搜档网
当前位置:搜档网 › 扫描电子显微镜的应用

扫描电子显微镜的应用

扫描电子显微镜的应用
扫描电子显微镜的应用

项目二扫描电子显微镜的应用

I、项目简介

目前扫描电子显微镜的应用几乎渗透到各个领域,而应用最多的是冶金、矿物、半导体材料、生物医学、物理、化学等学科。KYKY-1000B扫描电子显微镜在电子光学、样品室、电子探测和显示系统方面集中了许多现代电镜设计中的优点,操作容易,维护方便。通过对KYKY-1000B扫描电子显微镜的研究,掌握和了解扫描电子显微镜的工作原理,结构及其操作,为学生今后使用这一类型设备打下良好的基础。

[项目对象]

本项目主要面向理、工、农、林各专业。

[项目目的]

1.理解扫描电子显微镜的工作原理及其优点。

2.理解扫描电子显微镜的内部构造。

3.掌握扫描电子显微镜的基本操作。

[项目任务]

1.了解扫描电子显微镜的各个部件的功能。

2.熟练操作扫描电子显微镜,并进行样品扫描观察。

3.使用扫描电子显微镜进行样品照片拍摄。

4、冲洗、放大照片。

[项目成果要求]

对样品进行扫描并冲洗、放大样品的扫描照片。最后总结并撰写项目论文完成该项目(论文含实验成果——扫描照片)。

II、实验讲义

扫描电子显微镜早在1935年便已被提出来了。1942年,英国首先制成一台实验室用的扫描电镜,但由于成像的分辨率很差,照相时间太长,所以实用价值不大。经过各国科学工作者的努力,尤其是随着电子工业技术水平的不断发展,到1956年开始生产商品扫描电镜。近数十年来,扫描电子显微镜已广泛地应用在冶金、矿物、半导体材料、生物医学、物理、化学等学科的领域中,促进了各有关学科的发展。

一、项目任务

根据KYKY-1000扫描电子显微镜的工作原理扫描样品,观察样品表面并进行拍摄,最后冲洗放大所得扫描照片。

二、实验仪器

KYKY-1000B 型扫描电子显微镜系统,包括镜筒、电子信号的收集与处理系统、电子信号的显示与记录系统、真空系统及电源系统。

三、实验原理

(一)扫描电子显微镜的特点

和光学显微镜及透射电镜相比,扫描电镜具有以下特点:

1、能够直接观察样品表面的结构,样品的尺寸可大至120mm×80mm×50mm。

2、样品制备过程简单,不用切成薄片。

3、样品可以在样品室中作三度空间的平移和旋转,因此,可以从各种角度对样品进行观察。

4、景深大,图象富有立体感。扫描电镜的景深较光学显微镜大几百倍,比透射电镜大几十倍。

5、图象的放大范围广,分辨率也比较高。可放大十几倍到几十万倍,它基本上包括了从放大镜、光学显微镜直到透射电镜的放大范围。分辨率介于光学显微镜与透射电镜之间,可达3nm。

6、电子束对样品的损伤与污染程度较小。

7、在观察形貌的同时,还可利用从样品发出的其他信号作微区成分分析。

(二)扫描电子显微镜的结构

图一为KYKY -1000B 型扫描电子显微镜,它的结构如

下:

1、镜筒

镜筒包括电子枪、聚光镜、物镜及扫描系统。其作用是

产生很细的电子束(直径约几个nm),并且使该电子束在

样品表面扫描,同时激发出各种信号。

2、电子信号的收集与处理系统

在样品室中,扫描电子束与样品发生相互作用后产生多

种信号,其中包括二次电子、背散射电子、X 射线、吸 收电子、俄歇(Auger)电子等。在上述信号中,最主要的是二次电子,它是被入射电子所激

发出来的样品原子中的外层电子,产生于样品表面以下几nm 至

几十nm 的区域,其产生率主要取决于样品的形貌和成分。通常所说的扫描电镜像指的就是

二次电子像,它是研究样品表面形貌的最有用的电子信号。检测二次电子的检测器(图15(2)

的探头是一个闪烁体,当电子打到闪烁体上时,1就在其中产生光,这种光被光导管传送到

光电倍增管,光信号即被转变成电流信号,再经前置放大及视频放大,电流信号转变成电压

信号,最后被送到显像管的栅极。

3、电子信号的显示与记录系统

扫描电镜的图象显示在阴极射线管(显像管)上,并由照相机拍照记录。显像管有两个,一个

用来观察,分辨率较低,是长余辉的管子;另一个用来照相记录,分辨率较高,是短余辉的

管子。

4、真空系统及电源系统

扫描电镜的真空系统由机械泵与油扩散泵组成,其作用是使镜筒内达到 10(4~10(5托的真

空度。电源系统供给各部件所需的特定的电源。

(三)扫描电子显微镜的成象原理

扫描电子显微镜主要用二次电子观察形貌,成像原理如图二所示。在扫描电镜中,电子枪

发射出来的电子束,经三个电磁透镜聚焦后,成直径为几个纳米的电子束。末级透镜上部的

扫描线圈能使电子束在试样表面上做光栅状扫描。试样在电子束作用下,激发出各种信号,

信号的强度取决于试样表面的形貌、受激区域的成分和晶体取向。设在试样附近的探测器把

激发出的电子信号接受下来,经信号处理放大系统后,输送到显象管栅极以调制显象管的亮

度。由于显象管中的电子束和镜筒中的电子束是同步扫描的,显象管上各点的亮度是由试

样图一、KYKY-1000B 型扫描电子显微镜

上各点激发出的电子信号强度来调制的,即由试样表面上任一点所收集来的信号强度与显象管屏上相应点亮度之间是一一对应的。由于二次电子产生的多少与电子束入射角度及样品表面的起伏有关,所以在荧光屏上会得到样品表面形貌的立体图像。例如,样品高处激发出的二次电子可以毫无阻挡地到达检测器,所以信号强、图象亮,低处激发出的二次电子由于受到高处样品的阻挡,信号弱,图象暗。离检测器近的样品激发的二次电子信号强,离的远的样品激发的二次电子途中受到损耗,信号弱。因此,试样各点状态不同,显象管各点相应的亮度也必不同,由此得到的象一定是试样状态的反映。值得强调的是,入射电子束在试样表面上是逐点扫描的,象是逐点记录的,因此试样各点所激发出来的各种信号都可选录出来,并可同时在相邻的几个显象管上显示出来,这给试样综合分析带来极大的方便。

?

图二、扫描电镜成象原理图

四、实验内容

(一)按照以下扫描电子显微镜的操作规程进行开机运作

任选以下一种开机方法进行开机

1、手动开机操作步骤:

(1)开总电源→开压缩机→开机械泵→开变压器→通水→开电器柜后面的仪器总开关;(2)开真空电源(主机控制台),并置自动、手动开关于手动位置(主机背后);

(3)打开V2(on)测量档在FORELNE档,表头指示到兰区;

(4)开扩散泵D.P(on),加热30分钟,有液氮冷阱的可加液氮;

(5)加热时间到后,关V2,开V3,抽样品室低真空,表头指到兰区(Manifold档);(6)再开V4,抽电子枪低真空,表头指到兰区(Manifold挡);关V3,开V2,开V5,系统进入抽高真空状态。

2、自动开机操作步骤:

(7)开电源(机械泵、压缩机、变压器及仪器总电源);

(8)开真空电源,并按一下“STAND BY”准备开关,此时红灯亮;

(9)将主机背后真空控制板上的自动、手动开关置于AUTO自动状态,这时只有V2

和 D.P(扩散泵电炉加热)开始工作(灯亮);

(10)30分钟以后,再按一下“STAND BY”(灯灭),这时V2、D.P、V5、V4全部打开,系统自动进入高真空状态;

(11)在系统进入抽高真空以后,真空表头开关无论放在“MANIFOLD”档,还是“FORELINE”档,指针都指示在兰区,基本接近到1μ

(12)(到头)。如果置高真空位置,表头指示到绿区,指示高真空度。一般观察表头指示到兰区1μ左右,即可开始工作;

(二)、进行样品扫描及观察并拍摄样品的扫描照片

1、按下电器柜面板上的电源开关,检查各旋钮位置,

2、拉开镜筒隔离阀V1

3、选择适当的加速电压和放大倍数

4、顺时针调节亮度和对比度旋钮

5、给钨灯丝缓慢加热

6、在饱和点处进行图象扫描、观察扫描图象,调节出最理想、最清晰的图象

7、调节好参数进行样品扫描图象拍摄

8、进入暗房冲洗和放大扫描所得照片

(三)扫描结束后按照以下扫描电子显微镜的操作规程进行关机运作

首先先将电器柜上所有旋钮还原,然后任选以下一种关机方法进行关机

1、手动关机操作步骤:

关V1、V5、V4→关扩散泵,冷却30分钟后,关V2→关真空电源→关机械泵→关压缩

机→关电器柜总电源→关水;

2、自动关机操作步骤:

关V1,按一下“STAND BY”开关(灯亮),此时V5、V4关闭(只有V2和D.P开着);将主机背后真空控制板上的自动、手动开关置于手动,打V2(on),其余开关都是关(off), 这时D.P(扩散泵电炉)关,只有V2开着继续抽扩散泵前级的低真空;

30分钟后,将电源都关上,水也关上;

扫描、透射电镜的基本原理及其应用

扫描、透射电镜在材料科学中的应用 摘要:在科学技术快速发展的今天,人们不断需要从更高的微观层次观察、认识 周围的物质世界,电子显微镜的发明解决了这个问题。电子显微镜可分为扫描电了显微镜简称扫描电镜(SEM)和透射电子显微镜简称透射电镜(TEM)两大类。本文主要介绍扫描、透射电镜工作原理、结构特点及其发展,阐述了其在材料科 学领域中的应用。 1扫描电镜的工作原理 扫描电子显微镜的制造依据是电子与物质的相互作用。扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。 电子束和固体样品表面作用时的物理现象:当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征X射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。 由电子枪发射的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成能谱仪可以获得且具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面作栅网式扫描。聚焦电子束与试样相互作,产生二次电子发射(以及其它物理信号)。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,则 可以得到反映试样表面形貌的二次电子像[1]。 2扫描电镜的构成 主要包括以下几个部分: 1.电子枪——产生和加速电子。由灯丝系统和加速管两部分组成 2.照明系统——聚集电子使之成为一定强度的电子束。由两级聚光镜组合而成。 3.样品室——样品台,交换,倾斜和移动样品的装置。 4.成像系统——像的形成和放大。由物镜、中间镜和投影镜组成的三级放大系统。 调节物镜电流可改变样品成像的离焦量。调节中间镜电流可以改变整个系统的放大倍数。 5.观察室——观察像的空间,由荧光屏组成。 6.照相室——记录像的地方。 7.除了上述的电子光学部分外,还有电气系统和真空系统。提供电镜的各种电压、 电流及完成控制功能。

S4800扫描电镜操作说明书

冷场发射扫描电子显微镜S4800操作说明(普通用户) 燕山大学材料学院材料管A104(场发射,钨灯丝) 编写人:李月晴吕益飞 普通用户在熟练操作1个月后,如无不良记录,可申请高级用户培训。 高倍调清晰:局部放大(Red) →聚焦Focus→消像散 一、日常开机 1,开启冷却循环水电源。 2,按下Display开关至,PC自动开机进入用户界面并自动运行PC_SEM程序,以空口令登入。 3,打开信号采集开关,位置打到1,为打开。 4,打开电源插排的开关。 5,打开装有EDS软件的主机电源。 6,记录仪器运行参数(右下角Mainte),即钨灯丝真空度。如:IP1:0.0×10-8Pa;IP2:0.0×10-8Pa; IP3:9.6×10-7Pa。PeG-1,<1×10-3;PeG-2,<1×10+2。 注意:PeG≤1×10-3Pa时才能加高压测量。记录的参数:①点Flashing时会显示:In2(Ie)Flashing时电流最大值,如32.9μA;②加上高压后会显示,V ext=3.4kV。 二、轰击(点flashing,即在阴极加额外电压) 目的:高温去除针尖表面吸附的气体 1,最好在每天开始观察样品前一时做flashing; 2,选择flashing intensity为2 ; 3,若flashing运行时Ie小于20μA,则反复执行直至Ie值超过20μA且不再增加。 4,若flashing后超过8个小时仍继续使用,重新执行flshing 。 三、加液氮 容积不要超过1L,能维持4~6h。 四、样品制备及装入 样品制备简单,对样品要求较低,只要能放进样品室,都可进行观察。 1,化学上和物理上稳定的干燥固体,表面清洁,在真空中及在电子束轰击下不挥发或变形,无放射性和腐蚀性。 2,样品必须导电,非导电样品,可在表面喷镀金膜。 3,带有磁性的样品,由于物镜有强磁性,制样必须非常小心,防止在强磁场中样品被吸入

场发射扫描电子显微镜S-4800操作规程

场发射扫描电子显微镜(S-4800)操作规程 开机 1. 检查真空、循环水状态。 2. 开启“Display”电源。 3. 根据提示输入用户名和密码,启动电镜程序。 样品放置、撤出、交换 1. 严格按照高度规定高样品台,制样,固定。 2. 按交换舱上“Air”键放气,蜂鸣器响后将样品台放入,旋转样品杆至“Lock”位,合上交换舱,按“Evac”键抽气,蜂鸣器响后按“Open”键打开样品舱门,推入样品台,旋转样品杆至“Unlock”位后抽出,按“Close”键。 观察与拍照 1. 根据样品特性与观察要求,在操作面板上选择合适的加速电压与束流,按“On”键加高压。 2. 用滚轮将样品台定位至观察点,拧Z轴旋钮(3轴马达台)。 3. 选择合适的放大倍数,点击“Align”键,调节旋钮盘,逐步调整电子束位置、物镜光阑对中、消像散基准。 4. 在“TV”或“Fast”扫描模式下定位观察区域,在“Red”扫描模式下聚焦、消像散,在“Slow”或“Cssc”扫描模式下拍照。 5. 选择合适的图像大小与拍摄方法,按“Capture”拍照。

6. 根据要求选择照片注释内容,保存照片。 关机 1. 将样品台高度调回80mm。 2. 按“Home”键使样品台回到初始状态。 3. “Home”指示灯停止闪烁后,撤出样品台,合上样品舱。 4. 退出程序,关闭“Display”电源。 注意 1. 每天第一次加高压后,进行灯丝Flashing去除污染。 2. 冷场发射电镜一般不断电,如遇特殊情况需要大关机时,依次关闭主机正面的“Stage”电源、“Evac”电源,半小时后关闭离子泵开关和显示单元背面的三个空气开关,关闭循环水。开机时顺序相反。 3. 每半个月旋开空压机底阀放水一次。 4. 待测样品需烘干处理,不能带有强磁性,不能采用铁磁性材料做衬底制样。 5.实验室温度限定在25±5℃,相对湿度小于70% 。 仪器维护 1. 每月进行电镜离子泵及灯丝镜筒烘烤。 2. 每半年进行一次机械泵油维护或更新。 3. 每年进行一次冷却水补充,平时每月检查一次水位。

扫描电子显微镜的发展及展望

扫描电子显微镜的发展及展望 1、分析扫描电镜和X射线能谱仪 目前,使用最广的常规钨丝阴极扫描电镜的分辨本领已达3.5nm左右,加速电压范围为0.2—30kV。扫描电镜配备X射线能谱仪EDS后发展成分析扫描电镜,不仅比X射线波谱仪WDS 分析速度快、灵敏度高、也可进行定性和无标样定量分析。EDS 发展十分迅速,已成为仪器的一个重要组成部分,甚至与其融为一体。但是,EDS也存在不足之处,如能量分辨率低,一般为129—155eV,以及Si(Li)晶体需在低温下使用(液氮冷却)等。X射线波谱仪分辨率则高得多,通常为5—10eV,且可在室温下工作。1972年起EDAX公司发展了一种ECON系列无窗口探测器,可满足分析超轻元素时的一些特殊需求,但Si(Li)晶体易受污染。1987年Kevex公司开发了能承受一个大气压力差的ATW超薄窗,避免了上述缺点,可以探测到B,C,N,O等超轻元素,为大量应用创造了条件。目前,美国Kevex公司的Quantifier,Noran公司的Extreme,Link公司的Ultracool,EDAX公司的Sapphire等Si(Li)探测器都属于这种单窗口超轻元素探测器,分辨率为129eV,133eV等,探测范围扩展到了5B—92U。为克服传统Si(Li)探测器需使用液氮冷却带来的不便,1989年Kevex公司推出了可不用液氮的Superdry探测器,Noran公司也生产了用温差电制冷的Freedom探测器(配有小型

冷却循环水机),和压缩机制冷的Cryocooled探测器。这两种探测器必须昼夜24小时通电,适合于无液氮供应的单位。现在使用的大多还是改进的液氮冷却Si(Li)探测器,只需在实际工作时加入液氮冷却,平时不必维持液氮的供给。最近发展起来的高纯锗Ge探测器,不仅提高了分辨率,而且扩大了探测的能量范围(从25keV扩展到100keV),特别适用于透射电镜:如Link的GEM型的分辨率已优于115eV(MnKα)和65eV(FKα),Noran的Explorer Ge探测器,探测范围可达100keV等。1995年中国科学院上海原子核研究所研制成了Si(Li)探测器,能量分辨率为152eV。中国科学院北京科学仪器研制中心也生产了X射线能谱分析系统Finder-1000,硬件借鉴Noran公司的功能电路,配以该公司的探测器,采用Windows操作系统,开发了自己的图形化能谱分析系统程序。 2、X射线波谱仪和电子探针仪 现代SEM大多配置了EDS探测器以进行成分分析。当需低含量、精确定量以及超轻元素分析时,则可再增加1到4道X 射线波谱仪WDS。Microspec公司的全聚焦WDX-400,WDX-600型分别配有4块和6块不同的衍射晶体,能检测到5B(4Be)以上的各种元素。该谱仪可以倾斜方式装在扫描电镜试样室上,以便对水平放置的试样进行分析,而不必如垂直谱仪那样需用

实验一:电镜扫描

中级仪器分析 实验报告 班级:______________________ 姓名:______________________ 学号:______________________ 指导教师: ___________________ 2007应用化学 刘远旭 070804010032 周建威

完成时间:___________________ 化学与材料科学学院 目录 实验一枪击残留物的电镜分析 实验二未知Fe浓度溶液的ICP-AES分析 实验三X射线衍射(XRD)物相分析

实验四龙脑的气质谱分析 实验五丙三醇红外分析 实验一枪击残留物的电镜分析 一、仪器简介 1仪器名称:扫描式电子显微镜

2型号:日本JSM-6490LV扫描电子显微镜(配置:英国牛津INCA-350X射线能谱仪) 3扫描电子显微镜——JSM-6490LV型介绍 在当代迅速发展的科学技术中,科学家 需要观察、分析和正确地解释在一个微米(μ m)或亚微米范围内所发生的现象,电子显 微镜是强有力的仪器,可用它们观察和检测 非均相有机材料、无机材料及在上述微米、 亚微米局部范围内的物质的显微组织、晶体 结构(电子衍射)、化学成分(X射线能谱 仪)进行表征。电子显微镜主要有扫描电子显微镜(SEM)和透射电子显微镜,都用一束精细聚焦的电子照射需要检测的区域或是需要分析的微体积,该电子束可以是静止的,或者沿着样品表面以一光栅的方式扫描。其差别仅仅在于它们感兴趣的信号不同。 在扫描电镜(SEM)中,人们最感兴趣的信号是二次电子和背散射电子,因为当电子束在样品表面扫描时,这些信号随表面形貌不同而发生变化。二次电子的发射局限于电子束轰击区附近的体积内,因而可获得相当高分辨率的图象。象的三维形态起因于扫描电镜的大景深和二次电子反差的阴影起伏效果。象的三维形态起因于扫描电镜的大景深和二次电子反差的阴影起伏效果。其它的信号在许多情况下也同样有用。在通常称为电子探针的电子探针显微分析仪(EPMA)中,人们最感兴趣的辐射是由于电子轰击而发射的特征X射线,从特征X射线的分析能够得到样品中直径小到几微米区域内的定性和定量成分信息。

扫描电子显微镜的早期历史和发展趋势

扫描电子显微镜的早期历史和发展趋势 扫描电子显微镜(SEM)的基本原理在20世纪30年代到40年代初由Knoll, 德国的von Ardenne和美国的Zworykin,Hillier等人确立。扫描电镜的研究在英国剑桥大学电机工程学系Charles Oatley博士学位的一系列项目中复苏。在剑桥大学的McMullan和Smith的早期研究之后,SEM的第一次产业应用在加拿大纸浆和造纸研究所实现。不久之后,在美国的Westinghouse,SEM被应用于集成电路,并在英国和日本实现了扫描电镜的商业化。截至目前,SEM及其他显微和微分析技术在世界范围内发展,并被应用于越来越多的领域。 关键词:扫描电子显微镜(SEM),成像技术,表面形貌,成分衬度,电子通道花样(ECP),电子背散射花样(EBSP)。 Oatley描述了SEM早期历史和直至其第一次商业化的发展状况。第一台商业SEM在英国和日本制造。SEM的历史也被许多作者描述过。商用SEM性能的提高和操作的简便已经很出色并有望继续进步。 Knoll用仪器得到了四个非常重要的实验结果Fig.1:(i)他从固态多晶样品中得到了样品的吸收电流像Fig.2.(ii) 这张照片显示的晶粒间取向依赖衬度是由电子穿隧效应的对比差异引起的。(iii)他测量了不同材料的二次电子(SE)加背散射电子(BSE)系数是入射电子能量E0的函数,并且证明当SE+BSE系数为1时,有第二个交叉点,此时E0约为 1.5keV。样品的充电最小化并且保持稳定。(iv)根据一个早期关于定量电压衬度的译文,测量了束电子对非导电颗粒充电后颗粒的电势。 Figure 3 是由von Ardenne提出的产生二次电子的电子散射模型,模型表明初始束展宽;大角度散射;扩散;BSE逃逸以及每个阶段的二次电子激发。他提出了两种高分辨率SE图像。第一种(现在称为SE-I图像的详细讨论见Peters)E0等于数十电子伏,此时电子的穿透深度(几个微米)比二次电子的逃逸深度大很多倍(几个纳米)。SE-I激发是在束电子入射点的一个局部的区域内发散,这个范围比BSE小。他提出SE-I能提供一个高分辨率的SE图像(特殊情况除外)。他的第二个观点(现在称为低压SEM)是将E0减小到1keV,此时穿透深度达到束电子直径。 Zworykin给出了最早的二次电子图像。这些工作者也建立了一台密封的场发射(FE)SEM,并且为X射线微区分析和电子能量损失能谱仪(EELS)奠定了基础。当时人们热衷于似乎会更加成功的透射电镜(TEM),他们在SEM方面的工作没有继续。

电子显微镜的发展及现状

电子显微镜的发展及现状 20130125001 李智鹏 2014/10/8

电子显微镜的发展及现状 摘要:本文综述了电子显微镜的发展,电子显微镜的主要分类,它们在生活当中的应用以及国内显微镜的现状。 关键词:电子显微镜发展应用现状 1、引言 显微镜技术的发展,是其他科学技术发展的先导,在17世纪60年代出现的光学显微镜,引发了一场广泛的科技进步, 促进了细胞学和细菌学的发展。使人类的观测范围进入微观世界,导致了一大批新的领域进入人类的研究范围,促进了许多学科的创立和发展。 三百年来,光学显微镜巳经发展到了十分完善的地步。而我们知道,分辨率极限的量级为入/a带,对于光学显微镜,最短可见光波长约为400。人,最大数值孔径约1。4,故只能获得亚微米量极的分辨率。于是,人们开始寻找较短波长的光源,X射线波长为几个埃,Y射线波长更短,但它们都很难直接聚焦,所以不能直接用于显微镜。[1] 20世纪30年代出现的电子显微镜技术,更进一步拓宽了人类的观测领域,同样导致了大批新学科、新技术的出现.可以说,现代科学技术的研究工作,已很大程度依赖于电子显微镜技术的使用,尤其是在纳米技术、材料技术、生命科学技术等研究方面,没有电子显微镜技术的帮助,它们几乎是无法进行的.随着科学技术的不断进步,电子显微镜技术的应用越来越广泛,同时电子显微镜技术本身也在不断快速发展.从最初的电子显微镜开始,已经逐步发展出扫描电子显微镜、扫描隧道电子显微镜、原子力电子显微镜、扫描离子电导显微镜、扫描探针电子显微镜等.这些先进的仪器现已广泛地应用于物理学、化学、材料科学和生命科学领域的研究和检测工作中.在纺织科技研究工作和纺织材料及纺织品检测过程中也得到了广泛的应用[2]。本文仅对电子显微镜技术在出土古代纺织品检测方面的应用作一初步探讨。电子显微镜(简称电镜,EM)经过五十多年的发展已成为现代科学技术中不可缺少的重要工具。我国的电子显微学也有了长足的进展[3]。电子显微镜的创制者鲁斯卡(E.Ruska)教授因而获得了1986年诺贝尔奖的物理奖[4]。 2、电子显微镜的发展过程 20世纪30年代,德国科学家诺尔(M. knoll)和卢斯卡(E. Ruska)在电子光学的基础上,研制出了世界上第一台透射式电子显微镜(Transmission ElectronMicroscope,TEM,简称透射电镜),成功地得到了用电子束拍摄的铜网像,尽管放大倍数只有12倍,但它为以后电镜的发展和应用奠定了基础.此后经过科学家们半个多世纪的努力和改进,透射电镜的分辨本领现已达到了0. 1nm~0. 2nm,几乎能分辨所有的原子.此后又相继出现了能直接观察样品表面立体结构的扫描电子显微镜(Scanning ElectronMicroscope, SEM,简称扫描电镜),其分辨率为3nm~6nm和能进行活体观察的超高压电镜,实现了人们直接观察生物大分子结构和重金属原子图像的愿望[5]。 2.1扫描式电子显微镜扫描式电子显微镜中的电子束,在样品表面上动态地扫描,以 一定速度,逐点逐行地扫描样品的表面.样品逐点地发出带有形态、结构和化学组分信息的二次电子,这些电子由检测器接收处理,最后在屏幕上显示形态画面.图像为间接成像,其加速电压为1kV~30kV. 2.2扫描隧道显微镜(ScanningTunnelingMicroscope,STM)G.Binnig和H.Rohrer在 1981年研制成功扫描隧道显微镜,并因此获得1986年诺贝尔物理奖.扫描隧道显微镜(STM)是利用导体针尖与样品之间的隧道电流,并用精密压电晶体控制导体针尖沿样品表面扫描,从而能以原子尺度记录样品表面形貌的新型仪器.其分辨率已达到1nm~2nm,

扫描电子显微镜 (SEM)介绍

扫描电子显微镜(SEM)介绍 (SEM)扫描电子显微镜的设计思想和工作原理,早在1935年便已被提出来了。1942年,英国首先制成一台实验室用的扫描电镜,但由于成像的分辨率很差,照相时间太长,所以实用价值不大。经过各国科学工作者的努力,尤其是随着电子工业技术水平的不断发展,到1956年开始生产商品扫描电镜。近数十年来,扫描电镜已广泛地应用在生物学、医学、冶金学等学科的领域中,促进了各有关学科的发展。 目录 扫描电镜的特点 扫描电镜的结构 工作原理 扫描电镜的特点 和光学显微镜及透射电镜相比,扫描电镜SEM(Scanning Electron Microscope)具有以下特点: (一) 能够直接观察样品表面的结构,样品的尺寸可大至 120mm×80mm×50mm。 (二) 样品制备过程简单,不用切成薄片。 (三) 样品可以在样品室中作三度空间的平移和旋转,因此,可以从各种角度对样品进行观察。 (四) 景深大,图象富有立体感。扫描电镜的景深较光学显微镜大几百倍,比透射电镜大几十倍。 (五) 图象的放大范围广,分辨率也比较高。可放大十几倍到几十万倍,它基本上包括了从放大镜、光学显微镜直到透射电镜的放大范围。分辨率介于光学显微镜与透射电镜之间,可达3nm。 (六) 电子束对样品的损伤与污染程度较小。 (七) 在观察形貌的同时,还可利用从样品发出的其他信号作微区成分分析。 扫描电镜的结构 1.镜筒 镜筒包括电子枪、聚光镜、物镜及扫描系统。其作用是产生很细的电子束(直径约几个nm),并且使该电子束在样品表面扫描,同时激发出各种信号。 2.电子信号的收集与处理系统 在样品室中,扫描电子束与样品发生相互作用后产生多种信号,其中包括二次电子、背散射电子、X射线、吸收电子、俄歇(Auger)电子等。在上述信号中,最主要的是二次电子,它是被入射电子所激发出来的样品原子中的外层电子,产生于样品表面以下几nm至

扫描电镜实验报告要求

扫描电镜实验报告要求 第一部分:实验预习报告 一、实验目的、意义 1、了解扫描电镜的基本结构与原理 2、掌握扫描电镜样品的准备与制备方法 3、掌握扫描电镜的基本操作并上机操作拍摄二次电子像 4、了解扫描电镜图片的分析与描述方法 二、实验基本原理与方法 1、扫描电镜的基本结构构造 2、扫描电镜的工作原理 3、扫描电镜成像原理 三、主要仪器设备及耗材 1、JSM-5610 LV扫描电镜 2、JFC-1600离子溅射仪(样品喷涂导电层用) 3、银导电胶、双面胶(制样用) 4、粉末样品、块状样品 四、实验方案与技术路线 1、介绍扫描电镜的基本情况与最新进展(场发射扫描电镜、环境扫描电镜的特点及应用) 2、结合具体仪器介绍扫描电镜的构造与工作原理; 3、重点介绍扫描电镜样品的准备与制备方法,并要求每位同学动手制样,掌握扫描电镜样 品的准备与制备方法; 4、了解扫描电镜的操作过程,掌握二次电子像的观察过程,要求每位同学上机操作,并在 2-4个样品上拍摄2-4张二次电子像图片,要求图片清晰有代表性; 5、仔细观察和分析现场给出的200多张图片,并对某类或某几张自己感兴趣的图片进行描 述(要求总字数150字以上)。 第二部分:实验过程记录 一、实验原始记录 按实验过程进行记录: 1、样品的准备与制备过程 2、仪器操作过程与照片的拍摄过程。 第三部分:结果与分析 一、实验结果与分析 1、现场没描述照片的同学,对“附件二、扫描电镜图片”进行微观形态描述(要求:写清 楚图片或样品名称,不需要打印照片,描述图片张数自己确定,总字数要达到150字以上); 2、将2-4张自己拍摄的照片打印并粘贴到实验报告上,写上样品名称。 3、总结对扫描电镜实验课的体会。

扫描式电子显微镜观察

掃描式電子顯微鏡觀察 為觀察觀音一號井與麓山帶地層中碎屑性和自生性黏土礦物之 分佈與生長,以及隨埋藏深度增加,自生性黏土礦物(如:混層伊萊石膨潤石)之元素組成之比例有無改變,本研究使用中央大學地球物理研究所JSM-7000F熱場發射掃描式電子顯微鏡(Thermal Field Emission Scanning Electron Microscope, TFE-SEM),用以觀察碎屑性和自生性礦物之分佈與生長情形。SEM的操作條件為加速電壓15 kV、真空室壓力達2.8 × 10-4 Pa、工作距離10 mm。一般掃描式電子顯微鏡偵測主要為偵測二次電子(Secondary Electron Image, SEI)和背向散射電子(Backscattered Electron Image, BEI)成像,由於其產生電子之行為不同,所產生之影像分別為樣本之表面形貌和原子序對比(Goldstein et al., 2003)。平均原子序較高之區域,散射之背向電子訊號較強,呈現之影像較亮。本研究以背向散射電子偵測為主要觀察工具。由於黏土礦物之主要元素成份以原子序較低的矽、鋁氧化物和其他少量金屬鐵、鎂、鈣、鈉、鉀等,因此在背向散射電子影像中,黏土礦物多分佈在深暗色區域。 另外,使用加裝於SEM之元素能量分析儀(Energy Dispersion Spectrometer, EDS),可透過搜集激發電子束產生的X光進行礦物化學組成之定性和半定量分析。EDS操作環境為電子加速電壓15 kV、放大倍率為2000倍以及接收100秒X光光譜時間。使用INCA 軟體(Revision 4.09),鈦元素光譜校準,搜集測量結果之各氧化物重量百分比,混層伊萊石/膨潤石黏土礦物的化學式以22顆氧原子,計算化學式中的陽離子數,部分鋁離子納入四面體網格計算,即矽和鋁離子總和為8;剩餘鋁離子和鐵、鈦、鎂和鈉則被歸為八面體網格計算(Klein, 2002)。

新一代电子显微镜的发展趋势及应用

新一代电子显微镜的发展趋势及应用 特点 微观结构专业组 新一代电子显微镜的发展趋势及应用特点 一、高性能场发射枪电子显微镜日趋普及和应用。 场发射枪透射电镜能够提供高亮度、高相干性的电子光源。因而能在原子--纳米尺度上对材料的原子排列和种类进行综合分析。九十年代中期,全世界只有几十台;现在已猛增至上千台。我国目前也有上百台以上场发射枪透射电子显微镜。 常规的热钨灯丝(电子)枪扫描电子显微镜,分辨率最高只能达到 3.0nm;新一代的场发射枪扫描电子显微镜,分辨率可以优于 1.0nm;超高分辨率的扫描电镜,其分辨率高达0.5nm-0.4nm。其中环境描电子显微镜可以做到:真正的“环境”条件,样品可在100%的湿度条件下观察;生物样品和非导电样品不要镀膜,可以直接上机进行动态的观察和分析;可以“一机三用”。高真空、低真空和“环境”三种工作模式。 二、努力发展新一代单色器、球差校正器,以进一步提高电子显微镜的分辨率。 球差系数:常规的透射电镜的球差系数Cs约为mm级;现在的透射电镜的球差系数已降低到Cs<0.05mm.色差系数:常规的透射电镜的色差系数约为0.7;现在的透射电镜的色差系数已减小到0.1。 场发射透射电镜、STEM技术、能量过滤电镜已经成为材料科学研究,甚至生物医学必不可少的分析手段和工具. 物镜球差校正器把场发射透射电镜分辨率提高到信息分辨率.即从0.19nm 提高到0.12nm甚至于小于0.1nm.

利用单色器,能量分辨率将小于0.1eV.但单色器的束流只有不加单色器时的十分之一左右.因此利用单色器的同时,也要同时考虑单色器的束流的减少问题。 聚光镜球差校正器把STEM的分辨率提高到小于0.1nm的同时,聚光镜球差校正器把束流提高了至少10倍,非常有利于提高空间分辨率。 在球差校正的同时,色差大约增大了30%左右.因此,校正球差的同时,也要同时考虑校正色差. 三、电子显微镜分析工作迈向计算机化和网络化。 在仪器设备方面,目前扫描电镜的操作系统已经使用了全新的操作界面。用户只须按动鼠标,就可以实现电镜镜筒和电气部分的控制以及各类参数的自动记忆和调节。 不同地区之间,可以通过网络系统,演示如样品的移动,成像模式的改变,电镜参数的调整等。以实现对电镜的遥控作用. 四、电子显微镜在纳米材料研究中的重要应用。由于电子显微镜的分析精度逼近原子尺度,所以利用场发射枪透射电镜,用直径为0.13nm的电子束,不仅可以采集到单个原子的Z-衬度像,而且还可采集到单个原子的电子能量损失谱。即电子显微镜可以在原子尺度上可同时获得材料的原子和电子结构信息。观察样品中的单个原子像,始终是科学界长期追求的目标。一个原子的直径约为1千万分之 2-3mm。所以,要分辩出每个原子的位置,需要0.1nm左右的分辨率的电镜,并把它放大约1千万倍才行。人们预测,当材料的尺度减少到纳米尺度时,其材料的光、电等物理性质和力学性质可能具有独特性。因此,纳米颗粒、纳米管、纳米丝等纳米材料的制备,以 及其结构与性能之间关系的研究成为人们十分关注的研究热点。 利用电子显微镜,一般要在200KV

扫描电子显微镜操作规程

扫描电子显微镜操作规程 1. 打开墙上配电箱里的空气开关(见标签上开下关) 2. 打开变压器电源(正常电压应为100v) 3. 打开主机电源:钥匙拧到START位置,停两秒松手,钥匙回到I位置。 4. 打开电脑电源 5. 点击桌面图标,等待 6. 当HT图标显示蓝色后,点VENT排气(排气时vent闪,排完气vent不闪),排完气方可打开样品室 7. 正确选择Z轴高度(需要估计样品高度,Z轴大于样品高度 放入样品,关闭样品台,点击EV AC抽气,抽气时推着样品室门,听到机械泵响声后松手 8. 打开HT图标(此图标在非真空下是灰色,真空位蓝色,打开灯丝拍照为绿色) 9. 选择扫描模式、加速电压(0.5-30KV之间选择,一般微生物类样品选10左右)、WD工作距离(10-15之间选择)、SS电子束斑(一般选30-40) 10. 在SCAN2下调焦、调整对比度及亮度、调消象散(放大时照片晃动、或者样品变形、或者整体移动可点WOBBLE(一般10000倍左右调节有效果)调节光缆使照片不晃动) 11. 高倍下调清晰度,低倍下拍照,拍照选择photo(曝光40秒)或者SCAN4(曝光80秒),拍完选择FREEZE并保存照片 12. 拍完照后关闭灯丝,点VENT排气(排气时vent闪,排完气vent不闪),排完气方可打开样品室,取出样品台;关闭样品台,点击EV AC抽气,抽气时推着样品室门,听到机械泵响声后松手 13. 依次关闭软件、电脑、主机电源、变压器、空开 注意事项 1.注意Z轴的距离要足够高不要让样品碰到探头 2.慢慢调节光缆,防止调节过快看不到被观察物 3.取、放前一定要卸真空,再抽真空 4.关机的时候,要在真空状态下关机

扫描电子显微镜成像原理及基本操作

扫描电子显微镜成像原理及基本操作 一、基本结构组成: 1.电子光学系统:电子枪;聚光镜(第一、第二聚光镜和物镜);物镜光阑。 2.扫描系统:扫描信号发生器;扫描放大控制器;扫描偏转线圈。 3.信号探测放大系统:探测二次电子、背散射电子等电子信号。 4.图象显示和记录系统:SEM采用电脑系统进行图象显示和记录。 5.真空系统:常用机械真空泵、扩散泵、涡轮分子泵等使真空度高于10 -4 Torr 。 6.电源系统:高压发生装置、高压油箱。 二、扫描电子显微镜成像原理 扫描电镜是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要的成像信号。由电子枪发射的能量为 5 ~35keV 的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射(以及其它物理信号),二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。三、扫描电镜具有以下的特点

(1) 制样方法简单,对试样的尺寸、形态等无严格要求,可以观察直径为的大块试样以及粉末等。 (2) 场深大,适用于粗糙表面和断口的分析观察;图像富有立体感、真实感、易于识别和解释。 (3) 放大倍数变化范围大,对于多相、多组成的非均匀材料便于低倍下的普查和高倍下的观察分析。 (4) 具有相当高的分辨率,可达到为3.5 ~6nm。 (5) 可以通过电子学方法有效地控制和改善图像的质量,如通过调制可改善图像反差的宽容度,使图像各部分亮暗适中。 (6) 可进行多种功能的分析。与X 射线谱仪配接,可在观察形貌的同时进行微区成分分析。 (7) 可使用,观察在不同环境条件下(加热、冷却和拉伸等样品台进行动态试验)的相变及形态变化等。 四、扫描电镜的用途 通过样品中的电子激发出的各种信号,扫描电镜可以做出电子图像分析,如可利用二次电子进行样品表面形貌及结构分析的分析;以两片探测器信号做积分运算,通过背散射电子可以分析样品表面成分像,以两片探测器信号做微分运算时,则可用于样品表面形貌像德分析;此外,通过透射电子则可对析晶体的内部结构及晶格信息进行分析。而且,其配上其它一些配套设备,还可做显微化学成份分析,显微晶体结构分析,显微阴极发光图像分析,这更加扩大的扫描电镜的广泛应用度。常见的扫描电镜配套设备主要有:x射线波谱仪、x射线能

扫描电镜操作流程

SIRION场发射扫描电镜操作规程 一.开机 1.首先检查循环水系统,压力显示约4.5,温度显示约11-18度,为正常范围。 2.检查不间断电源的”LINE”,”INV.”指示灯亮,上部6只灯仅一只亮是为正常。 3.开电镜电脑(白色机箱)的电源,通过密码进入WINDOWS后,先启动”SCS”,然后启 动”Microscope Control”。 二.操作过程 1.有关样品的要求: 需用电镜观测的样品,必须干燥,无挥发性,有导电性,能与样品台牢固粘结(块状试样的下底部需平整,利于粘结)。粉末样品用导电胶带粘结后,需敲击检查,或用吹风机吹去粘结不牢固的粉末。含有机成份的样品(包括聚合物等),需经过干燥处理。 2.交换样品特别注意点: 该电镜的样品台是4轴马达驱动的精密机械,定位精度1微米,同时也可以手动旋钮驱动。样品室中暴露着镜头极靴,二次电子探头,低压背散射电子探头,能谱探头,红外相机,涡轮分子泵等电镜的核心部件,样品台驱动过程中存在着碰撞的可能性,交换样品和驱动样品台时要特别小心。比如样品室门应轻拉轻推;样品要固定牢固,防止掉到镜筒里去;样品高度要合适,Z轴移动样品或手动倾斜样品前,用CCD图象检查样品位置等等。 3.换样品过程:换样品前必须先检查加速电压是否已经关闭,条件符合,可按放气键(“VENT”)。交换样品台操作必须戴干净手套。固定好样品台后(固紧内六角螺丝),必须用专用卡尺测量样品高度,不允许超过规定高度。推进样品室,左手按住样品室门上手柄,右手点击抽真空软件键”PUMP”。整个换样品过程中,不要手动调节样品台位置(倾动除外)。 4.关高压过程:按下软件键“xx kV”,稍等待,听到V6阀的动作声音后,键颜色由黄色变灰色,表示高压已正式关闭。 5.开高压过程:样品室抽真空到达5e -5 mBar以上,可以开高压,观察图象。开高压:检查“Detector”菜单项中的“SE”或“TLD”被选中,按“HT”键,数秒后按软键“xx kV”,应听到V6阀开启的声音,等待键颜色变黄色。图象出来后,同时会弹出一个窗口,提示首先必须聚焦图象,然后按“OK”,使电脑能测出实际的样品高度,次序不可颠倒。在数千倍聚焦完成后(In Focus),按“OK”。 6.聚焦图象:按住鼠标右键,左或右向移动鼠标来聚焦图象。 7.消像散:按住左Shift键,按住鼠标右键移动,消除像散。 8.拍照:按“F2”键,电镜开始单次扫描。扫描结束,过数秒,冻结键(雪花图形)自动激活(变黄色)。这时可用“InOut”菜单中的Image保存图象。 9.拷贝图象:须用新光盘或未开封的新软盘拷贝。 三.关机 1.先关高压,放气后,取出样品后,重抽真空,然后关“Microscope Control”,再关WINDOWS。 电镜的电脑是控制整台电镜的,电脑的CMOS管理,显示卡及驱动程序等与普通电脑不同,请不要当作普通电脑来使用。禁止修改电脑的任何设置,禁止安装任何软件。禁止使用USB

扫描电子显微镜的结构原理

实验一扫描电子显微镜的结构原理及图像衬度观察 一、实验目的 1.了解扫描电镜的基本结构和工作原理。 2.通过实际样品观察与分析,明确扫描电镜的用途。 二、基本结构与工作原理简介 扫描电镜利用细聚电子束在样品表面逐点扫描,与样品相互作用产生各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像扫描电镜具有景深大、图像立体感强、放大倍数范围大且连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效工具。 扫描电镜所需的加速电压比透射电镜要低得多,一般约在1~30kV,实验时可根据被分析样品的性质适当地选择,最常用的加速电压约在20kV左右。扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整。放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。 扫描电镜的基本结构可分为六大部分,电子光学系统、扫描系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统。图5-1是扫描电镜主机构造示意图。试验时将根据实际设备具体介绍。这一部分的实验内容可参照教材内容,并结合实验室现有的扫描电镜进行,在此不作详细介绍。 三、扫描电镜图像衬度观察 1.样品制备扫描电镜的优点之一是样品制备简单,对于新鲜的金属断口样品不需要做任何处理,可直接进行观察。但在有些情况下需对样品进行必要的处理。 (1) 样品表面附着有灰尘和油污,可用有机溶剂(乙醇或丙酮)在超声波清洗器中清洗。 (2) 样品表面锈蚀或严重氧化,采用化学清洗或电解的方法处理。清洗时可能会失去一些表面形貌特征的细节,操作过程中应该注意。 (3) 对于不导电的样品,观察前需在表面喷镀一层导电金属或碳,镀膜厚度控制在5~10nm 为宜。 2.表面形貌衬度观察二次电子信号来自于样品表面层5~10nm,信号的强度对样品微区表面相对于入射束的取向非常敏感。随着样品表面相对于入射束的倾角增大,二次电子的产额增多。因此,二次电子像适合于显示表面形貌衬度。

扫描电子显微镜基本原理和应用

扫描电子显微镜的基本原理和结构 下图为扫描电子显微镜的原理结构示意图。由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电光源。在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。高能电子束与样品物质相互作用产生二次电子,背反射电子,X射线等信号。这些信号分别被不同的接收器接收,经放大后用来调制荧光屏的亮度。由于经过扫描线圈上的电流与显象管相应偏转线圈上的电流同步,因此,试样表面任意点发射的信号与显象管荧光屏上相应的亮点一一对应。也就是说,电子束打到试样上一点时,在荧光屏上就有一亮点与之对应,其亮度与激发后的电子能量成正比。换言之,扫描电镜是采用逐点成像的图像分解法进行的。光点成像的顺序是从左上方开始到右下方,直到最後一行右下方的像元扫描完毕就算完成一帧图像。这种扫描方式叫做光栅扫描。 扫描电镜由电子光学系统,信号收集及显示系统,真空系统及电源系统组成。 1 电子光学系统 电子光学系统由电子枪,电磁透镜,扫描线圈和样品室等部件组成。其作用是用来获得扫描电子束,作为产生物理信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。 <1>电子枪: 其作用是利用阴极与阳极灯丝间的高压产生高能量的电子束。目前大多数扫描电镜采用热阴极电子枪。其优点是灯丝价格较便宜,对真空度要求不高,缺点是钨丝热电子发射效率低,发射源直径较大,即使经过二级或三级聚光镜,在样品表面上的电子束斑直径也在5-7nm,因此仪器分辨率受到限制。现在,高等级扫描电镜采用六硼化镧(LaB6)或场发射电子枪,使二次电子像的分辨率达到2nm。但这种电子枪要求很高的真空度。 扫描电子显微镜的原理和结构示意图

电子显微镜发展史

电子显微镜的发展史

电子显微镜的发展史 杨柏栋 大庆师范学院物理与电气信息工程学院 摘要:电子显微镜自从被发明出来就为人类做着巨大的贡献,随着现代社会的发展,电子显微镜的作用将会越来越大,我们应该知道电子显微镜的由来,本文将着重介绍电子显微镜的定义、分类、作用及其发展史。 关键字:电子显微镜、电子 引言 随着电子显微镜应用的广泛,人们对于电子显微镜的了解需求大大的增加了,本文介绍了电子显微镜的定义与组成、电子显微镜的种类与用途、电子显微镜的发展史以及电子显微镜的优缺点,以此让人们更加的了解电子显微镜。 一、电子显微镜的定义与组成 电子显微镜,简称电镜,是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器[1]。 电子显微镜由镜筒、真空装置和电源柜三部分组成。 镜筒主要有电子源、电子透镜、样品架、荧光屏和探测器等部件,这些部件通常是自上而下地装配成一个柱体。 电子透镜用来聚焦电子,是电子显微镜镜筒中最重要的部件。一般使用的是磁透镜,有时也有使用静电透镜的。它用一个对称于镜筒轴线的空间电场或磁场使电子轨迹向轴线弯曲形成聚焦,其作用与光学显微镜中的光学透镜(凸透镜)使光束聚焦的作用是一样的,所以称为电子透镜。光学透镜的焦点是固定的,而电子透镜的焦点可以被调节,因此电子显微镜不象光学显微镜那样有可以移动的透镜系统。现代电子显微镜大多采用电磁透镜,由很稳定的直流励磁电流通过带极靴的线圈产生的强磁场使电子聚焦 电子源是一个释放自由电子的阴极,栅极,一个环状加速电子的阳极构成的。阴极和阳极之间的电压差必须非常高,一般在数千伏到3百万伏之间。它能发射并形成速度均匀的电子束,所以加速电压的稳定度要求不低于万分之一。 样品架样品可以稳定地放在样品架上。此外往往还有可以用来改变样品(如移动、转动、加热、降温、拉长等)的装置。 探测器用来收集电子的信号或次级信号。 二、电子显微镜的种类与用途 电子显微镜按结构和用途可分为透射式电子显微镜、扫描式电子显微镜、反射式电子显微镜和发射式电子显微镜等。透射式电子显微镜常用于观察那些用普通显微镜所不能分辨的细微物质结构[2];扫描式电子显微镜主要用于观察固体表

扫描电子显微镜的操作步骤和注意事项心得

扫描电子显微镜的操作步骤和注意事项心得扫描电子显微镜的操作步骤与注意事项一、样品制备 将分散好的样品滴于铜片上,干燥后将载有样品的铜片粘在样品座上的导电胶 带上(对于大颗粒样品可直接将样品粘在导电胶带上)。 对于导电性不好的样品必须蒸镀导电层,通常为蒸金:将样品座置于蒸金室 中,合上盖子,打开通气阀门,对蒸金室进行抽真空。选择好适当的蒸金时间,达 到真空度定好时间后加电压并开始计时,保持电流值,时间到后关闭电压,关闭仪器。取出样品。(注意:打开蒸金室前必须先关闭通气阀门,以防液体倒流。) 二、扫描电镜的操作 1.安装样品 “Vent”直至灯闪,对样品交换室放氮气,直至灯亮; 1) 按 2) 松开样品交换室锁扣,打开样品交换室,取下原有的样品台,将已固定好 样品的样品台,放到送样杆末端的卡抓内(注意:样品高度不能超过样品台高度,并 且样品台下面的螺丝不能超过样品台下部凹槽的平面); 3) 关闭样品交换室门,扣好锁扣; 4) 按“EVAC”按钮,开始抽真空,“EVAC”闪烁,待真空达到一定程度,“EVAC”点亮; 5) 将送样杆放下至水平,向前轻推至送样杆完全进入样品室,无法再推动为 止,确认“Hold”灯点亮,将送样杆向后轻轻拉回直至末端台阶露出导板外将送 样杆竖起卡好。(注意:推拉送样杆时用力必须沿送样杆轴线方向,以防损坏送样杆) 2.试样的观察(注意:软件控制面板上的背散射按钮千万不能点,以防损坏仪器) -51) 观察样品室的真空“PVG”值,当真空达到9.0×10Pa时,打开“

Maintenance”,加高压5kv,软件上扫描的发射电流为10μA,工作距离“WD”为8mm,扫描模式为“Lei”(注意:为减少干扰,有磁性样品时,工作距离一般为15mm左右); 2) 操作键盘上按“Low Mag”、“Quick View”,将放大倍率调至最低,点击“Stage Map”,对样品进行标记,按顺序对样品进行观察; 3) 取消“Low Mag”,看图像是否清楚,不清楚则调节聚焦旋钮,直至图像清楚,再旋转放大倍率旋钮,聚焦图像,直至图像清楚,再放大……,直到放大到所需要的图; 4) 聚焦到图像的边界一致,如果边界清晰,说明图像已选好,如果边界模糊,调节操作键盘上的“X、Y”两个消像散旋钮,直至图像边界清晰,如果图像太亮或太暗,可以调节对比度和亮度,旋钮分别为“Contrast”和“Brightness”,也可以按“ACB”按钮,自动调整图像的亮度和对比度; 5) 按“Fine View”键,进行慢扫描,同时按“Freeze”键,锁定扫描图像; 6) 扫描完图像后,打开软件上的“Save”窗口,按“Save”键,填好图像名称,选择图像保存格式,然后确定,保存图像; 7) 按“Freeze”解除锁定后,继续进行样品下一个部位或者下一个样品的观察。 3.取出样品 1) 检查高压是否处于关闭状态(如HT键为绿色,点击HT键,关闭高压,HT键为蓝色或灰色); mm,点击样品台按钮,按Exchang(2)检查样品台是否归位,工作距离为8 键, Exchang灯亮; (3) 将送样杆放至水平,轻推送样杆到样品室,停顿1秒后,抽出送样杆并将送样杆竖起卡好,注意观察Hold关闭,为样品台离开样品室。

相关主题