搜档网
当前位置:搜档网 › 2018版高考物理大一轮复习第六章碰撞与动量守恒基次1动量和动量定理课时达标练新人教版2017052

2018版高考物理大一轮复习第六章碰撞与动量守恒基次1动量和动量定理课时达标练新人教版2017052

2018版高考物理大一轮复习第六章碰撞与动量守恒基次1动量和动量定理课时达标练新人教版2017052
2018版高考物理大一轮复习第六章碰撞与动量守恒基次1动量和动量定理课时达标练新人教版2017052

基础课1 动量和动量定理

一、选择题(1~5题为单项选择题,6~9题为多项选择题)

1.某一水平力F =1 000 N ,对竖直固定的墙壁作用,作用时间为t 1=10 s 、t 2=1 h ,若其

力对应的冲量分别为I 1、I 2,则( )

A .I 1=I 2=0

B .I 1=104 N·s;I 2=×106

N·s

C .I 1=103 N·s;I 2=102 N·s

D .以上都不正确

解析 由冲量定义得: I 1=Ft 1=104 N·s

I 2=Ft 2=×106 N·s

故选项B 正确。

答案 B

2.将一个质量为m 的小木块放在光滑的斜面上,使木块从斜面的顶端由静止开始向下滑动,

滑到底端总共用时t ,如图1所示,设在下滑的前一半时间内木块的动量变化为Δp 1,在后一半时间内其动量变化为Δp 2,则Δp 1∶Δp 2为( )

图1

A .1∶2

B .1∶3

C .1∶1

D .2∶1

解析 木块在下滑的过程中,一直受到的是重力与斜面支持力的作用,二力的合力大小

恒定为F =mg sin θ,方向也始终沿斜面向下不变。由动量定理可得Δp 1∶Δp 2=

(F ·t 1)∶(F ·t 2)=(mg sin θ·12t )∶(mg sin θ·12

t )=1∶1。故选项C 正确。 答案 C

3.带电粒子a 、b 在同一匀强磁场中做匀速圆周运动,它们的动量大小相等,a 运动的半径

大于b 运动的半径。若a 、b 的电荷量分别为q a 、q b ,质量分别为m a 、m b ,周期分别为T a 、T b 。则一定有( )

A .q a <q b

B .m a <m b

C .T a <T b <q b

m b

解析 设带电粒子以速度v 在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,由洛

伦兹力公式和牛顿运动定律得,qvB =m v 2

R

,解得mv =qBR 。两个粒子的动量mv 相等,则有q a BR a =q b BR b 。根据题述,a 运动的半径大于b 运动的半径,即R a >R b ,所以q a <q b ,选项A 正确;根据题述条件,不能判断出两粒子的质量关系,选项B 错误;带电粒子在匀强磁场中运动的周期T =2πR v =2πm qB

,不能判断出两粒子的周期、比荷之间的关系,选项C 、D 错误。

答案 A

4.质量是60 kg 的建筑工人,不慎从高空跌下,由于弹性安全带的保护,他被悬挂起来。

已知安全带的缓冲时间是 s ,安全带长5 m ,取g =10 m/s 2,则安全带所受的平均冲力的大小为 ( )

A .500 N

B .600 N

C .1 100 N

D .100 N 解析 安全带长5 m ,人在这段距离上做自由落体运动,获得速度v =2gh =10 m/s 。

受安全带的保护经 s 速度减小为0,对此过程应用动量定理,以向上为正方向,有(F -

mg )t =0-(-mv ),则F =mv t

+mg =1 100 N ,C 正确。 答案 C

5.(2016·安徽合肥一模)质量为 kg 的球竖直向下以6 m/s 的速度落至水平地面,再以4 m/s

的速度反向弹回。取竖直向上为正方向,在小球与地面接触的时间内,关于球动量变化量Δp 和合外力对小球做的功W ,下列说法正确的是 ( )

A .Δp =2 kg·m/s W =-2 J

B .Δp =-2 kg·m/s W =2 J

C .Δp = kg·m/s W =-2 J

D .Δp =- kg·m/s W =2 J

解析 取竖直向上为正方向,则小球与地面碰撞过程中动量的变化量Δp =mv 2-mv 1=2

kg·m/s,方向竖直向上。由动能定理,合外力做的功W =12mv 22-12

mv 21=-2 J ,A 正确。 答案 A

6.下列各种说法中,哪些是能够成立的( )

A .某一段时间内物体动量的增量不为零,而其中某一时刻物体的动量可能为零

B .某段时间内物体受到的冲量为零,而其中某一时刻物体的动量可能不为零

C .某一段时间内物体受到的冲量不为零,而动量的增量可能为零

D .某一时刻物体动量为零,而动量对时间的变化率不为零

解析 由Ft =p ′-p 知,Ft 与Δp 相等,Ft 为零,Δp 也为零,但与p ′、p 无直接关

系。又由F =p ′-p t 可知,p ′或p 为零,p ′-p t

即动量对时间的变化率不为零。故A 、B 、D 选项正确。C 选项错。

答案 ABD

7.质量为m 的物体以初速度v 0开始做平抛运动,经过时间t ,下降的高度为h ,速度变为v ,

在这段时间内物体动量变化量的大小为( )

A .m (v -v 0)

B .mgt

C .m v 2-v 20

D .m 2gh

解析 由动量定理得I =Δp ,即mgt =Δp ,故B 正确;由p =mv 知,Δp =m ·Δv ,而

Δv =v 2-v 20=2gh ,所以Δp =m ·v 2-v 2

0=m 2gh ,故C 、D 正确。

答案 BCD

8.某人身系弹性绳自高空P 点自由下落,图2中a 点是弹性绳的原长位置,c 是人所到达

的最低点,b 是人静止地悬吊着时的平衡位置。不计空气阻力,则下列说法中正确的是

( )

图2

A .从P 至c 过程中重力的冲量大于弹性绳弹力的冲量

B .从P 至c 过程中重力所做功等于人克服弹力所做的功

C .从P 至b 过程中人的速度不断增大

D .从a 至c 过程中加速度方向保持不变

解析 人由P 至c 的全过程中,外力的总冲量为重力的冲量与弹性绳弹力的冲量的矢量

和,根据动量定理,外力的总冲量应等于人的动量增量,人在P 与c 时速度均为零,则动量的增量为零,则重力的冲量大小应等于绳弹力的冲量大小,方向相反,总冲量为零,

选项A错;根据动能定理,人由P至c过程中,人的动能增量为零,则重力与绳弹力做的总功为零,重力所做的功等于克服弹力所做的功,选项B正确;人由P至a自由下落,由a至b,弹力逐渐增大,但合外力向下,人做加速度变小的加速运动,至b点加速度为零,速度最大,人过b点之后,弹力大于重力,合外力向上,加速度向上,速度变小。

故选项C正确,选项D错误。

答案BC

9.如图3所示,斜面除AB段粗糙外,其余部分都是光滑的,物体与AB段的摩擦因数又处处相等,一个从顶点滑下的物体,经过A点时速度与经过C点时的速度相等,且AB=BC,则以下说法中正确的是( )

图3

A.物体在AB段和BC段的加速度大小相等

B.物体在AB段和BC段的运动时间相等

C.重力在以上两段运动中对物体做的功相等

D.物体在以上两段运动中的动量变化量相同

解析根据运动学公式v21=v20+2ax,对AB段有v2B=v2A+2a AB x AB,对BC段有v2c=v2B+2a BC x BC,因为v C=v A,x AB=x BC,所以有a AB=-a BC,即两段运动加速度大小相等,方向相反,A选项正确;根据动量定理,对AB段,F合t AB=m(v B-v A),对BC段,F合′t BC=m(v C-v B),因为两段速度变化大小相等,方向相反,合外力大小相等,方向相反,所以t AB=t BC,B 选项正确;因为x AB=x BC,所以在两段运动中竖直方向的位移分量相等,故重力做功相等,C选项正确;物体在以上两段运动中动量变化量大小相等,方向相反,故D选项错误。

答案ABC

二、非选择题

10.将质量为500 g的杯子放在台秤上,一个水龙头以每秒700 g水的流量注入杯中。注至

10 s末时,台秤的读数为 N,则注入杯中水流的速度是多大?

解析以在很短时间Δt内,落在杯中的水柱Δm为研究对象,水柱受向下的重力Δmg 和向上的作用力F。

设向上的方向为正:

(F-Δmg)Δt=0-(-Δmv)

因Δm 很小,Δmg 可忽略不计,并且Δm Δt = kg/s

F =Δm Δt

v =(N) 台秤的读数G 读=(m 杯+m 水)g +F

78.5=+×10)×10+

解得v =5 m/s

答案 5 m/s

11.如图4所示,质量 kg ,长 m 的金属盒AB ,放在水平桌面上,它与桌面间动摩擦因数

μ=18

,在盒内右端B 放着质量也为 kg ,半径为 m 的弹性球,球与盒接触面光滑。若在A 端给盒以水平向右 的冲量 N·s,设盒在运动中与球碰撞时间极短,且无能量损失,求:

图4

(1)盒从开始运动到完全停止所通过的路程是多少;

(2)盒从开始运动到完全停止所经过的时间是多少。 解析 (1)研究对象是金属盒,盒受冲量I 后获得速度v ,

由动量定理,有I =mv -0,v =I m =错误! m/s =3 m/s

盒以此速度向右运动,

运动中受到桌面对盒的摩擦力 f =μF N =μ·2mg

-μ·2mg =ma 即a =-2μg

盒运动了x 1=-×2) m=1 m ,后速度减少为v ′。

v ′2-v 2=2ax 1

v ′=v 2-2×2μgx 1=

32-2×2×18

×10×1 m/s =2 m/s

盒左壁A 以v ′速度与球相碰,因碰撞中无能量损失,盒停止,球以v ′=2 m/s 的速度

向右做匀速直线运动,运动1 m 后又与盒的右壁相碰,盒又以v ′=2 m/s 的速度向右运

动,直到停止。

0-v ′2=2ax 2

即x 2=-v ′22a =-v ′2-2×2μg =22

2×2×18×10 m = m 因x 2只有 m ,此时静止小球不会再与盒的右壁相碰,所以盒通过的总路程为 s =x 1+x 2=1 m + m = m

(2)盒从开始运动到与球相碰所用时间为t 1

根据动量定理,有-μ·2mgt 1=mv ′-mv

t 1=v -v ′2μg =3-22×18

×10s = s 小球匀速运动时间t 2=x 1v ′=12

s = s 盒第二次与球相碰后到停止运动的时间为t 3,根据动量定理,有 -μ·2mgt 3=0-mv ′ t 3=v ′2μg =22×18

×10 s = s 总时间t =t 1+t 2+t 3=++ s = s 答案 (1) m (2) s

电磁感应中动量定理和动量守恒

高考物理电磁感应中动量定理和动量守恒定律的运用 (1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN 间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量为m的金属棒ab从MN处由静 止释放经时间t到达轨道最低点cd时的速度为v,不计摩擦。 求: (1)棒从ab到cd过程中通过棒的电量。 (2)棒在cd处的加速度。 (2)如图2所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v ﹤v0),那么线圈 A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 (3)在水平光滑等距的金属导轨上有一定值电阻R,导轨宽d电阻不计,导体棒AB垂直于导轨放置,质量为m ,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为B.现给导体棒一水平初速度v0,求AB在导轨上滑行的距离. (4)如图3所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为: A.1:1 B.1:2 C.2:1 D.1:1 5:如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。ab、cd是质量均为m的金属棒,现让ab从离水平轨道h高处由静止下滑,设导轨足够长。试求: (1)ab、cd棒的最终速度;

动量、冲量及动量守恒定律

动量、冲量及动量守恒定律

动量和动量定理 一、动量 1.定义:运动物体的质量和速度的乘积叫动量;公式p=m v; 2.矢量性:方向与速度的方向相同.运算遵循平行四边形定则. 3.动量的变化量 (1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式). (2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量用带有正负号的数值表示,从而将矢量运算简化为代数运算(此时的正负号仅代表方向,不代表大小). 4.与动能的区别与联系: (1)区别:动量是矢量,动能是标量. (2)联系:动量和动能都是描述物体运动状态的物 理量,大小关系为E k=p2 2m或p=2mE k. 二、动量定理 1.冲量 (1)定义:力与力的作用时间的乘积.公式:I=

Ft.单位:牛顿·秒,符号:N·s. (2)矢量性:方向与力的方向相同. 2.动量定理 (1)内容:物体在一个运动过程中始末的动量变化量等于它在这个过程中所受力的冲量. (2)公式:m v′-m v=F(t′-t)或p′-p=I.3.动量定理的应用 碰撞时可产生冲击力,要增大这种冲击力就要设法减少冲击力的作用时间.要防止冲击力带来的危害,就要减小冲击力,设法延长其作用时间.(缓冲) 题组一对动量和冲量的理解 1.关于物体的动量,下列说法中正确的是() A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向 B.物体的动能不变,其动量一定不变 C.动量越大的物体,其速度一定越大 D.物体的动量越大,其惯性也越大 2.如图所示,在倾角α=37°的斜面上, 有一质量为5 kg的物体沿斜面滑下,物 体与斜面间的动摩擦因数μ=0.2,求物体下滑2

高中物理动量定理动量守恒定律习题带答案

动量练习 ;类型一:弹簧问题 1、一轻质弹簧,两端连接两滑块A和B,已知m A=0.99kg ,m B=3kg,放在光滑水平桌面上,开始时弹簧处于原长。现滑块A被水平飞来的质量为m c=10g,速度为400m/s的子弹击中,且没有穿出,如图所示,试求: (1)子弹击中A的瞬间A和B的速度 (2)以后运动过程中弹簧的最大弹性势能 类型二:板块问题 2. (18分) 如图所示,质量为20kg的平板小车的左端 放有质量为10kg的小铁块,它与车之间的动摩擦因数 为0.5。开始时,车以速度6m/s向左在光滑的水平面上运动,铁块以速度6m/s向右运动,小车足够长。(g=10m/s2)求: (1) 小车与铁块共同运动的速度大小和方向。 (2)系统产生的内能是多少? (3)小铁块在小车上滑动的时间 3矩形滑块由不同材料的上下两层粘合在一起组成,将其放在光滑 的水平面上,如图所示,质量为m的子弹以速度v水平射向滑块.若射向上层滑块,子弹刚好不射出;若射向下层滑块,则子弹整个儿刚好嵌入滑块,由上述两种情况相比较()A A.子弹嵌入两滑块的过程中对滑块的冲量一样多 B.子弹嵌入上层滑块的过程中对滑块做的功较多 C.子弹嵌入下层滑块的过程中对滑块做的功较多 D.子弹嵌入上层滑块的过程中系统产生的热量较多 类型三:圆周运动 4.(18分)质量为m的A球和质量为3m的B球分别用长为L的细线a和b悬挂在天花板下方,两球恰好相互接触,.用细线c水平拉起A,使a偏离竖直方向θ= 60°,静止在如图8所示的位置.b能承受的最大拉力F m=3.5mg,剪断c,让A自由摆动下落,重力加速度为g. ①求A与B发生碰撞前瞬间的速度大小. ②若A与B发生弹性碰撞,求碰后瞬间B的速度大小. ③A与B发生弹性碰撞后,分析判断b是否会被拉断? 5、半径为R的圆桶固定在小车上,有一光滑小球静止在圆桶的最 低点,如图38所示,小车以速度v向右匀速运动,当小车遇到障 碍物突然停止时,小球在圆桶中上升的高度可能是()ACD A.等于v2/2g B.大于 B A b a c h θ 图8

高中物理动量定理和动量守恒

暑期生活第六篇:动量定理和动量守恒 复习目标 1.进一步深化对动量、冲量、动量变化、动量变化率等概念的理解。 2.能灵活熟练地应用动量定理解决有关问题。 3.能灵活熟练地应用动量守恒定律解决碰撞、反冲和各种相互作用的问题。 专题训练 1、两辆质量相同的小车A和B,置于光滑水平面上,一人站在A车上,两车均静止。若这个人从A车跳到B 车,接着又跳回A车,仍与A车保持相对静止,则此时A车的速率() A、等于零 B、小于B车的速率 C、大于B车的速率 D、等于B车的速率 2、在空间某一点以大小相等的速度分别竖直上抛、竖直下抛、水平抛出质量相等的小球,不计空气阻力, 经过t秒(设小球均未落地)() A.做上抛运动的小球动量变化最大 B.做下抛运动的小球动量变化最小 C.三个小球动量变化大小相等 D.做平抛运动的小球动量变化最小 3、质量相同的两木块从同一高度同时开始自由下落,至某一位置时A被水平飞来的子弹击中(未穿出),则 A、B两木块的落地时间t A、t B相比较,下列现象可能的是() A.t A= t B B.t A >t B C.t A< t B D.无法判断 4、放在光滑水平面上的A、B两小车中间夹了一压缩轻质弹簧,用两手分别控制小车处于静止状态,下面说 法中正确的是() A.两手同时放开后,两车的总动量为零 B.先放开右手,后放开左手,两车的总动量向右 C.先放开左手,后放开右手,两车的总动量向右 D.两手同时放开,两车总动量守恒;两手放开有先后,两车总动量不守恒 5、某物体沿粗糙斜面上滑,达到最高点后又返回原处,下列分析正确的是() A.上滑、下滑两过程中摩擦力的冲量大小相等 B.上滑、下滑两过程中合外力的冲量相等 C.上滑、下滑两过程中动量变化的方向相同 D.整个运动过程中动量变化的方向沿斜面向下 6、水平推力F1和F2分别作用于水平面上的同一物体,分别作用一段时间后撤去,使物体都从静止开始运动 到最后停下,如果物体在两种情况下的总位移相等,且F1>F2,则() A、F2的冲量大 B、F1的冲量大 C、F1和F2的冲量相等 D、无法比较F1和F2的冲量大小 7、质量为1kg的炮弹,以800J的动能沿水平方向飞行时,突然爆炸分裂为质量相等的两块,前一块仍沿水 平方向飞行,动能为625J,则后一块的动能为() A.175J B.225J C.125J A.275J 8、两小船静止在水面,一人在甲船的船头用绳水平拉乙船,则在两船靠拢的过程中,它们一定相同的物理量是() A、动量的大小 B、动量变化率的大小 C、动能 D、位移的大小 9、质量为m的均匀木块静止在光滑水平面上,木块左右两侧各有一位拿 着完全相同步枪和子弹的射击手。左侧射手首先开枪,子弹水平射入木块的最大深度为d1,然后右侧射手开枪,子弹水平射入木块的最大深度为d2,如图所示。设子弹均未射穿木块,且两颗子弹与木块之间

动量及动量守恒定律全章典型习题精讲

动量及动量守恒定律全章典型习题精讲

————————————————————————————————作者: ————————————————————————————————日期:

动量及动量守恒定律全章典型习题精讲 一.学法指导: 动量这部分内容,本身并不复杂,主要有冲量和动量这两个概念,还有动量定理和动量守恒定律这两个重要规律.动量定理是对一个物体说的,它受到合外力的冲量等于该物体动量的增量.动量守恒定律是对相互作用的系统而言的,在系统不受外力作用的情况下,系统的总动量守 本章的难点主要在于冲量和动量都是矢量,矢量的运算比起标量的运算来要困难得多.我们中学阶段目前只要求计算同一直线上的动量问题,对于同一直线上的动量,可以用正负号表示方向,从而把矢量运算转化为代数运算. 这部分内容的另一个难点是涉及到相互作用的系统内物体的动量和机械能的综合问题,为此,我们在学习时要把动量这部分内容与机械能部分联系起来.下面三个方面的问题是我们学习中要重点理解和掌握的. 1、4个重要的物理概念,即冲量、动量、功和动能,下面把它们归纳、整理、比较如下: (1)冲量和功,都是“力”的,要注意是哪个力的冲量,哪个力做的功. 动量和动能,都是“物体”的,要注意是哪个物体的动量、哪个物体的动能. (2)冲量和功,都是“过程量”,与某一段过程相对应.要注意是哪个过程的冲量,是哪个过程中做的功. 动量和动能,都是“状态量”,与某一时刻相对应.要注意是哪个时刻的动量或动能,过程量是不能与状态量划等号的,即决不能说某力的冲量等于某时刻的动量,或说某个功等于某时刻的动能.动量定理和动能定理都是“过程关系”,它们说的是在某段过程中,物体受到的合外力的冲量或做的功,等于物体动量或动能的增量,这里“增量”又叫“变化量”,是相应过程的“始”、“末”两个状态量的差值,表示的还是某一段过程的状态的变化 此外,还有一点要注意,那就是这些物理量与参考系的关系.由于位移和速度都是与参考系有关的物理量,因此动量、功、动能都是与参考系有关的物理量,只有冲量与参考系无关.凡没有提到参考系的问题,都是以地面为参考系的. 2、两个守恒定律是物理学中的重要物理规律,下面把有关两个守恒定律的问题整理列表如下:

动量守恒定律.doc

课题第三节动量守恒定律 一、知识教学: 1、理解动量守恒定律的确切含义和表达式; 教 2、能用动量定理和牛顿第三定律推导出动量守恒定律; 3、知道动量守恒定律的适用条件和适用范围。 学 二、能力训练: 1、能结合动量定理和牛顿第三定律推导出动量守恒定律; 目 2、学会用动量守恒定律解释现象; 3、会应用动量守恒定律分析求解一维运动问题。 的 三、德育渗透: 1、通过动量守恒定律的推导出,培养学生实事求是的科学态度和严谨的推理 方法; 2、了解自然科学规律发展的深远意义及对社会发展的巨大推动作用。 重 教学重点: 点 掌握动量守恒定律的推导、表达式、适用范围和守恒条件。 难 教学难点: 点 正确判断系统在所研究的过程中动量是否守恒。 教 首先通过演示实验使学生了解系统相互作用过程中动量守恒,再使学生清楚学方 地理解动量守恒定律的推导过程、守恒条件及适用范围,即用实验法、推理法归 法 纳法、举例讲授法。 教 投影仪,投影片,CAI课件,两个质量相等的小车,细线、弹簧、砝码、气具 垫导轨。 课时 1课时 按排

一、引入新课: 教 1、请两个同学穿上旱冰鞋,靠近站在教室前边,让学生甲推乙一下,学生 学 观察现象。 过 2、学生答:两位同学都向相反的方向运动。 程 3、教师分析并引入:两位同学原来靠近站立,说明他们各自的动量都是0, 相互推后,两位同学都具有了动量,说明他们各自的动量都发生了变化,那么他

们的动量变化遵循什么规律呢?本节课我们来探讨这个问题,板书课题:动量守 恒定律。 二、讲授新课: (一)用投影片出示本节课的学习目标: 教 1、知道什么叫系统、什么是系统的内力,什么是系统的外力。 2、理解动量守恒定律的内容,知道得出动量守恒定律的数学表达式的条件。 3、能通过在光滑水平面上的两球发生碰撞,推导出动量守恒定律表达式。 4、知道动量守恒定律的成立条件和适应范围。 5、会应用动量守恒定律分析计算有关问题(只限于一维运动) (二)学习目标完成过程: (一)实验、观察,初步得到两辆小车在相互作用前后,动量变化之间的关学 系 1、用多媒体课件:介绍实验装置。 把两个质量相等的小车静止地放在光滑的水平木板上,它们之间装有弹簧,并用细线把它们拴在一起。 2、用CAI 课件模拟实验的做法: ①实验一:第一次用质量相等的 两辆小车,剪断细线,观察它们到达 过 距弹开埏等距离的挡板上时间的先后。 ②实验二:在其中的一辆小车上 加砝码,使其质量变为原来的 2 倍, 重新做上述实验并注意观察小车到达两块木挡板的先后。 3、学生在气垫导轨上分组实验并观察。 4、实验完毕后各组汇报实验现象: 学生甲:如果用两辆质量相同的小车做实验,看到小车同时撞到距弹开处等程 距离的挡板上。 学生乙:如果用两辆质量不同的小车做实验,看到质量大的小车后到,而质量小的小车先到达,且当质量小的小车到达挡板时,质量大的小车行驶到弹开处 与木板的中点处。 5 教师针对实验现象出示分析思考题:

动量动量定理动量守恒定律专题

动量定理和动量守恒定律的应用 1. A、B、C三个质量相等的小球以相同的初速度v0分别竖直上抛、竖直下抛、水平抛出.若空气阻力不计,设落地时A、B、C三球的速度分别为v1、v2、v3,则 [ ] A、经过时间t后,若小球均未落地,则三小球动量变化大小相等,方向相同 B、A球从抛出到落地过程中动量变化的大小为mv1-mv0,方向竖直向下 C、三个小球运动过程的动量变化率大小相等,方向相同 D、三个小球从抛出到落地过程中A球所受的冲量最大 2. 某消防队员从一平台上跳下,下落2m后双脚触地,接着他用双腿弯屈的方法缓冲,使自身重心又下降了.在着地过程中地面对他双脚的平均作用力估计为[ ] A、自身所受重力的2倍 B、自身所受重力的5倍 C、自身所受重力的8倍 D、自身所受重力的10倍 3. 一个质点受到合外力F作用,若作用前后的动量分别为p和p’,动量的变化为△p,速度的变化为△v,则 A、p=-p’是不可能的 B、△p垂直于p是可能的 C、△P垂直于△v是可能的 D、△P=O是不可能的。 4. 一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。若把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ, 则( ) A、过程I中钢珠的动量的改变量等于重力的冲量 B、过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小 C、I、Ⅱ两个过程中合外力的总冲量等于零 D、过程Ⅱ中钢珠的动量的改变量等于零 5. 质量为m的木块下面用细线系一质量为M的铁块,一起浸没在 水中从静止开始以加速度a匀加速下沉(如图),经时间t1s后细

v 1 线断裂,又经t2s 后,木块停止下沉.试求铁块在木块停上下沉瞬间的速度. 6、 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。质量为m 的小球以速度v1向物块运动。不计一切摩擦,圆弧小于90°且足够长。求小球能上升到的最大高度H 和物块的最终速度v 。 7、设质量为m 的子弹以初速度v0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。 8、质量为m 的人站在质量为M ,长为L 的静止小船的右端,小船的左端靠在岸边。当他向左走到船的左端时,船左端离岸多远 9、如图所示,一质量为M 的平板车B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,A 、B 间动摩擦因数为μ,现给A 和B 以大小相等、方向相反的初速度v0,使A 开始向左运动,B 开始向右运动,最后A 不会滑离B ,求: (1)A 、B 最后的速度大小和方向; (2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。 s 2 d s 1 v 0 v

动量守恒定律教学案例

《动量守恒定律》教学设计

《动量守恒定律》教学设计 一、教学目标: (一)知识与技能 1、理解动量守恒定律的确切含义。 2、知道动量守恒定律的适用条件和适用范围,并会用动量守恒定律解决简单的实际问题。 (二)过程与方法 1、通过实验与探究,引导学生在研究过程中主动获取知识,应用知识解决问 题,同时在过程中培养学生协作学习的能力。 2、运用动量定理和牛顿第三定律推导出动量守恒定律,培养学生的逻辑推理能力。 3、会应用动量守恒定律分析、计算有关问题(只限于一维运动)。 (三)情感、态度与价值观 1、培养实事求是的科学态度和严谨的推理方法。 2、引导学生通过对动量守恒定律的学习,了解归纳与演绎两种思维方法的应用,并体会定律中包含的对称与和谐的美。 3、培养学生将物理知识、物理规律进行横向比较与联系的习惯,养成自主构建知识体系的意识。 二、学情分析: 学生已经掌握了动量概念,会运用牛顿第二,第三定律及运动学公式等,为本节课的学些打下了坚实的基础。高中生思维方式逐渐由形象思维过渡为抽象思维,因此在教学中需要以一些感性认识为依托,加强直观性和形象性,以便学生理解。 三、教学重点、难点: 重点:理解和基本掌握动量守恒定律。 难点:对动量守恒定律条件的掌握。

(师生共同总结上述互动环节,并得出结论——动量守恒定律内容及表达式。) 1.内容表述:一个系统不受外力或受外力矢量和为零,这个系统的总动量保持不变,这就是动量守恒定律。 2.数学表达式: 221 12211v m v m v m v m '+'=+ (相互作用的两个物体组成的系统,作用前系统的总动量等于作用后系统的总动量) 3.动量守恒定律的“四性”: ①同一性:由于动量大小与参考系的选取有关,因此应用动量守恒定律是,应注意各物体的速度必须是相对同一惯性系的速度,一般以地面为参考系。 ②矢量性:动量守恒方程是一个矢量方程。对于作用前后物体的运动方向都在一条直线上的问题,解题时务必选取正方向,选取正方向之后,用正负表示方向,将矢量运算变为代数运算。 ③瞬时性:动量是一个矢量,动量守恒指的是系统任一瞬时的动量恒定,列 方程221 12211v m v m v m v m '+'=+时,等号左边是作用前(或某一时刻)个物体的动量和,等号右侧是作用后(或另一时刻)各物体的动量和,不同时刻动量不能相加。 ④普适性:它不仅适用于两个物体所组成的系统;也适用于多个物体组成的系统。并且相互作用的物体无论是宏观的还是微观的,无论是低速的还是高速到接近光速的,动量守恒定律都适用。 4.成立条件: 动量守恒定律有许多优点。其中最突出的一点是,它不需要考虑系统相互作用过程中的各个瞬间细节,只考虑始末状态的动量。即使在牛顿定律适用范围内,它也能解决许多由于相互作用力难以确定而不能直接应用牛顿定律的问题。能有效地处理一些过程变化复习的问题。但它的使用要满足一定的条件。请详细的研究动量定恒定律的内容并结自己的理解,总结出动量守恒定律的适用条件。 (1)系统不受外力或受外力之和为零,系统的总动量守恒.

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

第十六章 第3节 动量守恒定律(学生版)

1.若用p1、p2分别表示两个相互作用物体的初动量,p1′、p2′表示它们的末动量,Δp1、Δp2表示两个相互作用物体的动量的变化,p、Δp表示两物体组成的系统的总动量和总动量的变化量,C为常数。用下列形式表示动量守恒定律,正确的是() A.Δp1=-Δp2B.p1+p2=p1′+p2′ C.Δp=C D.Δp=0 2.(2012·湖北省襄樊月考)如图1所示,在光滑水平面上,用等大异向的F1、F2分别同时作用于A、B两个静止的物体上,已知m A<m B,经过相同的时 间后同时撤去两力,以后两物体相碰并粘为一体,则粘合体最终将() A.静止B.向右运动图1 C.向左运动D.无法确定 3.(2012·福建高考)如图2,质量为M的小船在静止水面上以速率 v0向右匀速行驶,一质量为m的救生员站在船尾,相对小船静止。若 救生员以相对水面速率v水平向左跃入水中,则救生员跃出后小船的速 率为() 图2 A.v0+m M v B.v0- m M v C.v0+m M(v0+v) D.v0+ m M(v0-v) 4.如图3所示,A、B两物体的质量m A>m B,中间用一段细绳相连并有一被压缩的弹簧,放在平板小车C上后,A、B、C均处于静止状态。若地面光滑,则在 细绳被剪断后,A、B从C上未滑离之前,A、B沿相反方向滑动的过 程中() A.若A、B与C之间的摩擦力大小相同,则A、B组成的系统动量守恒,A、B、C组成的系统动量也守恒 B.若A、B与C之间的摩擦力大小不相同,则A、B组成的系统动量不守恒,A、B、C组成的系统动量也不守恒 C.若A、B与C之间的摩擦力大小不相同,则A、B组成的系统动量不守恒,但A、B、C组成的系统动量守恒 D.以上说法均不对 5.(2012·北京期中检测)如图4所示,在光滑水平面上有一质量为M的木块,木块与轻弹簧水平相连,弹簧的另一端连在竖直墙上,木块处于静止状态,一质量为m的子弹以水平速度v0击中木块,并嵌在其中,木块压缩弹簧后在水平面做往复运动。木块自被子弹击

动量与动量守恒定律练习题(含参考答案)

高二物理3-5:动量与动量守恒定律 1.如图所示,跳水运动员从某一峭壁上水平跳出,跳入湖水中,已知 运动员的质量m =70kg ,初速度v 0=5m/s 。若经过1s 时,速度为v = 5m/s ,则在此过程中,运动员动量的变化量为(g =10m/s 2 ,不计空气阻力): ( ) A. 700 kg·m/s B. 350 kg·m/s B. C. 350(-1) kg·m/s D. 350(+1) kg·m/s 2.质量相等的A 、B 两球在光滑水平面上,沿同一直线,同一方向运动,A 球的动量p A =9kg?m/s ,B 球的动量p B =3kg?m/s .当A 追上B 时发生碰撞,则碰后A 、B 两球的动量可能值是( ) A .p A ′=6 kg?m/s ,p B ′=6 kg?m/s B .p A ′=8 kg?m/s ,p B ′=4 kg?m/s C .p A ′=﹣2 kg?m/s ,p B ′=14 kg?m/s D .p A ′=﹣4 kg?m/s ,p B ′=17 kg?m/s 3.A 、B 两物体发生正碰,碰撞前后物体A 、B 都在同一直线上运动,其位移—时间图象如图所示。由图可知,物体A 、B 的质量之比为: ( ) A. 1∶1 B. 1∶2 C. 1∶3 D. 3∶1 4.在光滑水平地面上匀速运动的装有砂子的小车,小车和砂子总质量为M ,速度为v 0,在行驶途中有质量为m 的砂子从车上漏掉,砂子漏掉后小车的速度应为: ( ) A. v 0 B. 0Mv M m - C. 0mv M m - D. ()0M m v M - 5.在光滑水平面上,质量为m 的小球A 正以速度v 0匀速运动.某时刻小球A 与质量为3m 的静止 小球B 发生正碰,两球相碰后,A 球的动能恰好变为原来的14.则碰后B 球的速度大小是( ) A.v 02 B.v 06 C.v 02或v 06 D .无法确定

动量定理动量守恒

预习题: 1. 质点动量定理和质点系动量定理的微分形式和积分形式是怎样?它们与动量守恒定律什么关系? t P F d d = 0 21P P t F t t -=?d 外互相等价的,守恒定律可以说是在质点系 受合外力为零时动量定理的一种特殊情况. 2. 质心和重心是一样的吗? 参考答案: 质心是物体系的质量中心,可按质心公式求出质心的位置。而重心则是地球对物体系各质点重力的等效合力的 作用点,没有重力自然就没有重心,但质心永远存在。对于地球上的不太大的物体,其质心与重心重合。 3. 内力是否会改变质点系的动量? 参考答案: 不会. 作业题: 1.一质量为m 的小球从某一高度处水平抛出,落在水平桌面上发生弹性碰撞.并在抛出1 s ,跳回到原高度,速度仍是水平方向,速度大小也与抛出时相等.求小球与桌面碰撞过程中,桌面给予小球的冲量的大小和方向.并回答在碰撞过程中,小球的动量是否守恒? 解: 由题知,小球落地时间为s 5.0.因小球为平抛运动,故小球落地的瞬时向下的速度大小为g gt v 5.01==,小球上跳速度的大小亦为g v 5.02=.设向上为y 轴正向,则动量的增量 12v m v m p -=?方向竖直向上, 大小 mg mv mv p =--=?)(12 碰撞过程中动量不守恒.这是因为在碰撞过程中,小球受到地面给予的冲力作用.另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守恒. 2. 一质量为m 的质点在xOy 平面上运动,其位置矢量为 j t b i t a r ωωsin cos += 求质点的动量及t =0 到ωπ2=t 时间内质点所受的合力的冲量和质点动量的改变量. 解: 质点的动量为 )cos sin (j t b i t a m v m p ωωω+-== 将0=t 和ω π2=t 分别代入上式,得 j b m p ω=1,i a m p ω-=2 , 则动量的增量亦即质点所受外力的冲量为 )(12j b i a m p p p I +-=-=?=ω c a m F =

高中物理专题复习--动量及动量守恒定律

高中物理专题复习 动量及动量守恒定律 一、动量守恒定律的应用 1.碰撞 两个物体在极短时间内发生相互作用,这种情况称为碰撞。由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。 仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。在Ⅰ位置A 、B 刚好接触,弹簧开始被压缩,A 开始减速,B 开始加速;到Ⅱ位置A 、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A 、B 开始远离, 弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B 的速度分别为21v v ''和。全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。 ⑴弹簧是完全弹性的。Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。这种碰撞叫做弹 性碰撞。由动量守恒和能量守恒可以证明A 、B 的最终速度分别为:12 11 2 12 12 112,v m m m v v m m m m v +='+-='。 ⑵弹簧不是完全弹性的。Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能, 部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。这种碰撞叫非弹性碰撞。 , ⑶弹簧完全没有弹性。Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A 、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。这种碰撞叫完全非弹性碰撞。可以证明,A 、B 最终的共同速度为12 11 21v m m m v v += '='。在完全非弹性碰撞过程中,系统的动能损失最大,为:()() 2121212 2121122121m m v m m v m m v m E k +='+-=?。 例1. 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。质量为m 的小球以速度v 1向物块运动。 / ~

动量定理及动量守恒定律专题复习附参考答案

动量定理及动量守恒定律专题复习 一、知识梳理 1、深刻理解动量的概念 (1)定义:物体的质量和速度的乘积叫做动量:p =mv (2)动量是描述物体运动状态的一个状态量,它与时刻相对应。 (3)动量是矢量,它的方向和速度的方向相同。 (4)动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。 (5)动量的变化:0p p p t -=?.由于动量为矢量,则求解动量的 变化时,其运算遵循平行四边形定则。 A 、若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。 B 、若初末动量不在同一直线上,则运算遵循平行四边形定则。 (6)动量与动能的关系:k mE P 2=,注意动量是矢量,动能是标 量,动量改变,动能不一定改变,但动能改变动量是一定要变的。 2、深刻理解冲量的概念 (1)定义:力和力的作用时间的乘积叫做冲量:I =Ft

(2)冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。 (3)冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t 内的冲量,就不能说是力的方向就是冲量的方向。对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。 (4)高中阶段只要求会用I=Ft 计算恒力的冲量。对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。 (5)要注意的是:冲量和功不同。恒力在一段时间内可能不作功,但一定有冲量。特别是力作用在静止的物体上也有冲量。 3、深刻理解动量定理 (1).动量定理:物体所受合外力的冲量等于物体的动量变化。既I =Δp (2)动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。 (3)动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。 (4)现代物理学把力定义为物体动量的变化率:t P F ??=(牛顿第

高考物理知识点合集动量定理和动量守恒定律

四、动量定理和动量守恒定律 知识点1 动量定理 基础回扣 1.动量与动能的比较 动量 动能 物理意义 描述机械运动状态的物理量 定义式 p=mv E k =12 mv 2 标矢性 矢量 标量 变化因素 物体所受冲量 外力所做的功 大小关系 p=√k E k =p 22m 对于给定的物体,若动能发生了变化,动量一定也发生了变化;而动量发生变化,动能不一定发生变化。它们都是相对量,均与参考系的选取有关,高中阶段通常选取地面为参考系 2.冲量与功的比较 冲量 功 定义 作用在物体上的力和力的作用时间的乘积 作用在物体上的力和物体在力的方向上的位移的乘积 单位 N·s J 公式 I=Ft(F 为恒力) W=Fl cos α(F 为恒力) 标矢性 矢量 标量 意义 ①表示力对时间的累积 ②是动量变化的量度 ①表示力对空间的累积 ②是能量变化的量度 都是过程量,都与力的作用过程相互联系 3.动量定理的理解 (1)中学物理中,动量定理研究的对象通常是单个物体。 (2)Ft=p'-p 是矢量式,两边不仅大小相等,而且方向相同。式中Ft 是物体所受的合外力的冲量。

(3)Ft=p'-p 除表明两边大小、方向的关系外,还说明了两边的因果关系,即合外力的冲量是动量变化的原因。 (4)由Ft=p'-p,得F=p'-p t =Δp t ,即物体所受的合外力等于物体的动量对时间的变化率。 易错辨析 1.应用动量定理时,力和速度选取不同的正方向。 2.应用动量定理解决实际问题时要注意分析不变的物理量。 知识点2 动量守恒定律 基础回扣 1.动量守恒表达式 (1)p=p',系统相互作用前总动量p 等于相互作用后的总动量p'。 (2)m 1v 1+m 2v 2=m 1v 1'+m 2v 2',相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。 (3)Δp 1=-Δp 2,相互作用的两个物体动量的变化量等大反向。 (4)Δp=0,系统总动量的变化量为零。 2.适用条件 (1)理想守恒:不受外力或所受外力的合力为零。 (2)近似守恒:系统内各物体间相互作用的内力远大于系统所受到的外力。 (3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在这一方向上动量守恒。 易错辨析 1.应用动量守恒定律时,各速度不是相对同一参考系。 2.应用动量守恒定律时要注意判断动量是否守恒。 知识点3 碰撞、爆炸与反冲 基础回扣 1.碰撞遵循的三条原则 (1)动量守恒 (2)机械能不增加 E k1+E k2≥E k1'+E k2'或p 1 22m 1+p 2 22m 2≥p 1'22m 1+p 2'2 2m 2

动量守恒定律优秀教案

16.3动量守恒定律 主备人:审核人:主讲教师:授课班级:【三维目标】 一、知识与技能: 1.理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围 2.,会应用动量守恒定律分析计算有关问题。 二、过程与方法: 在理解动量守恒定律的确切含义的基础上正确区分内力和外力; 三. 情感、态度与价值观: 培养逻辑思维能力,会应用动量守恒定律分析计算有关问题。 【教学重点】:动量的概念和动量守恒定律。 【教学难点】:动量的变化和动量守恒的条件。 【教学方法】:教师启发、引导,学生讨论、交流。 【教学用具】:投影片,多媒体辅助教学设备。 【教学过程】: 【自主学习】 指导学生完成“知识体系梳理” 【新知探究】 一. 设疑激趣,创设研究情境 设置悬念:鸡蛋是我们每天都需要的营养食品,如果我将这只生鸡蛋用力扔出去,鸡蛋的命运会怎样? 演示:站在教室中部用力将鸡蛋水平扔向竖直悬挂在黑板前的大绒布。 提问:你观察到什么现象? 学生:扔在绒布上鸡蛋没破。 教师从绒布下拿出那只鸡蛋并提问:如果站在同一位置将同一只鸡蛋以相同的力向墙上扔,会出现什么结果? 演示:用力将鸡蛋水平扔向墙壁(墙壁上事先贴有白纸)。 学生:鸡蛋破了。 激疑:两种情况下鸡蛋与墙或布作用前的动量可以认为是相同的,作用后的 动量变为零,鸡蛋的动量变化是相同的。但究竟是什么原因使得鸡蛋出现不

同的结局? 教师:再请大家看一段录象。 教师演示课件:播放几个体育运动的视频录象(在节奏感强烈的音乐背景下 依次出现亚运会跳高、拳击、跳马、吊环等比赛镜头)。 提问:看完这段录象后,我们可能会提出很多问题,比如跳高、跳马、吊环运动员落地时为什么要落在软垫上?激烈的拳击比赛中,运动员为什么要戴拳击手套?以上这些问题是大家熟悉却不能科学解释的问题,也正是本节课我们要研究的问题。 课件显示: 二. 分层展开,引导自主探究 1. 关于物体动量的变化跟哪些因素有关的研究 ①提出假说 教师:要解决刚才提出的问题,必须首先研究、解决物体的动量变化跟哪些因素有关这一问题。你们先猜一猜看,物体的动量变化与哪些因素有关? 学生甲猜想:可能与物体的质量和它受到的力有关。 学生乙猜想:可能与物体受到的力的大小和力的作用时间有关。 ②定性验证 教师:同学们会提出各种不同的假说,这些假说是否正确?请你们操作第一个学习软件,先对两个实例进行定性讨论,由此你能得出什么结论? 学生:动手操作学习软件并相互协作讨论。 学生计算机显示:讨论题—— a.一辆以某一速度行驶的汽车,关闭发动机后,要使汽车停下来即使它的动 量为零,如果你是驾驶员可以采取哪些措施? b.静止的足球,要使它运动起来即使它获得一定的动量,可用哪些方法? 请一学生回答对讨论题的分析结果:…… 学生归纳:物体动量的变化跟物体所受力的大小和作用时间的长短有关。 ③定量验证 提问:你得出的这一结论是否正确?你如何验证? 学生提出观点:可以采用数学推导的方法。 教师:很好!数学推导的方法也称定量分析法,请大家继续研究。 学生:继续操作计算机进行定量分析推导。 学生计算机显示(动画):一个质量为m 的物体,初速度为v ,在合外力F 的作用下,经过时间t,速度变为v',该物体动量的变化与什么有关? v v'

动量守恒定律第三节动量守恒定律-人教版高中物理学案选修3_5

第三节动量守恒定律 学习目标 知识导图 知识点1 系统、内力和外力 1.系统 相互作用的两个或几个物体组成一个力学__系统__。 2.内力 系统__内部__物体间的相互作用力。 3.外力 系统__以外__的物体对系统__以内__的物体的作用力。 知识点2 动量守恒定律 1.内容 如果一个系统不受__外力__,或者所受__外力__的矢量和为零,这个系统的总动量保持不变。 2.表达式 对两个物体组成的系统,常写成: p1+p2=__p1′+p2′__或m1v1+m2v2=__m1v1′+m2v2′__ 3.适用条件 系统不受__外力__或者所受__外力__之和为零。 知识点3 动量守恒定律的普适性 动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的__一切__领域。

预习反馈 『判一判』 (1)动量守恒定律适用于宏观物体,不适用于微观粒子。(×) (2)一个系统初、末状态动量大小相等,即动量守恒。(×) (3)两个做匀速直线运动的物体发生碰撞,这两个物体组成的系统动量守恒。(√) (4)系统动量守恒也就是系统的动量变化量为零。(√) (5)系统动量守恒,动能不一定守恒,某一方向上动量守恒,系统整体动量不一定守恒。(√) 『选一选』 (多选)下列四幅图所反映的物理过程中,系统动量守恒的是( AC ) 解析:A 中子弹和木块的系统在水平方向不受外力,竖直方向所受合力为零,系统动量守恒;B 中在弹簧恢复原长过程中,系统在水平方向始终受墙的作用力,系统动量不守恒;C 中木球与铁球的系统所受合外力为零,系统动量守恒;D 中木块下滑过程中,斜面始终受挡板的作用力,系统动量不守恒。 『想一想』 如图三国演义“草船借箭”中,若草船的质量为m 1,每支箭的质量为m ,草船以速度v 1 返回时,对岸士兵万箭齐发,n 支箭同时射中草船,箭的速度皆为v ,方向与船行方向相同。由此,草船的速度会增加多少?(不计水的阻力) 答案: nm m 1+nm (v -v 1) 解析:船与箭的作用过程系统动量守恒:m 1v 1+nmv =(m 1+nm )(v 1+Δv )得Δv =nm m 1+nm (v -v 1)。

动量定理动量守恒定律

动量定理 动量守恒定律 1.如图所示,一恒力F 与水平方向夹角为θ,作用在置于光滑水平 面上,质量为m 的物体上,作用时间为t ,则力F 的冲量为 A .Ft B .mgt C .F cos θt D .(mg-F sin θ)t 2.质量为m 的质点以速度υ绕半径R 的圆周轨道做匀速圆周运动,在半个周期内动量的改变量大小为 A .0 B .mυ C .2mυ D .条件不足,无法确定 3.如图所示质量为m 的物块沿倾角为θ的斜面由底端向上滑去,经过时 间t 1速度为零后又下滑,经过时间t 2回到斜面底端,在整个运动过 程中,重力对物块的总冲量为 A .0 B .mg sin θ(t 1+ t 2) C .mg sin θ(t 1- t 2) D .mg (t 1+ t 2) 4.水平抛出的物体,不计空气阻力,则 A .在相等时间内,动量的变化相同 B .在任何时间内,动量的变化方向都在竖直方向 C .在任何时间内,动量对时间的变化率相同 D .在刚抛出的瞬间,动量对时间的变化率为零 5.一粒钢珠从静止状态开始自由下落,然后陷入泥潭中。若把它在空中自由下落的过程称为Ⅰ,进入 泥潭直到停止的过程称为Ⅱ,则 A .过程Ⅰ中钢珠动量的改变量等于重力的冲量 B .过程Ⅱ中钢珠所受阻力的冲量大小等于过程Ⅰ中重力冲量的大小 C .过程Ⅱ中阻力的冲量大小等于过程Ⅰ与过程Ⅱ重力冲量的大小 D .过程Ⅱ中钢珠的动量改变量等于阻力的冲量 6.甲、乙两物体质量相等。并排静止在光滑水平面上。现用一水平外力F 推动甲物体。同时在F 的相同方向给物体乙一个瞬时冲量I ,使两物体开始运动。当两物体重新相遇时 A .甲的动量为I B .甲的动量为2I C .所经历的时间为F I D .所经历的时间为F I 2 7.质量为1kg 的物体从离地面5m 高处自由下落。与地面碰撞后。上升的最大高度为3.2m ,设球与地面作用时间为0.2s ,则小球对地面的平均冲力为(g =10m/s 2) A .90N B .80N C .110N D .100N 8.把一个乒乓球竖直向上抛出,若空气阻力大小不变,则乒乓球上升到最高点和从最高点返回到抛出点的过程相比较 A .重力在上升过程的冲量大 B .合外力在上升过程的冲量大 C .重力冲量在两过程中的方向相反 D .空气阻力冲量在两过程中的方向相反

相关主题