 ⅱ. 线在面 ⅲ. 与棱垂直 Ⅱ.二面角的平面角:在二面角αβ-l -的棱l 上任取一点O ,以点O 为垂足,在半平面,αβ分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的AOB ∠叫做二面角的平面角. 作用:衡量二面角的大小;围:000180θ<<. 知识点四、平面和平面垂直的定义和判定 (垂直问题中要注意题目中的文字表述,特别是“任何”“ 随意”“无数”等字眼) 三.常用证明垂直的方法 立体几何中证明线面垂直或面面垂直都可转化为线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”。 (2) 利用等腰三角形底边上的中线的性质。 (3) 利用勾股定理。 (4) 利用直径所对的圆周角是直角 (1) 通过“平移”,根据若则a //b,且b⊥平面α,a⊥平面α 1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB=2 1 DC ,中点为PD E . 求证:AE ⊥平面PDC. 2.如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD , ∠PDA=45°,点E 为棱AB 的中点.求证:平面PCE ⊥平面PCD ; (第2题

高中立体几何证明线面平行的常见方法

E D C B A 高中立体几何证明线面平行问题(数学作业十七) (1) 通过“平移”再利用平行四边形的性质 1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 2、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC⊥BE . 求证: (Ⅰ)C 1D⊥BC; (Ⅱ)C 1D∥平面B 1FM. 3、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; (2) 利用三角形中位线的性质 4、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。 5、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE 6.如图,三棱柱ABC —A 1B 1C 1中, D 为AC 的中点. 求证:AB 12 1 中点为PD E 求证:AE ∥平面PBC ; (第1题图) A B C D E F G M

(4)利用对应线段成比例 9、如图:S 是平行四边形ABCD 平面外一点,M 、N 分别是SA 、BD 上的点,且 SM AM =ND BN , 求证:MN ∥平面SDC (5)利用面面平行 10、如图,三棱锥中,底面,,PB=BC=CA , 为的中点,为的中点,点在上,且. (1)求证:平面; (2)求证:平面;

立体几何证明题定理推论汇总

立体几何公理、定理推论汇总 一、公理及其推论 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。 符号语言:,,,A l B l A B l ααα∈∈∈∈?? 作用: ① 用来验证直线在平面内; ② 用来说明平面是无限延展的。 公理2 如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。(那么它们有且只有一条通过这个公共点的公共直线) 符号语言:P l P l α βαβ∈?=∈且 ! 作用:① 用来证明两个平面是相交关系; ② 用来证明多点共线,多线共点。 公理3 经过不在同一条直线上的三点,有且只有一个平面。 符号语言:,,,,A B C A B C ?不共线确定一个平面 推论1 经过一条直线和这条直线外的一点,有且只有一个平面。 符号语言:A a A a a αα??∈?有且只有一个平面,使, 推论2 经过两条相交直线,有且只有一个平面。 符号语言:a b P a b ααα?=???有且只有一个平面,使, ) 推论3 经过两条平行直线,有且只有一个平面。 符号语言://a b a b ααα???有且只有一个平面,使, 公理3及其推论的作用:用来证明多点共面,多线共面。 公理4 平行于同一条直线的两条直线平行(平行公理)。

符号语言://////a b a c c b ???? 图形语言: 作用:用来证明线线平行。 二、平行关系 - 公理4 平行于同一条直线的两条直线平行(平行公理)。(1) 符号语言://////a b a c c b ???? 图形语言: 1.线面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。(2) 符号语言: ////a b a a b ααα???????? 图形语言: 线面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。(3) 符号语言:////a b a a b βαβα??????=? 图形语言: 2.面面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(4) 符号语言://(/,///),a b b b O a a ββαααβ??=?????? 图形语言: ! 面面平行的判定 如果两个平面垂直于同一条直线,那么这两个平面平行。(5) 符号语言:,,//oo oo ααββ???? ⊥⊥ 图形语言:

立体几何证明方法汇总

① 中位线定理 例题:已知如图:平行四边形ABCD 中,6BC =,正方形ADEF 所在平面与平面ABCD 垂直,G ,H 分别是DF ,BE 的中点. (1)求证:GH ∥平面CDE ; (2)若2,CD DB ==,求四棱锥F-ABCD 的体积. 练习:1、如下图所示:在直三棱柱ABC —A 1B 1C 1中,AC=3,BC=4,AB=5,AA 1=4,点D 是AB 的中点。 求证:AC 1∥平面CDB 1; 2. 如图,1111D C B A ABCD -是正四棱柱侧棱长为1,底面边长为2,E 是棱BC 的中点。(1)求证: //1BD 平面DE C 1;(2)求三棱锥BC D D 1-的体积. 3、如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,4,3PD DC ==,E 是PC 的中点。 (1)证明://PA BDE 平面; (2)求PAD ?以PA 为轴旋转所围成的几何体体积。 A 1 C _ H _ G _ D _ A _ B _ C E F

G P A B C D F E A B C D E F 例2、 如图, 在矩形ABCD 中,2AB BC = , ,P Q 分别为线段,AB CD 的中点, EP ⊥平面ABCD .求证: AQ ∥平面CEP ;(利用平行四边形) 练习:①如图,PA 垂直于矩形ABCD 所在的平面,E 、F 分别是AB 、PD 的中点。求证:AF ∥平面PCE ; ②如图,已知P 是矩形ABCD 所在平面外一点,ABCD 平面PD ⊥,M ,N 分别是AB ,PC 中点。求证://PAD MN 平面 P A B C D M N ③ 如图,已知AB 平面ACD ,DE//AB ,△ACD 是正三角形,AD = DE = 2AB ,且F 是CD 的中点.⑴求证:AF//平面BCE ; 的交点.求证://1O C 面 ④、已知正方体ABCD-1111D C B A ,O 是底ABCD 对角线11 AB D . D 1C 1 B 1 A 1

(完整版)必修二立体几何11道经典证明题

1.如图,三棱柱 ABC — A i B i C i 中,侧棱垂直底面, 1 / ACB=90 , AC=BC= gAA i , D 是棱 AA i 的中点 (I )证明:平面 BDC i 丄平面BDC (n)平面BDC i 分此棱柱为两部分,求这两部分体积的 比? 2?如图5所示,在四棱锥 P ABCD 中, AB 平面 PAD , AB//CD , PD AD , E 是 1 PB 的中点,F 是CD 上的点且 DF —AB , 2 PH PAD 中AD 边上的高? (1) 证明:PH 平面ABCD ; (2) 若 PH i , AD 2, FC i ,求三 (3)证明:EF 平面PAB . 3.如图,在直三棱柱ABC ABG 中,AB i AC i , D ,E 分 别是棱 BC , CC i 上的点(点D 不同于点C ),且AD DE , F 为B,G 的 中点. 求证:(i )平面ADE 平面BCGB,; (2)直线AF 〃平面ADE . 棱锥E BCF 的体积 ; 妥5小

4. 如图,四棱锥P—ABCD中,ABCD为矩形,△ PAD为等腰直角三角 形,/ APD=90 面PAD丄面ABCD,且AB=1 , AD=2 , E、F分别为 PC和BD的中点. (1) 证明:EF//面PAD ; (2) 证明:面PDC丄面PAD ; (3) 求四棱锥P—ABCD的体积. 5. 在如图所示的几何体中,四边形ABCD是正方形, MA 平面ABCD , PD//MA , E、G、F 分别为MB、PB、 PC 的中点,且AD PD 2MA. (I)求证:平面EFG 平面PDC ; (II )求三棱锥P MAB与四棱锥P ABCD的体积之比. B

高中立体几何证明方法及例题

1. 空间角与空间距离 在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算” ,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。 2. 立体几体的探索性问题 立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。近几年立体几何探索题考查的类型主要有:( 1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的 结论是什么。 对命题条件的探索常采用以下三种方法:(1 )先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;( 3)把几何问题转化为 代数问题,探索出命题成立的条件。 对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。 (一)平行与垂直关系的论证 由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高 级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化:

公理4 (a//b,b// c a I Ic ) 面面平行性质I I a, a II b a ,b 线线//| 疋 a II线面平行判定 ----------------- > 线面// | 疋 / / 线面平行性质 a II a II a II 2.线线、线面、面面垂直关系的转化: 三垂线定理、逆定理 PA , A0为PO 在内射影 a 则a OA a PO a PO a AO 线线丄 a, b a // b a b A a II ,b II // 面面平行判定1 面面平行性质1 I I / / / / O I a, I I 线面垂直判定1 a b 线面丄屯 面面垂直判定 推论2 l,且二面角I 线面垂直定义面面垂直性质, 成直二面角 3.平行与垂直关系的转化:

立体几何解题方法总结

1.判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 2.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 3.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决. 空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量 分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线所成的角θ∈(0,2 π ], 直线与平面所成的角θ∈0,2π?? ????,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0, π ]. 对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的, 如求异面直线所成的角常用平移法(转化为相交直线)与向量法;求直线与平面所成的角常利用射影转化为相交直线所成的角;而求二面角-l -的平面角(记作)通常有以 下几种方法: (1) 根据定义; (2) 过棱l 上任一点O 作棱l 的垂面 ,设 ∩ =OA , ∩ =OB ,则∠AOB = ; (3) 利用三垂线定理或逆定理,过一个半平面内一点A ,分别作另一个平面的垂线 AB (垂足为B ),或棱l 的垂线AC (垂足为C ),连结AC ,则∠ACB = 或∠ACB =-; (4) 设A 为平面外任一点,AB ⊥ ,垂足为B ,AC ⊥ ,垂足为C ,则∠BAC = 或 ∠BAC =-; (5) 利用面积射影定理,设平面 内的平面图形F 的面积为S ,F 在平面 内的射影图形

必修二立体几何常考证明题

必修二立体几何常考证明题 一.证明线线平行,线面平行,面面平行 1.利用三角形中位线 2. 利用平行四边形 考点1:线面平行的判定(利用三角形中位线) 例1:如图,在正方体1111ABCD A BC D -中,E 是1AA 的中点, 求证: 1//AC 平面 BDE 。 考点2:线面平行的判定(利用平行四边形) 例2:已知正方体111 1 ABCD A BC D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ; 练习: 1、如图,在底面是矩形的四棱锥ABCD P -中,⊥PA 面ABCD ,E 、F 为别为PD 、 AB 的中点,求证:直线AE ∥平面PFC A E D 1 C B 1 D C B A D 1O D B A C 1 B 1 A 1 C

2正三棱柱ABC -A 1B 1C 1的底面边长为8,侧棱长为6,D 为AC 中点。 (1)求证:直线AB 1∥平面C 1DB ; 3、 如图,已知ABCD PA 矩形 所在平面,N M 、分别为PC AB 、的中点; (Ⅰ)求证:PAD MN 平面//; 4、如图,在三棱锥D-ABC 中,已知△BCD 是正三角形,AB ⊥平面BCD ,AB=BC=a ,E 为 BC 的中点,F 在棱AC 上,且AF=3FC . (1)求三棱锥D-ABC 的表面积;(2)求证AC ⊥平面DEF ; (3)若M 为BD 的中点,问AC 上是否存在一点N ,使MN ∥平面DEF ?若存在,说明点N 的位置;若不存在,试说明理由. A 1 C 1 C B A B 1

考点3:面面平行的判定 例7:如图,在正方体111 1 ABCD A BC D 中,E 、F 、G 分别是AB 、AD 、1 1 C D 的中点. 求证:平面1D EF ∥平面BDG . 5、棱长为a 的正方体AC 1中,设M 、N 、E 、F 分别为棱A 1B 1、A 1D 1、C 1D 1、B 1C 1的中点. (1)求证:E 、F 、B 、D 四点共面; (2)求证:面AMN ∥面EFBD .

精选高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

立体几何平行证明题复习过程

立体证明题(2) 1.如图,直二面角D﹣AB﹣E中,四边形ABCD是正方形,AE=EB,F为CE上的点,且BF⊥ 平面ACE. (1)求证:AE⊥平面BCE; (2)求二面角B﹣AC﹣E的余弦值. 2.等腰△ABC中,AC=BC=,AB=2,E、F分别为AC、BC的中点,将△EFC沿EF折起,使得C到P,得到四棱锥P﹣ABFE,且AP=BP=. (1)求证:平面EFP⊥平面ABFE; (2)求二面角B﹣AP﹣E的大小.

3.如图,在四棱锥P﹣ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且 PA=PD=AD,若E、F分别为PC、BD的中点. (Ⅰ)求证:EF∥平面PAD; (Ⅱ)求证:EF⊥平面PDC. 4.如图:正△ABC与Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°. (1)求证:AB⊥CD; (2)求二面角D﹣AB﹣C的正切值. 5.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD 是平行四边形,∠ADC=120°,AB=2AD. (1)求证:平面PAD⊥平面PBD; (2)求二面角A﹣PB﹣C的余弦值.

6.如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AC=CB=CC 1=2,E 是AB 中点. (Ⅰ)求证:AB 1⊥平面A 1CE ; (Ⅱ)求直线A 1C 1与平面A 1CE 所成角的正弦值. 7.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,∠DAB 为直角,AB ∥CD ,AD=CD=2AB=2,E ,F 分别为PC ,CD 的中点. (Ⅰ)证明:AB ⊥平面BEF ; (Ⅱ)若PA= ,求二面角E ﹣BD ﹣C . 8.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=AD=2,四边形ABCD 满足AB ⊥AD ,BC ∥AD 且BC=4,点M 为PC 中点. (1)求证:DM ⊥平面PBC ; (2)若点E 为BC 边上的动点,且λ=EC BE ,是否存在实数λ,使得二面角P ﹣DE ﹣B 的余弦值为 3 2 ?若存在,求出实数λ的值;若不存在,请说明理由.

高中数学立体几何常考证明题汇总97186

立体几何常考证明题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成 的角。 证明:在ABD ?中,∵,E H 分别是,AB AD 的中点∴1 //,2 EH BD EH BD = 同理,1 //,2 FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。 (2) 90° 30 ° 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 证明:(1)BC AC CE AB AE BE =? ?⊥?=? 同理, AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?=∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC ,∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证:1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线∴1//EO AC A E D 1 C B 1 D C B A A H G F E D C B A E D B C

又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 4、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 证明:90ACB ∠=∵° BC AC ∴⊥ 又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥?= AD ∴⊥面SBC 考点:线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1)C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 证明:(1)连结11A C ,设 11111 A C B D O ?=,连结1AO ∵1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形 ∴A 1C 1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O 1C 1∥AO 且11O C AO = 11AOC O ∴是平行四边形 111,C O AO AO ∴? ∥面11AB D ,1C O ?面11AB D ∴C 1O ∥面11AB D (2)1CC ⊥面1111A B C D 11!CC B D ∴⊥ 又1111 A C B D ⊥∵, 1111B D A C C ∴⊥面1 11AC B D ⊥即 同理可证 11A C AD ⊥, 又 1111 D B AD D ?= ∴1A C ⊥面11AB D 考点:线面平行的判定(利用平行四边形),线面垂直的判定 6、正方体''''ABCD A B C D -中,求证: (1)''AC B D DB ⊥平面;(2)''BD ACB ⊥平面. 考点:线面垂直的判定 7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 证明:(1)由B 1B ∥DD 1,得四边形BB 1D 1D 是平行四边形,∴B 1D 1∥BD , S D C B A D 1O D B A C 1 B 1 A 1 C A 1 B 1 C 1 D 1 F

高中立体几何证明方法及例题

1. 空间角与空间距离 在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。 2. 立体几体的探索性问题 立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的结论是什么。 对命题条件的探索常采用以下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。 对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。 (一)平行与垂直关系的论证 由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: ?a c //) αβ αγβγ //,// ==???? a b a b 面面平行性质 线面平行性质 a a b a b ////αβαβ?=???? ? ? 面面平行性质1 αβαβ ////a a ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化:

必修二立体几何证明题

C B A D C 1 A 1 必修二立体几何经典证明试题 1. 如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=1 2AA 1,D 是棱AA 1的中点 (I)证明:平面BDC 1⊥平面BDC (Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比. 1. 【解析】(Ⅰ)由题设知BC ⊥1CC ,BC ⊥AC ,1CC AC C ?=,∴BC ⊥面11ACC A , 又∵1DC ?面11ACC A , ∴1DC BC ⊥, 由题设知0 1145A DC ADC ∠=∠=,∴1CDC ∠=090,即1DC DC ⊥, 又∵DC BC C ?=, ∴1DC ⊥面BDC , ∵1DC ?面1BDC , ∴面BDC ⊥面1BDC ; (Ⅱ)设棱锥1B DACC -的体积为1V ,AC =1,由题意得,1V =1121132 +???=1 2, 由三棱柱111ABC A B C -的体积V =1, ∴11():V V V -=1:1, ∴平面1BDC 分此棱柱为两部分体积之比为1:1. 2. 如图5所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,//AB CD ,PD AD =,E 是PB 的中点,F 是 CD 上的点且1 2 DF AB = ,PH 为△PAD 中AD 边上的高. (1)证明:PH ⊥平面ABCD ; (2)若1PH =,2AD = 1FC =,求三棱锥E BCF -的体积; (3)证明:EF ⊥平面PAB . 【解析】(1)证明:因为AB ⊥平面PAD ,所以PH AB ⊥。 因为PH 为△PAD 中AD 边上的高,所以PH AD ⊥。 因为AB AD A =I ,所以PH ⊥平面ABCD 。 (2)连结BH ,取BH 中点G ,连结EG 。 因为E 是PB 的中点,所以//EG PH 。 因为PH ⊥平面ABCD 所以EG ⊥平面ABCD 。 则1122EG PH = =, 111 332 E BC F BCF V S E G FC AD EG -?=?=????=2。 (3)证明:取PA 中点M ,连结MD ,ME 。因为E 是PB 的中点,所以1 // 2ME AB =。 因为1 // 2DF AB =,所以//ME DF = ,所以四边形MEDF 是平行四边形,所以//EF MD 。 因为PD AD =,所以MD PA ⊥。因为AB ⊥平面PAD ,所以MD AB ⊥。 因为PA AB A =I ,所以MD ⊥平面PAB ,所以EF ⊥平面PAB 。 3. 如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E , 分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点.

高中数学立体几何常考证明题汇总

新课标立体几何常考证明题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 证明:在ABD ?中,∵,E H 分别是,AB AD 的中点∴1 //,2 EH BD EH BD = 同理,1//,2 FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。 (2) 90° 30 ° 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 证明:(1)BC AC CE AB AE BE =??⊥?=? 同理, AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?=∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC ,∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证:1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线∴1//EO AC 又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 A E D 1 C B 1 D C B A A H G F E D C B A E D B C

高中数学立体几何常考证明题汇总(全)

新课标立体几何常考证明题汇总 考点:证平行(利用三角形中位线),异面直线所成的角 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 考点:线面垂直,面面垂直的判定 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 考点:线面平行的判定 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//AC 平面BDE 。 A E D 1 C B 1 D C B A A H G F E D C B A E D B C

考点:线面垂直的判定 4、已知ABC ?中90ACB ∠= ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 考点:线面平行的判定(利用平行四边形),线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 考点:线面垂直的判定 6、正方体''''ABCD A B C D -中,求证:(1)''AC B D DB ⊥平面;(2)''BD ACB ⊥平面. 考点:线面平行的判定(利用平行四边形) 7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . S D C B A D 1O D B A C 1 B 1 A 1 C A 1

立体几何常见证明方法

立体几何方法归纳小结 一、线线平行的证明方法 1、根据公理4,证明两直线都与第三条直线平行。 2、根据线面平行的性质定理,若直线a平行于平面A ,过a的平面B与平面A相交于b ,则a//b。 3、根据线面垂直的性质定理,若直线a与直线b都与平面A垂直,则a//b 。 4、根据面面平行的性质定理,若平面A//平面B,平面C与平面A和平面B的交线分别为直线a与直线b,则a//b 。 二、线面平行的证明方法 1、根据线面平行的定义,证直线与平面没有公共点。 2、根据线面平行的判定定理,若平面A内存在一条直线b与平面外的直线a平行,则a//A 。(用相似三角形或平行四边形) 3、根据平面与平面平行的性质定理,若两平面平行,则一个平面内的任一直线与另一个平面平行。 三、面面平行的证明方法 1、根据定义,若两平面没有公共点,则两平面平行。 2、根据两平面平行的判定定理,一个平面内有两相交直线与另一平面平行,则两平面平行。 或根据两平面平行的判定定理的推论,一平面内有两相交直线与另一平面内两相交直线平行,则两平面平行。 3、垂直同一直线的两平面平行。 4、平行同一平面的两平面平行。 四、两直线垂直的证明方法 1、根据定义,证明两直线所成的角为90° 2、一直线垂直于两平行直线中的一条,也垂直于另一条. 3、一直线垂直于一个平面,则它垂直于平面内的所有直线. 4、根据三垂线定理及逆定理,若平面内的直线垂直于平面的一条斜线(或斜线在平面内的射影),则它垂直于斜线在平面内的射影(或平面的斜线). 五、线面垂直的证明方法 1、根据定义,证明一直线与平面内的任一(所有)直线垂直,则直线垂直于平面. 2、根据判定定理,一直线垂直于平面内的两相交直线,则直线垂直于平面. 3、一直线垂直于两平行平面中的一个,也垂直于另一个. 4、两平行直线中的一条垂直于一个平面,另一条也垂直于这个平面. 5、根据两平面垂直的性质定理,两平面垂直,则一个平面内垂直于它们交线的直线垂直于另一个平面. 六、面面垂直的证明方法 1、根据面面垂直的定义,两平面相交所成的二面角为直二面角,则两平面垂直。 2、根据面面垂直的判定定理,一平面经过另一平面的一条垂线,则两平面垂直。 3、一平面垂直于两平行平面中的一个,也垂直于另一个。 七、两异面直线所成角的求法 1、根据定义,平移其中一条和另一条相交,然后在三角形中求角。

立体几何证明方法总结

一、线线平行的证明方法: 1、利用平行四边形。 2、利用三角形或梯形的中位线。 3、如果一条直线与一个平面平行,经过这条直线的平面与这个平面相交,那么这条直线就与交线平行。 (线面平行的性质定理) 4、如果两个平行平面同时与第三个平面相交,那么它们的交线平行。(面面平行的性质定理) 5、如果两条直线垂直于同一个平面,那么这两条直线平行。(线面垂直的性质定理) 6、平行于同一条直线的两条直线平行。 7、夹在两个平行平面之间的平行线段相等。(需证明) 二、线面平行的证明方法: 1、定义法:直线与平面没有公共点。 2、如果平面外一条直线与这个平面内的一条直线平行,那么这条直线与这个平面平行。(线面平行的判定定理) 3、两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。 三、面面平行的证明方法: 1、定义法:两平面没有公共点。 2、如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。(面面平行的判定定理) 3、平行于同一平面的两个平面平行。 4、经过平面外一点,有且只有一个平面与已知平面平行。 5、垂直于同一直线的两个平面平行。 四、线线垂直的证明方法: 1、勾股定理。 2、等腰三角形。 3、菱形对角线。

4、圆所对的圆周角就是直角。 5、点在线上的射影。 6、如果一条直线与一个平面垂直,那么这条直线就与这个平面内任意的直线都垂直。 7、在平面内的一条直线,如果与这个平面一条斜线的射影垂直,那么它也与这条斜线垂直。(三垂线定理,需证明) 8、在平面内的一条直线,如果与这个平面一条斜线垂直,那么它也与这条斜线的射影垂直。(三垂线逆定理,需证明) 9、如果两条平行线中的一条垂直于一条直线,则另一条也垂直于这条直线。 五、线面垂直的证明方法: 1、定义法:直线与平面内任意直线都垂直。 2、点在面内的射影。 3、如果一条直线与一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。(线面垂直的判定定理) 4、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。(面面垂直的性质定理) 5、两条平行直线中的一条垂直于平面,则另一条也垂直于这个平面。 6、一条直线垂直于两平行平面中的一个平面,则必垂直于另一个平面。 7、两相交平面同时垂直于第三个平面,那么两平面交线垂直于第三个平面。 8、过一点,有且只有一条直线与已知平面垂直。 9、过一点,有且只有一个平面与已知直线垂直。 六、面面垂直的证明方法: 1、定义法:两个平面的二面角就是直二面角。 2、如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。(面面垂直的判定定理) 3、如果一个平面与另一个平面的垂线平行,那么这两个平面互相垂直。 4、如果一个平面与另一个平面的垂面平行,那么这两个平面互相垂直。

新课标立体几何常考平行证明题汇总

新课标立体几何常考平行证明题汇总 立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1)通过“平移”。(2)利用三角形中位线的性质。(3)利用平行四边形的性质。(4)利用对应线段成比例。(5)利用面面平行,等等。 3、如图,在体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线 ∴1//EO AC 又EO 在平面BDE ,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 5、已知体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 证明:(1)连结11A C ,设 11111 A C B D O ?=,连结1AO ∵ 1111ABCD A B C D -是体 11A ACC ∴是平行四边形 ∴A 1C 1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O 1C 1∥AO 且11O C AO = 11AOC O ∴是平行四边形 111,C O AO AO ∴? ∥面11AB D ,1C O ?面11AB D ∴C 1O ∥面11AB D (2)1CC ⊥Q 面1111A B C D 11!CC B D ∴⊥ 又 1111 A C B D ⊥∵, 1111B D A C C ∴⊥面 1 11AC B D ⊥即 同理可证 11 A C AD ⊥, 又 1111 D B AD D ?= ∴1A C ⊥面11AB D 考点:线面平行的判定(利用平行四边形),线面垂直的判定 A E D 1 C B 1 D C B A D 1O D B A C 1 B 1 A 1 C

立体几何证明方法大全

(二)立体几何证明方法汇总 1、线线平行判定定理 一个平面 点 平行于同一条直线的两条直线的 两条直线平行 线面平行性质如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交, 面面平行的性一个平面与两个平行平面相交 则交线平行 线面垂直的性垂直于同 行

两条直线所成的角是 线面垂直的性质一条直线垂直于一个平面任何一条直线 一条直线垂直三角形两边则垂直一条直线垂直于三角形的两条边 第三边 三垂线定理 个平面的一条斜线的射影垂直,那么它和这条斜线垂直 三垂线定理逆定三垂线逆定理 这个平面的一条斜线垂直,那么它和这条斜线的射影垂直

一条直线与平面没有交点 线面平行判两个平面平行, 平行于另一个平面 如果一条直线垂直于平面内的任何一条 直线,则直线与平面垂直。 的一条直线垂直于平面内两条相交直线, 则平行于这个平面。 的推一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 的若二平面垂直,那么在一个平面内垂直 于它们的交线的直线垂直于另一个平面

如果两个平面没有公共点,则两个平面平行。 面面平行的如果一个平面内有两条相交直线平行于另一 个平面,那么这两个平面平行 面面平行的判定定理推如果两个平面内两条相交直线平行于另一个平面内两条相交直线,则两个平面平行。 线面垂直的 垂直于同一直线的两个平面平行 两个平面相交, 这两个平面垂直。 面面垂直的判如果平面经过另一个平面的一条垂线, 面垂直。

公理 么这条直线上的所有点都在这个平面内。( ( 公理 它公共点,这些公共点的集合是一条直线( ( 公理 个平面。 干个点共面的依据 推论 有一个平面。 ( ( 推论 推论

立体几何证明方法汇总

E B C D A P ① 中位线定理 例题:已知如图:平行四边形ABCD 中,6BC =,正方形ADEF 所在平面与平面ABCD 垂直,G ,H 分别是DF ,BE 的中点. (1)求证:GH ∥平面CDE ; (2)若2,42CD DB ==,求四棱锥F-ABCD 的体积. 练习:1、如下图所示:在直三棱柱ABC —A 1B 1C 1中,AC=3,BC=4,AB=5,AA 1=4,点D 是AB 的中点。 求证:AC 1∥平面CDB 1; 2. 如图,1111D C B A ABCD -是正四棱柱侧棱长为1,底面边长为2,E 是棱BC 的中点。(1)求证://1BD 平面 DE C 1;(2)求三棱锥BC D D 1-的体积. 3、如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,4,3PD DC ==,E 是PC 的中点。 (1)证明://PA BDE 平面; (2)求PAD ?以PA 为轴旋转所围成的几何体体积。 E A 1 B 1 C 1 D 1D C B A _ H _ G _ D _ A _ B _ C E F

G P A B C D F E A B C D E F 例2、 如图, 在矩形ABCD 中,2AB BC = , ,P Q 分别为线段,AB CD 的中点, EP ⊥平面ABCD .求证: AQ ∥平面CEP ;(利用平行四边形) 练习:①如图,PA 垂直于矩形ABCD 所在的平面,E 、F 分别是AB 、PD 的中点。求证:AF ∥平面PCE ; ②如图,已知P 是矩形ABCD 所在平面外一点,ABCD 平面PD ⊥,M ,N 分别是AB ,PC 中点。求证://PAD MN 平面 P A B C D M N ③ 如图,已知AB ⊥平面ACD ,DE//AB ,△ACD 是正三角形,AD = DE = 2AB ,且F 是CD 的中点.⑴求证:AF//平面BCE ; ④、已知正方体ABCD-1111D C B A ,O 是底ABCD 对角线的交点.求证://1O C 面11 AB D . D 1 C 1B 1A 1

相关主题