搜档网
当前位置:搜档网 › 增稠剂介绍

增稠剂介绍

增稠剂介绍
增稠剂介绍

增稠剂

简?介:

是一种流变助剂,不仅可以使涂料增稠,防止施工中出现流挂现象,而且能赋予涂料优异的机械性能和贮存稳定性。对于黏度较低的水性涂料来说,是非常重要的一类助剂。

增稠剂有水性和油性之分。尤其是水相增稠剂应用更为普遍。增稠剂实质上是一种流变助剂,加入增稠剂后能调节流变性,使胶黏剂和密封剂增稠,防止填料沉淀,赋予良好的物理机械稳定性,控制施工过程的流变性(施胶时不流挂、不滴淌、不飞液),还能起着降低成本的作用。特别对于胶黏剂和密封剂的制造、储存、使用都很重要,能够改进和调节黏度,获得稳定、防沉、减渗、防淌、触变等性能。

分?类:

增稠剂的品种很多,主要有无机增稠剂(以膨润土为主)和有机增稠剂(纤维素类、碱溶胀型丙烯酸类、缔合型聚氨酯类等)。但其中用量最大的还是羟乙基纤维素、缔合型聚氨酯、碱溶胀丙烯酸乳液3类产品。

1.??纤维素类

纤维素类增稠剂(HEC)及憎水改性纤维素型增稠剂(HMHEC)是涂料中用得最为广泛的增稠剂种类。纤维素及其他的多糖类增稠剂常以粉状形式存在,应用时常和颜料一起研磨成颜料浆。当后添加时,纤维素和其他无机粉状增稠剂会给涂料带来更多的问题。以液体形式供货的HEC和HMHEC产品为涂料的生产带来了方便。

2.??缔合型聚氨酯

第二类经常用于水性涂料的增稠剂为非离子缔合型的聚合物,最常见的为憎水改性的乙氧基化聚氨酯及相似的含脲、脲-氨酯及醚键的氧化乙烯/氧化丙烯。非离子缔合型的增稠

剂通常以水/共溶剂溶液或水溶液的形式存在。因此当其用于涂料时较难分散,且需较长的时间才能使其得以充分发挥作用。

3.??碱溶胀丙烯酸乳液

碱溶胀丙烯酸用于水性涂料的为碱可溶或溶胀的乳液,有2种基本类型:传统的丙烯酸酯类(ASE)和憎水改性缔合型聚丙烯酸酯类(HASE)。此类增稠剂需加适当的碱调节pH,使其由低黏度的乳液转变为水性的增稠剂。

增稠机理:

1.??纤维素类

纤维素类(C6H10O5)是一个天然多糖,通过反应可形成多种水溶性醚类。

纤维素类增稠剂的作用主要是因为带有羟基的大分子链,既能与水发生强烈的水合作用又能产生分子链间缠绕,从而增加了水相黏度。纤维素分子链中重复的脱水葡萄糖单元使其分子链呈直形且较坚挺,这种形态使相同相对分子质量的HEC比聚环氧乙烷和聚丙烯酰胺占有更大的体积,因而对增加水相的黏度特别有效。对既定类型的纤维素醚来说,相对分子质量是得到增稠效率和流变性能的决定因素。相对分子质量高的HEC有更多的氢键键合和更强的范德华作用力、分子间缠绕增加因而黏度上升。当相对分子质量小于100000时,HEC的高低剪切黏度重合,这表明相对分子质量低于此值时缠绕度就不起作用了。

使用HEC会导致涂料在高剪切速率下黏度低,影响涂膜的丰满度,低速率下黏度快速回复影响流平性。经憎水改性的纤维素醚类(HMHEC)既能与水的氢键合又能有一定程度的憎水缔合,对HEC的性能有所改善。

2.??聚氨酯类增稠剂(HEUR)

HEUR是非离子憎水改性环氧乙烷聚氨酯嵌段共聚物。下图是一个典型的线形HEUR结构,波形线代表亲水聚环氧乙烷链端;方形和圆圈则代表大小不同的憎水链段。

HEUR在乳胶涂料水相中很像大分子表面活性剂,可以形成胶束,亲水端与水分子以氢键缔合,疏水端与乳胶粒子、表面活性剂等的憎水结构以分子间配向效应吸附在一起,在水中形成立体网状结构。HEUR增稠剂相对分子质量(数千至数万)比前两类增稠剂的相对分子质量(数十万至数百万)低,水合后的有效体积增加较少,水相中分子间的缠绕有限,因而对水相增稠不足。增稠剂与分散相粒子间的缔合可提高分子间势能,在高剪切速率下表现出较高的表观黏度有利于涂膜的丰满;随着剪切力的消失,其立体网状结构逐渐恢复,便于涂料的流平。

3.??丙烯酸类增稠剂

丙烯酸类包括丙烯酸盐及碱增稠的丙烯酸酯共聚物2种类型。此类增稠剂需调节pH至碱性,使羧酸根离解,从而通过羧酸根离子间的同性静电斥力使分子链由螺旋状伸展为棒状,提高了水相的黏度。

为了增加分子链与乳胶粒子和颜料的作用,人们对丙烯酸类增稠剂进行了憎水改性。憎水单体可以是某些常规非离子型的表面活性剂的甲基丙烯酸和丁烯酸酯,憎水基通常以乙烯基的形式在共聚中直接加入,憎水段通过短的聚环氧乙烷亲水段和连接基团与亲水碱溶基团直接相连,如下图。

HASE和HEUR增稠剂的主要区别之一是它们与无机颜料和填料的交互作用。对HEUR来说,只有使用憎水时,它们才能在无机颜料表面上有弱的吸附,而HASE则能直接吸附在颜料的表面。

应?用:

增稠剂广泛用于食品、涂料、胶黏剂、化妆品、洗涤剂、印染、橡胶、医药等领域。选择时除要考虑产品的流动性、透明度、稠度、凝胶性及悬浮颗粒能力外,还应注意选用用量少而增稠效果好,与主体成分相容性好而不产生相分离,储存市不引起霉变和离析的水溶性化合物。

①在涂料、印花中,由增稠剂、水、粘合剂和涂料组成的涂料印花色浆,印花色浆在印花机械力作用下,发生切变力,使印花色浆的粘度再瞬间大幅度降低;当切变力消失时,又恢复至原来的高粘度,使织物印花轮廓清晰,这种随切变力的变化而发生的粘度变化,主要是靠增稠剂来实现的;

②在乳胶漆制造中,增稠剂对乳胶漆的增稠、稳定及流变性能起着多方面协调作用。

③在乳胶聚合过程中用作保护胶体,提高的稳定性;再颜料、填料分散阶段,提高分散物料的粘度而利于分散;

④在储运过程中提高涂料稳定性及抗冻融性,防止颜料、填料沉底结块;

⑤在施工中调节乳胶漆粘稠度,并呈良好的触变性等。

各种增稠剂的性能对比

各种增稠剂的性能对比 四合一增稠剂、三维增稠剂、AES伴侣增稠剂、高泡增稠剂、稠度增倍剂、即溶全透明增稠粉、速溶耐酸碱透明增稠粉、全透明增稠粉、半透明增稠粉、658-8透明增稠粉都是新型增稠剂。 他们的区别在于以下这些方面: 一、溶解速度: 1、四合一增稠剂、AES伴侣增稠剂、三维增稠剂、稠度增倍剂,高泡增稠剂入水即溶。 2、即溶全透明增稠粉,在酸性水质条件下,5分钟即能全部溶解,适用于所有高低转速搅拌类设备:大型电机搅拌机、电钻搅拌机、反应釜、高剪切乳化机、管道乳化机、胶体磨、其他搅拌工具、木棍都可以生产,任何生产设备都能使用。 3、速溶耐酸碱透明增稠粉,在常温中性水质条件下,15--30分钟即能全部溶解,适用于所有高低转速搅拌类设备:大型电机搅拌机、电钻搅拌机、反应釜、高剪切乳化机、管道乳化机、胶体磨、其他搅拌工具、木棍都可以生产,任何生产设备都能使用。 4、全透明增稠粉、658-8透明增稠粉,不限水质,溶解速度较慢,需要电钻搅拌机搅拌。 5、半透明增稠粉,不限水质,溶解速度较慢,需要电钻搅拌机搅拌。二、透明度: 1、四合一增稠剂、AES伴侣增稠剂、三维增稠剂、稠度增倍剂、

即溶全透明增稠粉、速溶耐酸碱透明增稠粉、全透明增稠粉、658-8透明增稠粉,清澈透明,水溶液象矿泉水一样清澈透明。 2、半透明增稠粉、半透明。 3、高泡增稠剂,在与磺酸+AES复配的情况下是全透明的,单独用是半透明的。三、稠度稳定性几种增稠剂稠度稳定性都很好,不会因为冬夏季而出现变果冻和变稀的情况。 四、耐酸碱情况 1、四合一增稠剂、AES伴侣增稠剂、三维增稠剂、高泡增稠剂、稠度增倍剂、即溶全透明增稠粉,全透明增稠粉、658-8透明增稠粉都不耐酸,当PH值小于5,稠度会下降,耐碱,PH值在14都能增稠。 2、半透明增稠粉,不耐酸碱。当PH值大于10,小于5,稠度会快速下降,当PH值偏碱时水溶液呈米黄色。 3、速溶耐酸碱透明增稠粉,耐酸碱:PH值在3—14都能增稠,是目前少有的宽幅耐酸碱增稠剂。 五、与盐复配反应 1、四合一增稠剂、AES伴侣增稠剂、三维增稠剂、高泡增稠剂、稠度增倍剂必须与盐复配才能增稠。 2、即溶全透明增稠粉、速溶耐酸碱透明增稠粉、全透明增稠粉、半透明增稠粉、658-8透明增稠粉都不宜与盐复配,会分层。 六、增稠条件 1、四合一增稠剂(兑水后须加盐)、即溶全透明增稠粉,全透明增稠粉、半透明增稠粉、速溶耐酸碱透明增稠粉、658-8透明增稠粉,

增稠剂

目录 摘要 (1) 前言 (1) 1.增稠剂 (1) 2.食品增稠剂的来源 (2) 2.1 天然增稠剂 (2) 2.2 人工合成增稠剂 (2) 3. 增稠剂在食品中的作用 (2) 3.1 稳定作用 (2) 3.2 增稠作用 (3) 3.3 改善食品的凝胶性,防止“起霜” (3) 3.4 保水作用 (3) 3.5 成膜作用 (3) 4. 影响增稠剂作用效果的因素 (3) 4.1 结构及相对分子质量对黏度的影响 (3) 4.2 PH值对黏度的影响 (3) 4.3 温度对黏度的影响 (4) 4.4 增稠剂的协同效应 (4) 5. 增稠剂食品中应用 (4) 5.1 肉制品加工中的应用 (4) 5.2 面制品中的应用 (4) 5.3 果冻、饮品等中的应用 (5) 5.4 在其他食品中的应用 (5) 6. 食品增稠剂的应用发展前景 (5) 参考文献 (7)

增稠剂在食品中的应用 摘要:增稠剂在食品加工中应用广泛,是一类可以提高食品的粘稠度或形成凝胶,从而改变食品的物理性状,赋予食品黏润、爽滑的口感,并兼有乳化、稳定或使呈悬浮状态作用的食品添加剂。增稠剂在食品中添加量较低,却能有效的改善的食品的品质和性能。其化学成分除明胶、酪蛋白酸钠等蛋白质外,还有自然界中广泛存在的天然多糖及其衍生物,以及人工合成的增稠剂。本文介绍了增稠剂特性、食品增稠剂的来源、添加到食品中的作用、在食品中的应用以今后的发展前景。 关键词:黏润、悬浮状、凝胶、衍生物 前言 增稠剂是通过在溶液中形成网状结构或具有较多亲水基团的胶体对保持食品的色香味结构和食品的稳定性发挥极其重要的作用,起作用大小取决于增稠剂分子本身的结构及其流变学特性。不同分子结构的增稠剂即使在其他理化参数一致,相同浓度的条件下黏度也可能有较大的差别。 1.增稠剂 增稠剂又称胶凝是一种流变助剂,在日常工作和生活经常接触的到,广泛用于食品、涂料、胶黏剂、化妆品、洗涤剂、印染、橡胶、医药等领域。其中用于食品时又称糊料或食品胶。增稠剂大多属于亲水性高分子化合物,一般都采用物理吸水膨胀化学反应两种原理起到增稠增粘的效果。增稠剂分子中含有许多亲水基团,例如羟基、羧基、氨基和羧酸根等,能与水分子发生水化作用。通常,食品增稠剂都是高分子亲水的胶体物质,大部分是从天然动植物中提取或加工而成。 追溯增稠剂的历史,最早的渊源就在食品。在很早以前,我国便有人在烹调菜肴时用淀粉来勾芡,使得菜肴的汤汁更为浓厚、黏稠,这其实就是最早的“增稠剂”。现代,仍然有些国家,把淀粉划归为食品添加剂中的增稠剂。GB 2760- 2011食品添加剂使用卫生标准明确规定了39种允许限量使用的增稠剂,允许添加增稠剂的食品种类大致有乳与乳制品、脂肪、油和乳化脂肪制品、冷冻饮品、

增稠剂介绍

增稠剂 简介: 增稠剂是一种流变助剂,不仅可以使涂料增稠,防止施工中出现流挂现象,而且能赋予涂料优异的机械性能和贮存稳定性。对于黏度较低的水性涂料来说,是非常重要的一类助剂。 增稠剂有水性和油性之分。尤其是水相增稠剂应用更为普遍。增稠剂实质上是一种流变助剂,加入增稠剂后能调节流变性,使胶黏剂和密封剂增稠,防止填料沉淀,赋予良好的物理机械稳定性,控制施工过程的流变性(施胶时不流挂、不滴淌、不飞液),还能起着降低成本的作用。特别对于胶黏剂和密封剂的制造、储存、使用都很重要,能够改进和调节黏度,获得稳定、防沉、减渗、防淌、触变等性能。 分类: 增稠剂的品种很多,主要有无机增稠剂(以膨润土为主)和有机增稠剂(纤维素类、碱溶胀型丙烯酸乳液类、缔合型聚氨酯类等)。但其中用量最大的还是羟乙基纤维素、缔合型聚氨酯、碱溶胀丙烯酸乳液3类产品。 1. 纤维素类 纤维素类增稠剂(HEC)及憎水改性纤维素型增稠剂(HMHEC)是涂料中用得最为广泛的增稠剂种类。纤维素及其他的多糖类增稠剂常以粉状形式存在,应用时常和颜料一起研磨成颜料浆。当后添加时,纤维素和其他无机粉状增稠剂会给涂料带来更多的问题。以液体形式供货的HEC和HMHEC产品为涂料的生产带来了方便。 2. 缔合型聚氨酯 第二类经常用于水性涂料的增稠剂为非离子缔合型的聚合物,最常见的为憎水改性的乙氧基化聚氨酯及相似的含脲、脲-氨酯及醚键的氧化乙烯/氧化丙烯。非离子缔合型的增稠剂通常以水/共溶剂溶液或水溶液的形式存在。因此当其用于涂料时较难分散,且需较长的时间才能使其得以充分发挥作用。 3. 碱溶胀丙烯酸乳液 碱溶胀丙烯酸乳液用于水性涂料的增稠剂为碱可溶或溶胀的乳液,有2种基本类型:传统的丙烯酸酯类(ASE)和憎水改性缔合型聚丙烯酸酯类(HASE)。此类增稠剂需加适

常见地增稠剂

常见的增稠剂 摘要: 增稠剂可提高食品的粘稠度或形成凝胶,从而改变食品的物理性质,赋予食品粘润、适宜的口感,并兼有乳化、稳定或使呈悬浮状态的作用。增稠剂都是亲水性高分子化合物,也称水溶胶。按其来源可分为天然和化学合成(包括半合成)两大类。天然来源的增稠剂大多数是由植物、海藻或微生物提取的多糖类物质,如阿拉伯胶、卡拉胶、果胶、琼胶、海藻酸类、罗望子胶、甲壳素、黄蜀葵胶、亚麻籽胶、田菁胶、瓜尔胶、槐豆胶和黄原胶等。合成或半合成增稠剂有羧甲基纤维素钠、海藻酸丙二醇酯,以及近年来发展较快,种类繁多的变性淀粉,如羧甲基淀粉钠、羟丙基淀粉醚、淀粉磷酸酯钠、乙酰基二淀粉磷酸脂、磷酸化二淀粉磷酸酯、羟丙基二淀粉磷酸酯等。我国增稠剂的生产开发近来发展很快,但还处于较年轻的阶段,从品种到质量,从应用的浓度和广度,都还有进一步发展的巨大潜力。这里主要介绍几种常见的增稠剂。 海藻酸钠常用于冷饮、冰淇淋中,也用于冷饮食品中。冰糕、冰淇淋:食用海藻酸钠作为冰糕、冰淇淋的稳定剂、增稠剂得到广泛的应用,它比传统使用的琼胶、明胶和淀粉,有独特的性能和较高的效益。可使体积膨胀率大,产量高,且膏体细腻,冰渣少,口感好,在常温下比一般冰糕、冰淇淋抗化能力增加约二倍。 此外在其它食品生产中添加海藻酸钠,诸如:饮料、饼干、软糖、夹心馅、凉粉等均可起到相应作用。 利用其凝胶的特性,可制成: 1、食用薄膜材料:可用于鱼、肉类食品保鲜膜。 2、海藻酸钙肠衣:可替代动物膜用作香肠、红肠类食品肠衣 3、海藻胶淀粉薄膜:在生产薄膜过程中,加入适量海藻酸钠,利用其本身的高粘性和淀粉分子间的相互吸附作用,使混合后的液体粘度增大,从而生产出新的薄膜-胶米纸。与一般薄膜相比较,其抗拉强度高,破碎率低,光泽好,且海藻胶与淀粉混合方便。

烤肉常见的几个问题及几个增稠剂的说明

肉制品加工常见问题 烤肉类制品在生产中遇到哪些问题,应该如何解决? 烤肉类制品作为较高档次的产品,对设备、工艺要求较严,企业实际生产中常遇到如下质量问题: 一、产出库后2—3天出水,有的甚至抽完真空即出水。 主要是因为:滚揉工艺不合理,时间过短;肉解冻过度,注射盐水温度过高,再加上滚揉间温度不能控制,造成肉蛋白过早变性;手动注射机注射,造成注射不均匀,局部肉盐水未能注射到;盐水注射机针眼有细肉丝、筋堵塞,盐水无法通过针眼注射到肉中,而这种质量问题最为常见,这就是为什么同批产品大部分正常而极少产品出水的原因。 二、口感较差。 除去上述原因外,添加剂也是很关键的问题,尤其是不同厂家的腌制剂。在较高出品率的情况下,结果有非常明显的区别,厂家在选用腌制剂时应先试验比较后再用,另外出品率越高口感越差,特别是通脊肉最为明显,一般不大于140%为宜。 三、滚揉结束后肉块表面有气泡。

主要是滚揉机未能抽真空、机口密封圈漏气、真空泵不正常或仪表显示不准确,将残留空气打入含有较高浓度卡拉胶、滚出的蛋白等物中而不能逸出。 四、成品切片上能看到小孔眼。 主要是注射后期盐水过少或因肉量少而配盐水较少,达不到盐水注射机的最少循环量,而将空气打入,这时可以听到机器的非正常音。 五、烤肉外观色泽较差。 可以在肉料入滚揉机后加入部分色素,经烟熏即能上色,也可用土炉上色,但土炉温度必须达到了120℃以上,土炉所上颜色好看且不易褪色,现不少厂家采用土炉上色。 肉制品生产中常用的增稠剂有那些,作用是什么? 常用的增稠剂有淀粉、大豆蛋白、禽蛋、卡拉胶、明胶等,作用如下: 1、淀粉。 淀粉为肉类食品中最常用的增稠剂,在肉制品中主要起改善产品的组织状态及口感,提高出品率的作用。淀粉在肉制品添加量一般为3%-12%之间,添加量不宜过大,过大会影响产品的质量,如产品口感发粘、组织结构状态差等。淀粉的种类很多,有绿豆、豌豆、玉米、

增稠剂(胶体)的种类与应用

增稠剂(胶体)的种类与应用 增稠剂(胶体)的种类与应用 发布:多吉利:.duojili. 减小字体增大字体 增稠剂(胶体)的种类与应用 增稠剂主要有:羧甲基淀粉钠(CMS)、黄原胶、明胶、海藻酸钠、瓜尔豆胶、β-环状糊精、羧甲基纤维素(CMC) 增稠剂和胶凝剂是一类能提高食品粘度或形成凝胶的食品添加剂。在加工食品中可起供稠性、粘度、粘附力、凝胶形成能力、硬度、脆性、弹性、稳定、悬浮等作用,使食品获得良好的口感。亦常称做增粘剂、胶凝剂、乳化稳定剂等。因都属亲水性高分子化合物,可水化形成高粘度的均相液,故亦称水溶胶、亲水胶体或食用胶。 增稠剂的特性 1、在水中有一定的溶解度。 2、在水中强化溶胀,在一定温度范围内能迅速溶解或糊化。 3、水溶液有较大粘度,具有非牛顿流体的性质。 4、在一定条件下可形成凝胶和薄膜。 常用增稠剂有:琼脂、羧甲基淀粉钠(CMS)、黄原胶、明胶、海藻酸、海藻酸钠、海藻酸丙二醇酯、卡拉胶、果胶、阿拉伯胶、槐豆胶、瓜尔豆胶、羟丙基淀粉、羟乙基淀粉、糊精、环状糊精(β-CD)、羧甲基纤维素(CMC) 【CMC-钠】:羧甲基纤维素钠,

白色纤维状粉末。易分散于水中形成胶体溶液。遇二价金属离子生成盐沉淀,失去粘性。不溶于乙醇及有机溶剂。硫酸铝之类的金属盐能赋予防水性。对油脂和蜡的乳化力大。用做增稠剂、稳定剂、组织改 进剂、胶凝剂、泡沫稳定剂、水分移动控制剂。广泛用于冰淇淋、饮料、酱体、面点等食品中。因吸水后膨胀性极强,又不被消化吸收,可做减肥食品填充物。FH9与FH6都是高粘度胶体。FH9粘度还要高,并分耐酸与不耐酸两种。耐酸型主要用于高酸性制品:酸奶、高酸性饮料、发酵制品等等。其他型号还有FM6,为中粘度胶体。 【卡拉胶】:又名角叉菜胶。 一种用处较普遍的食用胶,用做增稠剂、稳定剂、悬浊剂、凝胶剂、粘结剂。一般分κ、λ、τ三种主要型号。κ型能形成易碎脆性凝胶;λ型能形成弹性凝胶;τ型不能形成凝胶。根据不同的生产需要三种不同型号的卡拉胶进行复配得到不同用处的卡拉胶。如:果酱专用(增稠但不必形成凝胶,以τ型为主);果冻专用(必须能形成弹性凝胶,以λ型为主);肉食专用(以κ型为主形成强凝胶)拌入盐类(氯化钾)增加凝胶强度、粘度。 一般添加量:肉食品、果酱、果冻等为3~8‰;酱油、饮料等为1~3‰。 【明胶】:又名食用明胶、全力丁 为白色或淡黄色半透明薄片或粉粒,含有18种氨基酸,其中7种为人体所必需。有吸水性与凝胶性,它不溶于冷水、加水后逐渐膨胀

增稠剂

增稠剂 一、食品增稠剂概述 1.定义:俗称糊料,是一种能改变食品的物理性质,增加食品的粘稠性,赋予食品以柔滑适口性,且具有稳定乳化状态和悬浊状态的物质。 2结构特征(主要应用在水相体系) 1)具有游离、分布均匀的亲水基的高分子聚合物。 2)易水合,形成高黏度的均相液体,常称作水溶胶、亲水胶体或食用胶。 3)以单糖或衍生物为单体的聚合物 4)不同位置的糖苷键形成链状、平面或空间结构。 3分类: 1、天然增稠剂:由天然动植物提取而成的增稠剂。 海藻类产生的胶及其盐类(如海藻酸、琼脂、卡拉胶等); 由树木渗出液形成的胶(如阿拉伯胶); 由植物种子制成的胶(如瓜尔胶、槐豆胶等); 由植物某些组织制成的胶(如淀粉、果胶、魔芋胶等); 由动物分泌或其组织制成的胶(如明胶、酪蛋白); 由微生物繁殖分泌的较(如黄原胶、结冷胶等)。 2、人工合成增稠剂:人工采用化学方法合成的食品增稠剂。 以天然增稠剂进行改性制得的物质及纯人工合成增稠剂。 如:海藻酸丙二醇酯、羟甲基纤维素钙、羟甲基纤维素钠、磷酸淀粉钠、乙醇酸淀粉钠; 纯化学合成:聚丙烯酸钠、羧甲基纤维素钠等。 二、食品增稠剂的一般性质 1.增稠剂的粘度 食品增稠剂亲水基团对水分子的吸附力较强,会使水分子失去运动的自由; 亲水胶体分子之间可以通过相互作用形成空间结构,阻碍液层的流动。 因此,粘度大小及胶态是否稳定是选择增稠剂的重要参数 降低增稠剂的粘度的因素: ①电解质(盐):减少了增稠剂对水分子的吸附作用 ②微生物:微生物对增稠剂分子降解 ③酶(各种水解酶):分解果胶、明胶及其它多糖类物质 ④pH、T:pH 愈小,粘度愈高;T愈大,粘度愈低 ⑤切变力(机械作用力):切变力愈大,粘度愈低 ⑥浓度:浓度愈低,粘度愈低 2.增稠剂的胶凝性 增稠剂在浓度适当时,会形成凝胶 凝胶:亲水性物质在水的作用下形成的网状结构体,其中的水和亲水性物质基本不具有流动性。 ①胶凝条件 适当的胶体浓度、有高价离子存在(Ca2+)、一般需热处理和冷处理、适当的pH ②热可逆凝胶 高温度时凝胶融化,低温度时又形成凝胶,有凝固点。

各种增稠剂的性能对比

各种增稠剂的性能对比 四合一增稠剂、三维增稠剂、AES伴侣增稠剂、高泡增稠剂、稠度增倍剂、即溶全透明增稠粉、速溶耐酸碱透明增稠粉、全透明增稠粉、半透明增稠粉、658-8透明增稠粉都是新型增稠剂。他们的区别在于以下这些方面: 一、溶解速度: 1、四合一增稠剂、AES伴侣增稠剂、三维增稠剂、稠度增倍剂,高泡增稠剂入水即溶。 2、即溶全透明增稠粉,在酸性水质条件下,5分钟即能全部溶解,适用于所有高低转速搅拌类设备:大型电机搅拌机、电钻搅拌机、反应釜、高剪切乳化机、管道乳化机、胶体磨、其他搅拌工具、木棍都可以生产,任何生产设备都能使用。。 3、速溶耐酸碱透明增稠粉,在常温中性水质条件下,15--30分钟即能全部溶解,适用于所有高低转速搅拌类设备:大型电机搅拌机、电钻搅拌机、反应釜、高剪切乳化机、管道乳化机、胶体磨、其他搅拌工具、木棍都可以生产,任何生产设备都能使用。。 4、全透明增稠粉、658-8透明增稠粉,不限水质,溶解速度较慢,需要电钻搅拌机搅拌。 5、半透明增稠粉,不限水质,溶解速度较慢,需要电钻搅拌机搅拌。 二、透明度: 1、四合一增稠剂、AES伴侣增稠剂、三维增稠剂、稠度增倍剂、即溶全透明增稠粉、速溶耐酸碱透明增稠粉、全透明增稠粉、658-8透明增稠粉,清澈透明,水溶液象矿泉水一样清澈透明。 2、半透明增稠粉、半透明。 3、高泡增稠剂,在与磺酸+AES复配的情况下是全透明的,单独用是半透明的。 三、稠度稳定性 几种增稠剂稠度稳定性都很好,不会因为冬夏季而出现变果冻和变稀的情况。 四、耐酸碱情况 1、四合一增稠剂、AES伴侣增稠剂、三维增稠剂、高泡增稠剂、稠度增倍剂、即溶全透明增稠粉,全透明增稠粉、658-8透明增稠粉都不耐酸,当PH值小于5,稠度会下降,耐碱,PH值在14都能增稠。 2、半透明增稠粉,不耐酸碱。当PH值大于10,小于5,稠度会快速下降,当PH值偏碱时水溶液呈米黄色。 3、速溶耐酸碱透明增稠粉,耐酸碱:PH值在3—14都能增稠,是目前少有的宽幅耐酸碱增稠剂。 五、与盐复配反应 1、四合一增稠剂、AES伴侣增稠剂、三维增稠剂、高泡增稠剂、稠度增倍剂必须与盐复配才能增稠。 2、即溶全透明增稠粉、速溶耐酸碱透明增稠粉、全透明增稠粉、半透明增稠粉、658-8透明增稠粉都不宜与盐复配,会分层。 六、增稠条件 1、四合一增稠剂(兑水后须加盐)、即溶全透明增稠粉,全透明增稠粉、半透明增稠粉、速溶耐酸碱透明增稠粉、658-8透明增稠粉,都能直接将清水增稠,自来水、井水、河水都行。 2、三维增稠剂、AES伴侣增稠剂、高泡增稠剂、稠度增倍剂不能清水增稠,必须与盐与AES复配才能增稠。 七、使用量比较 1、速溶耐酸碱透明增稠粉、即溶全透明增稠粉使用量都差不多,用于洗洁精增稠,常规量是百分之0.6—0.9,其他产品的用量自己根据产品特性自己确定。 2、全透明增稠粉,用于洗洁精增稠,常规量是百分之0.6---0.8,其他产品的用量自己根据产品特性自己确定。 3、半透明增稠粉,用于洗洁精增稠,常规量是百分之0.7---0.9,其他产品的用量自己根据产品特性自己确定。 4、三维增稠剂、AES伴侣增稠剂、高泡增稠剂、稠度增倍剂,视水溶液中活性物的多少决定他们的用量,活性物越多稠度增倍剂的用量越少,反之亦然。常规用量为1—2% 5、658-8透明增稠粉,用于洗洁精增稠,常规量是百分之0.8---1,其他产品的用量自己根据产品特性自己确定。 6、四合一增稠剂,独立增稠用量为4%,与活性物复配增稠用量为0.5--4%加,原有洗涤剂溶液中活性物含量越高,则高效增稠剂的使用量则越少,反之亦然。所以使用比例不是固定的,准确比例需要自己的配方试验后确定。 八、使用方法: 1、即溶全透明增稠粉需要在酸性水质中溶解,所以要先将活性剂溶于水中后,加磺酸将水的PH值调至3--5,增稠完成后加碱将水的PH值调至7。 2、速溶耐酸碱透明增稠粉,易溶于酸性和中性水质,在碱性水质中溶解较慢,配方中属碱性的产品在生产顺序上需要排在最后放。稠度在碱性情况下稠度更高。 3、全透明增稠粉、半透明增稠粉,稠度增倍剂,高泡增稠剂,658-8透明增稠粉、三维增稠剂、四合一增稠剂、AES伴侣增稠剂都是在生产中最后才放。 九、对皮肤头发的亲和性 1、即溶全透明增稠粉、速溶耐酸碱透明增稠粉、全透明增稠粉和658-8透明增稠粉,为高分子聚合物。对皮肤头发的没有亲和

增稠剂资料整理

增稠剂 一;增稠剂的分类 1.纤维素类 纤维素类又分为 非缔合型(HEC) 缔合型(HMHEC) 最有名的纤维素增稠剂包括: 羟乙基纤维素(Hydroxyethyl Cellulose,HEC) 羟丙基纤维素(Hydroxypropyl Cellulose,HPC) 羟丙基甲基纤维素(Hydroxypropylmethyl Cellulose,HPMC)、 甲基纤维素(Methyl Cellulose,MC)、 羧基甲基纤维素(Carboxymethyl Cellulose,CMC) 疏水性改质羟乙基纤维素(Hydrophobically Modified Hydroxyethyl Cellulose ,HMHEC) 多糖 碱溶涨类(丙烯酸类) 碱溶涨类又分为 非缔合型(ASE) 缔合型(HASE) 聚氨脂类 聚氨脂类又分为 聚氨脂类 疏水性改性非聚氨酯增稠剂 无机类 无机又分为 膨润土 凹凸棒土 气相二氧化硅 络合有机金属增稠剂 二:特性研究及作用机理 纤维素类 非缔合型纤维素增稠剂 纤维素类增稠剂的增稠机理: 是疏水主链与周围水分子通过氢键缔合,提高了聚合物本身的流体体积,减少了颗粒自由活动的空间,从而提高了体系黏度。也可以通过分子链的缠绕实现黏度的提高,表现为在静态和低剪切有高黏度,在高剪切下为低黏度。这是因为静态或低剪切速度时,纤维素分子链处于无序状态而使体系呈现高粘性;而在高剪切速度时,分子平行于流动方向作有序排列,易于相互滑动,所以体系黏度下降。纤维素增稠剂增稠水相,该增稠作用不受连结料、颜料和助剂的影响。这种分子链较长、有分支,部分呈卷曲状。在其余情况下,分子链处于理想的序状态(高粘度)。随着剪切速率的增加,分了逐渐与流动方向平行,这使一个分子到另一个分子之间的滑动更为容易,即低粘度,因而,这种纤维素增稠剂表现出假塑性和结构粘度。通过高分子量的纤维素醚,可获得明显的假塑流动性能。

常见的食品添加剂种类及简介

常见的食品添加剂种类及简介 防腐剂:碳酸饮料、果泥、果酱、糖渍水果、蜜饯、酱菜、酱油、食醋、果汁饮料、肉、鱼、蛋、禽类食品等,常用的有:苯甲酸、苯甲酸钠、山梨酸、山梨酸钾等。 着色剂:主要用于碳酸饮料、果汁饮料类、配制酒、糕点上的彩装、糖果、山楂制品、腌制小菜、冰淇淋、果冻、巧克力、奶油、速溶咖啡等各类食品等。常使用的有:苋菜红、胭脂红、柠檬黄、日落黄、焦糖色素等人工合成色素。像叶绿素铜钠盐等一些天然食用色素,主要是由植物组织中提取,但它们的色素含量及稳定性一般不如人工合成的色素,另外还有天然等同色素。 甜味剂:是赋予食品以甜味的添加剂。常用的有:糖精钠(也就是人们习惯上称的糖精)、环己基氨基磺酸钠(甜蜜素)、麦芽糖醇、山梨糖醇、木糖醇等。使用甜味剂的食品有很多。像:饮料、酱菜、糕点、饼干、面包、雪糕、蜜饯、糖果、调味料、肉类罐头等几乎日常生活中常见的食品都会加用不同种类的甜味剂。 香料:糖果与巧克力中一般有香精油、香精、粉体香料浸膏几种类型。每一种类型又有无数品种,如在糖果与巧克力中,按香型可分为果香型、果仁香型、乳香型、花香型、酒香型等不同品种。 膨松剂:部分糖果和巧克力制品中,以及一些油炸制品、膨化食品、发酵面制品等。常用的膨松剂有:碳酸氢钠、碳酸氢铵、复合膨松剂等。 酸度调节剂:具有增进食品质量的功能,更普遍用于各类食品中。

相当一部分糖果与巧克力制品采用酸味剂来调节和改善香味效果,尤其是水果型的制品。常用的有:柠檬酸、酒石酸、乳酸、苹果酸。 抗氧化剂:是一种通过给食品中易氧化成分分子中脱氧基团以氢原子、阻止氧化连锁反应,或与其形成络合物,抑制氧化酶类的活性,从而防止和延缓食品表面被氧化变质的一类食品添加剂。 增稠剂:是一类亲水性的高分子化合物,具有稳定、乳化或悬浊状态作用,能形成凝胶或提高食品粘度,故亦称凝胶剂、胶凝剂或乳化稳定剂。 乳化剂:是一种表面活性剂,其分子通常具有亲水基(羟基)和亲油基(烷基),易在水和油界面形成吸附层,从而改变乳化体中各物相之间的表面活性,使之形成均匀的乳化体或分散体,故能改进食品的组织机构、口感、外观等。 膨松剂:是以粮食粉为主要原料的食品在加工时(加热过程中)因产生气体而使组织成为均匀致密的多孔结构状态,而使食品疏松、松脆的一类食品添加剂。 组织改良剂:通过保水、粘结、增塑、稠化和改善流变性能等作用而改进食品外观或触感的一种食品添加剂。 面粉改良剂:提高面粉质量的一类添加剂,可以提高出品率,提高面粉精白度和筋力。 消泡剂:在食品加工过程中,具有消除和抑制液面气泡的能力,使操作得以顺利进行。 抗结剂:防止粉状或晶体状食品聚集、结块。

肉制品加工常用增稠剂概述

肉制品加工常用增稠剂概述 增稠剂是一类能提高食品黏度并改变其性能的食品添加剂。增稠剂对保持食品(特别是流态食品、冻胶食品)的色、香、味、质构和相对稳定性有相当重要的作用,而作用的大小则取决于其分子结构和溶液的流变性。在肉制品加工种能改善和稳定肉制品物理性质或组织形态的物质。 1 增稠剂的分类及特点 1.1 按其来源和加工方式分类 增稠剂按其来源和加工方式可分为天然增稠剂和化学合成(包括半合成)增稠剂两大类。 天然增稠剂占大多数(约50余种),是从植物、海藻、动物或微生物提取的多糖类物质,大致可分为以下几类: ①由海藻类所产生的胶及其盐类,如海藻酸、琼脂、卡拉胶等; ②由树木渗出液所形成的胶,如阿拉伯胶、黄芪胶、桃胶等; ③由植物种子所制得的胶,如瓜尔豆胶、槐豆胶、罗望子胶等; ④由植物的某些组织制得的胶,如果胶、魔芋胶、黄蜀葵胶等; ⑤由动物分泌或其组织制得的胶,如明胶、甲壳素、干酪素等; ⑥由微生物繁殖时所分泌的胶,如黄原胶、结冷胶等。 化学合成或半合成增稠剂包括以天然增稠剂进行改性制取的,如羧甲基纤维素钠、海藻酸丙二酯、羧甲基淀粉钠、羧丙基淀粉、淀粉磷酸酯钠、乙醇酸淀粉钠等,以及纯粹以化学方法合成的,如聚丙烯酸钠等。 1.2 按其性能和使用效果分类 增稠剂并不只有增加黏度的作用,当添加量、作用环境、复配组合、加工工艺等因素发生变化时,它们还起到稳定剂、悬浮剂、胶凝剂、成膜剂、充气剂、絮凝剂、黏结剂、乳化剂、润滑剂、组织改进剂、结构改进剂等作用。但增稠剂在其性能和使用效果上一般可分为增稠剂和胶凝剂两大类。典型的增稠剂有淀粉和改性淀粉、瓜尔豆胶、槐豆胶、黄原胶、阿拉伯胶、以羧甲基纤维素钠为代表的改性纤维素、海藻酸盐等;而作为胶凝剂的有明胶、淀粉、海藻酸盐、果胶、卡拉胶、琼脂、甲基纤维素等。其中海藻酸盐既是增稠剂又是胶凝剂,黄原胶和槐豆胶单独使用时只作增稠剂,但两者配合使用时又成了胶凝剂。 2 增稠剂的增稠的原理 增稠剂属于大分子聚合物,在其分子链上,无论是直链、支链或交联链上,都分布有一些酸性、中性或碱性的基团,因此具有各种不同的配合性能,还具有不同的耐热性、耐酸性、耐碱性和耐盐性等。增稠剂在水中具有一定的溶解度,能在水中强烈溶胀,在一定温度范围内能迅速溶解或糊化;并有较大黏度,具有非牛顿流体性质;在一定条件下能形成凝胶体和薄膜。增稠剂因增加稠度而使乳化液得以稳定,但它们的单个分子并不同时具有乳化剂所特有的亲水性、亲油性,因此增稠剂不是真正的乳化剂。 3 增稠剂的协同效应与增塑 增稠剂的协同效应是指两种或两种以上的增稠剂混合溶液黏度大于各增稠剂单独溶液黏度的总和,或者形成高强度的凝胶。黄原胶和槐豆胶,卡拉胶和槐豆胶,黄蓍胶和海藻酸钠,黄蓍胶和黄原胶都有相互增效的协同效应。卡拉胶是以具有半酯化硫酸酯的半乳糖残基为主链的高分子多糖,槐豆胶是以甘露糖残基组成主链,平均每4个甘露糖残基就置换一个半乳糖残基,其大分子链中无侧链区与卡拉胶的双螺管结构之间有较强的键合作用,使槐豆胶和卡拉胶形成的凝胶体系具

增稠剂介绍

增稠剂 简? 介: 增稠剂是一种流变助剂,不仅可以使涂料增稠,防止施工中出现流挂现象,而且能赋予涂料优异的机械性能和贮存稳定性。对于黏度较低的水性涂料来说,是非常重要的一类助剂。 增稠剂有水性和油性之分。尤其是水相增稠剂应用更为普遍。增稠剂实质上是一种流变助剂,加入增稠剂后能调节流变性,使胶黏剂和密封剂增稠,防止填料沉淀,赋予良好的物理机械稳定性,控制施工过程的流变性(施胶时不流挂、不滴淌、不飞液),还能起着降低成本的作用。特别对于胶黏剂和密封剂的制造、储存、使用都很重要,能够改进和调节黏度,获得稳定、防沉、减渗、防淌、触变等性能。 分类: 增稠剂的品种很多,主要有无机增稠剂(以膨润土为主)和有机增稠剂(纤维素类、碱溶胀型丙烯酸乳液类、缔合型聚氨酯类等)。但其中用量最大的还是羟乙基纤维素、缔合型聚氨酯、碱溶胀丙烯酸乳液3类产品。 1. 纤维素类 纤维素类增稠剂(HEC)及憎水改性纤维素型增稠剂(HMHEC)是涂料中用得最为广泛的增稠剂种类。纤维素及其他的多糖类增稠剂常以粉状形式存在,应用时常和颜料一起研磨成颜料浆。当后添加时,纤维素和其他无机粉状增稠剂会给涂料带来更多的问题。以液体形式供货的HEC和HMHEC产品为涂料的生产带来了方便。 2. 缔合型聚氨酯 第二类经常用于水性涂料的增稠剂为非离子缔合型的聚合物,最常见的为憎水改性的乙氧基化聚氨酯及相似的含脲、脲-氨酯及醚键的氧化乙烯/氧化丙烯。非离子缔合型的增稠剂通常以水/共溶剂溶液或水溶液的形式存在。因此当其用于涂料时较难分散,且需较长的时间才能使其得以充分发挥作用。 3. 碱溶胀丙烯酸乳液 碱溶胀丙烯酸乳液用于水性涂料的增稠剂为碱可溶或溶胀的乳液,有2种基本类型:传统的丙烯酸酯类(ASE)和憎水改性缔合型聚丙烯酸酯类(HASE)。此类增稠剂需加适当的碱调节pH,使其由低黏度的乳液转变为水性的增稠剂。 增稠机理: 1. 纤维素类 纤维素类(C6H10O5)是一个天然多糖,通过反应可形成多种水溶性醚类。 纤维素类增稠剂的作用主要是因为带有羟基的大分子链,既能与水发生强烈的水合作用又能产生分子链间缠绕,从而增加了水相黏度。纤维素分子链中重复的脱水葡萄糖单元使其分子链呈直形且较坚挺,这种形态使相同相对分子质量的HEC比聚环氧乙烷和聚丙烯酰胺占有更大的体积,因而对增加水相的黏度特别有效。对既定类型的纤维素醚来说,相对分子质量是得到增稠效率和流变性能的决定因素。相对分子质量高的HEC有更多的氢键键合和更强的范德华作用力、分子间缠绕增加因而黏度上升。当相对分子质量小于100000时,HEC的高低剪切黏度重合,这表明相对分子质量低于此值时缠绕度就不起作用了。

增稠剂种类

增稠剂种类 目前市场上可选用的增稠剂品种很多,主要有无机增稠剂、纤维素类、聚丙烯酸酯和缔合型聚氨酯增稠剂四类。纤维素类增稠剂的使用历史较长、品种很多,有甲基纤维素、羧甲基纤维素、羟乙基纤维素、羟丙基甲基纤维素等,曾是增稠剂的主流,其中最常用的是羟乙基纤维素。聚丙烯酸酯增稠剂基本上可分为两种:一种是水溶性的聚丙烯酸盐;另一种是丙烯酸、甲基丙烯酸的均聚物或共聚物乳液增稠剂,这种增稠剂本身是酸性的,须用碱或氨水中和至pH8~9才能达到增稠效果,也称为丙烯酸碱溶胀增稠剂。聚氨酯类增稠剂是近年来新开发的缔合型增稠剂。无机增稠剂是一类吸水膨胀而形成触变性的凝胶矿物。主要有膨润土、凹凸棒土、硅酸铝等,其中膨润土最为常用。 实际使用的增稠剂按作用机理可分为水相增稠剂和油相增稠剂两大类,前者品种很多,后者相当少。 增稠剂有如下一些类别: (1)无机增稠剂(气相法白炭黑、钠基膨润土、有机膨润土、硅藻土、凹凸棒石土、分子筛、硅凝胶)。 (2)纤维素醚(甲基纤维素、羟丙基甲基纤维素、羧甲基纤维素钠、羟乙基纤维素)。 (3)天然高分子及其衍生物(淀粉、明胶、海藻酸钠、干酪素、瓜尔胶、甲壳胺、阿拉伯树胶、黄原胶、大豆蛋白胶、天然橡胶、羊毛脂、琼脂)。 (4)合成高分子(聚丙烯酰胺、聚乙烯醇、聚乙烯吡咯烷酮、聚氧化乙烯、卡波树脂、聚丙烯酸、聚丙烯酸钠、聚丙烯酸酯共聚乳液、顺丁橡胶、丁苯橡胶、聚氨酯、改性聚脲、低分子聚乙烯蜡)。 (5)络合型有机金属化合物(氨基醇络合型钛酸酯)。[2] 增稠机理 纤维素类增稠剂的增稠机理是疏水主链与周围水分子通过氢键缔合,提高了聚合物本身的流体体积,减少了颗粒自由活动的空间,从而提高了体系黏度。也可以通过分子链的缠绕实现黏度的提高,表现为在静态和低剪切有高黏度,在高剪切下为低黏度。这是因为静态或低剪切速度时,纤维素分子链处于无序状态而使体系呈现高粘性;而在高剪切速度时,分子平行于流动方向作有序排列,易于相互滑动,所以体系黏度下降。 聚丙烯酸类增稠剂其增稠机理是增稠剂溶于水中,通过羧酸根离子的同性静电斥力,分子链由螺旋状伸展为棒状,从而提高了水相的黏度。另外它还通过在乳胶粒与颜料之间架桥形成网状结构,增加了体系的黏度。 缔合型聚氨酯类增稠剂A.J. Reuvers对缔合型聚氨酯类增稠剂的增稠机理作了详细的研究。这类增稠剂的分子结构中引入了亲水基团和疏水基团,使其呈现出一定的表面活性剂的性质。当它的水溶液浓度超过某一特定浓度时,形成胶束,胶束和聚合物粒子缔合形成网状结构,使体系黏度增加。另一方面一个分子带几个胶束,降低了水分子的迁移性,使水相黏度也提高。这类增稠剂不仅对涂料的流变性产生影响,而且与相邻的乳胶粒子间存在相互作用,如果这个作用太强的话,容易引起乳胶分层。 无机增稠剂膨润土是一种层状硅酸盐,吸水后膨胀形成絮状物质,具有良好的悬浮性和分散性,与适量的水结合成胶状体,在水中能释放出带电微粒,增大体系黏度。 各类增稠剂的特点及其选择 纤维素类增稠剂的增稠效率高,尤其是对水相的增稠;对涂料涂料的限制少,应用广泛;可使用的pH范围大。但存在流平性较差,辊涂时飞溅现象较多、稳定性不好,易受微生物降解等缺点。由于其在高剪切下为低黏度,在静态和低剪切有高黏度,所以涂布完成后,黏度迅速增加,可以防止流挂,但另一方面造成流平性较差。有研究表明,增稠剂的相对分子质量增加,乳胶涂料的飞溅性也增加。纤维素类增稠剂由于相对分子质量很大,所以易产生飞溅。此类增稠剂是通过“固定水”达到增稠效果,对颜料和乳胶粒子极少吸附,增稠剂

常见饮料16种添加剂及其作用

常见饮料16种添加剂及其作用 阿斯巴甜:一种非碳水化合物类的人造甜味剂。甜度是蔗糖的200倍,在 应用中仅需少量就可达到希望的甜度。阿斯巴甜是一种甜味剂,甜度很高但是不被吸收能量,所以可以作为低糖食品的成分。“阿斯巴甜是人工合成的甜味剂,成本很低,用量在一定标准范围内既不会危害健康,又减少糖分摄入,而且降低产品成本,还是值得提倡的,” 安赛蜜:一种化学品,类似于糖精,易溶于水,可增加食品甜味,没有营 养,口感好,无热量,具有在人体内不代谢、不吸收,对热和酸稳定性好等特点,是目前世界上第四代合成甜味剂。 羧甲基纤维素钠:良好的乳化稳定剂,具有优异的冻结、熔化稳定性,并能提高产品的风味,延长贮藏时间。 柠檬酸:可改善食品的感官性状,增强食欲和促进体内钙、磷物质的消化吸收。 乳酸:具有调节pH值、抑菌、延长保质期、调味、保持食品色泽、提高产品质量等作用,有很强的防腐保鲜功效。 柠檬酸钠:广泛用于食品、饮料、香料行业作为酸味剂、调味剂及防腐剂、保鲜剂、缓冲剂、螯合剂。 三聚磷酸钠:一种无机物表面活性剂,对润滑油和脂肪有强烈的乳化作用,食品工业中用于罐头、果汁饮料、奶制品、豆乳等的品质改良剂。 瓜尔胶:天然的增稠剂,主要由半乳糖和甘露糖聚合为食品而成,属于天然半乳。 黄原胶:被誉为“工业味精”,是目前世界上生产规模最大且用途极为广 泛的微生物多糖。即使是低浓度也会产生很高的黏度,1%水溶液黏度相当于明胶的100倍,从而可作为良好的增稠和稳定剂。

乳化硅油:可用于发酵工艺,最大使用量为0.2g/kg。 乳酸链球菌素:是乳酸链球菌产生的一种多肽物质,可以降低灭菌温度,缩短 灭菌时间,降低热加工温度,减少营养成分的损失,改进食品的品质和节省能源,并能有效地延长食品的保质时间。 增稠剂:增强固体饮料口感,代表产品:即溶花粉类、果汁速溶品类。增稠剂的成 分主要是纤维素,也就是多糖类,常见的有脱水纤维素、纤维素钠盐、海藻胶、黄原胶等。“固体饮料中,一些能溶于水,一些不能,增稠剂的作用就在于使不溶于水的物质浮在饮品中而不沉底,增强口感。比如杏仁粉,如果是纯原料加水后一定沉底的。” 麦芽糊精:“无糖食品”中常出现,代表产品:杏仁粉、玉米糊、藕粉等。麦芽糊 精也是一种多糖,是淀粉水解之后的产物。一叫什么“精”就好像是不好的物质,实际上麦芽糊精并没有危害,人体吸收分解后产生能量。很多无糖固体饮料中都有麦芽糊精的成分,实际上这些无糖固体饮料是无蔗糖等精致糖,“麦芽糊精等多糖最终产物也是葡萄糖,但是这个转化吸收的过程很慢,使血糖平缓增长,而不至于忽起忽落。” 酸味剂/酸味调节剂:工业提纯可以无杂质,代表产品:果汁类速溶品酸味剂 是比较安全的一种添加剂,国家标准对其用量几乎没有限制,厂家可以根据生产需要使用。酸味剂以合成有机酸为主,“不要认为工业化合成都是不好的,工业化可以使有机酸提得很纯,去掉一些不好的杂质。”合成主要是两种方式,一种是将天然的物质通过工业化提纯、合成,比如维生素C。而另一种是人类自己合成自然界中没有的物质,还是少吃为好。 植脂末:含有反式脂肪酸,代表产品:奶茶、咖啡、果汁类。“植脂末属于不太好 的一类食品添加剂,主要是饱和油脂类。”植脂末一般是通过工业的手段将植物油变为饱和的油脂类,成为代脂肪类的物质。“问题在于植脂末中含有反式脂肪酸,这种物质能增加心脑血管疾病的发病风险。”天然油脂中是没有反式脂肪酸的,实际上反式脂肪酸是工业将不饱和植物油转化成饱和植物油的副产品。 膳食纤维:代表产品:阿胶核桃粉。膳食纤维是人体不能消化吸收只能在肠道中 停留的一类多糖物质,主要作用在于润肠通便,还能降低消化道肿瘤发生风险。膳食纤维分为不可溶性和可溶性两种,不可溶纤维主要来自蔬菜和麦麸等。“添加膳食纤维实际上是一个很好的创意,既有保健作用,又能降低产品成本。” 专家:有毒!不同添加剂有化学反应。

几种增稠剂的特性及其生产应用

几种增稠剂的特性及其生产应用 摘要:食品增稠剂是一类应用广泛、特性明显的食品添加剂,本文主要介绍了几种常用的食品增稠剂的特性及其生产应用。 关键词:食品增稠剂特性生产应用 食品增稠剂,通常指能溶于水中,并在一定条件下充分水化形成黏稠、滑腻溶液的大分子物质,又称食品胶,是食品工业中用途广泛的一类重要的食品添加剂。 增稠剂可改善食品的物理性质,增加食品的粘度,赋予食品粘滑的口感,还可改变或稳定食品的稠度,保持水份。食品增稠剂的种类很多,迄今为止,世界上用于食品工业的食品增稠剂已有40余种。根据其来源分类,有动物性增稠剂、植物性增稠剂、微生物性增稠剂和酶处理生成胶。食品增稠剂中,由含有多糖类的植物和海藻类制取的有果胶、淀粉、琼脂和海藻酸等;从含蛋白质的动物原料制取的有明胶、酪蛋白等。其中列入我国食品添加剂使用卫生标准的有明胶、琼脂、果胶等十几种。随着社会进步和食品工业的发展,我国对食品增稠剂的需求越来越多。本文主要介绍几种常用的食品增稠剂的特性、生产及应用。 1. 明胶 明胶为白色或淡黄色的半透明薄片或粉粒,其主要成分为蛋白质,经部分水解后制得。工业上主要以碱法制取明胶,将动物骨以碱浸泡脱脂,中和后进入熬胶锅熬胶,再经真空干燥、粉碎而制得。 食用明胶不溶于冷水,但能吸取冷水膨胀,它能吸收5~10倍甚至更多的水,吸水膨胀后的明胶加热易变成溶液,将明胶溶液冷却后又能变成凝胶(胶冻);凝胶富有弹性,并能保留大量水分;凝胶受热后还能变成溶液,明胶溶液有乳化油脂的特性。在溶液中明胶大分子长链使溶液产生粘度,变得稠厚,并能将其它微粒分散隔离。明胶的许多优良的物理化学性能使其在食品工业中可用作胶凝剂、乳化剂、增稠剂、稳定剂、搅打剂、发泡剂、粘结剂、澄清荆和结晶生长调节剂等等,广泛用于冷饮食品、糖果、冰淇淋、罐头中,也可用于医药。 2. 阿拉伯胶 阿拉伯胶为无色至淡黄褐色半透明块状,或为白色至淡黄色粒状或粉末,无臭,无味。在水中可逐渐溶解成呈酸性的粘稠状液体,溶解度为50%(W/V),不溶于乙醇。阿拉伯胶是从阿位伯胶树或亲缘种金合欢属树的茎和枝割流收集胶状渗出物,除去杂质后经干燥并粉碎而成。

增稠剂整理

增稠剂 一;增稠剂得分类 1.纤维素类 纤维素类又分为 A.非缔合型(HEC) B.缔合型(HMHEC) 最有名得纤维素增稠剂包括: 羟乙基纤维素(Hydroxyethyl Cellulose,HEC) 羟丙基纤维素(Hydroxypropyl Cellulose,HPC) 羟丙基甲基纤维素(Hydroxypropylmethyl Cellulose,HPMC)、 甲基纤维素(Methyl Cellulose,MC)、 羧基甲基纤维素(Carboxymethyl Cellulose,CMC) 疏水性改质羟乙基纤维素(Hydrophobically Modified Hydroxyethyl Cellulose ,HMHEC) 2.多糖 3.碱溶涨类(丙烯酸类) 碱溶涨类又分为 A.非缔合型(ASE) B.缔合型(HASE) 4.聚氨脂类 聚氨脂类又分为 A.聚氨脂类 B.疏水性改性非聚氨酯增稠剂 5.无机类 无机又分为 A.膨润土 B.凹凸棒土 C.气相二氧化硅 6.络合有机金属增稠剂 二:特性研究及作用机理 1.纤维素类 1、1非缔合型纤维素增稠剂 纤维素类增稠剂得增稠机理: 就是疏水主链与周围水分子通过氢键缔合,提高了聚合物本身得流体体积,减少 了颗粒自由活动得空间,从而提高了体系黏度。也可以通过分子链得缠绕实现 黏度得提高,表现为在静态与低剪切有高黏度,在高剪切下为低黏度。这就是 因为静态或低剪切速度时,纤维素分子链处于无序状态而使体系呈现高粘性; 而在高剪切速度时,分子平行于流动方向作有序排列,易于相互滑动,所以体 系黏度下降。纤维素增稠剂增稠水相,该增稠作用不受连结料、颜料与助剂得

增稠剂(胶体)的种类与应用

增稠剂(胶体)的种类与应用 发布:多吉利来源:https://www.sodocs.net/doc/e118890537.html, 减小字体增大字体 增稠剂(胶体)的种类与应用 增稠剂主要有:羧甲基淀粉钠(CMS)、黄原胶、明胶、海藻酸钠、瓜尔豆胶、β-环状糊精、羧甲基纤维素(CMC) 增稠剂和胶凝剂是一类能提高食品粘度或形成凝胶的食品添加剂。在加工食品中可起供稠性、粘度、粘附力、凝胶形成能力、硬度、脆性、弹性、稳定、悬浮等作用,使食品获得良好的口感。亦常称做增粘剂、胶凝剂、乳化稳定剂等。因都属亲水性高分子化合物,可水化形成高粘度的均相液,故亦称水溶胶、亲水胶体或食用胶。 增稠剂的特性 1、在水中有一定的溶解度。 2、在水中强化溶胀,在一定温度范围内能迅速溶解或糊化。 3、水溶液有较大粘度,具有非牛顿流体的性质。 4、在一定条件下可形成凝胶和薄膜。 常用增稠剂有:琼脂、羧甲基淀粉钠(CMS)、黄原胶、明胶、海藻酸、海藻酸钠、海藻酸丙二醇酯、卡拉胶、果胶、阿拉伯胶、槐豆胶、瓜尔豆胶、羟丙基淀粉、羟乙基淀粉、糊精、环状糊精(β-CD)、羧甲基纤维素(CMC) 【CMC-钠】:羧甲基纤维素钠, 白色纤维状粉末。易分散于水中形成胶体溶液。遇二价金属离子生成盐沉淀,失去粘性。不溶于乙醇及有机溶剂。硫酸铝之类的金属盐能赋予防水性。对油脂和蜡的乳化力大。用做增稠剂、稳定剂、组织改

进剂、胶凝剂、泡沫稳定剂、水分移动控制剂。广泛用于冰淇淋、饮料、酱体、面点等食品中。因吸水后膨胀性极强,又不被消化吸收,可做减肥食品填充物。FH9与FH6都是高粘度胶体。FH9粘度还要高,并分耐酸与不耐酸两种。耐酸型主要用于高酸性制品:酸奶、高酸性饮料、发酵制品等等。其他型号还有FM6,为中粘度胶体。 【卡拉胶】:又名角叉菜胶。 一种用处较普遍的食用胶,用做增稠剂、稳定剂、悬浊剂、凝胶剂、粘结剂。一般分κ、λ、τ三种主要型号。κ型能形成易碎脆性凝胶;λ型能形成弹性凝胶;τ型不能形成凝胶。根据不同的生产需要三种不同型号的卡拉胶进行复配得到不同用处的卡拉胶。如:果酱专用(增稠但不必形成凝胶,以τ型为主);果冻专用(必须能形成弹性凝胶,以λ型为主);肉食专用(以κ型为主形成强凝胶)拌入盐类(氯化钾)增加凝胶强度、粘度。 一般添加量:肉食品、果酱、果冻等为3~8‰;酱油、饮料等为1~3‰。 【明胶】:又名食用明胶、全力丁 为白色或淡黄色半透明薄片或粉粒,含有18种氨基酸,其中7种为人体所必需。有吸水性与凝胶性,它不溶于冷水、加水后逐渐膨胀软化,可吸收5-10倍的水,在热水中溶解,不溶于乙醇、乙醚、氯仿等溶剂,一般形成胶冻的浓度在15%左右,明胶的水溶液长时间煮沸则发生变化。即使冷却也难于再凝固胶化,再加热则成膘。 用途:作冰淇淋的稳定剂和火腿肠的粘合剂。食品中应用于冰淇淋、糖果、罐头等方面,在糖果生产中能使用权糖坏饱满,具有稳定的韧性和弹性,不易变形,生产啤酒或酒精时可做澄清剂,用量为0.2%,可以做成各种凝胶型产品,本身有营养价值。 【琼脂】:

相关主题