搜档网
当前位置:搜档网 › 基于图像识别技术的轴承检测系统

基于图像识别技术的轴承检测系统

基于图像识别技术的轴承检测系统
基于图像识别技术的轴承检测系统

基于图像识别技术的轴承检测系统

第一章论述

1.1前言

检测技术是现代制造业的基础技术之一,是保证产品质量的关键。随着现代制造业的发展,许多传统的检测技术已不能满足其需要,表现在:现代制造产品种类有很大的扩充,现代制造强调实时、在线、非接触检测,现代产品的制造精度大大提高;现代制造业的进步需要研究新型的产品检测技术。

计算机工业图象检测是将计算机视觉应用于工业检测的一门交叉学科。计算机视觉,指的是利用计算机技术对景物的图象进行识别],以实现对人视觉功能的扩展。利用这一技术可以解决许多工业图象检测环节的问题,以取代落后的人工检测,提高检测效率和工业自动化水平,构成带视觉环节的反馈控制系统。视觉检测技术具有非接触、速度快、精度合适、现场抗干扰能力强等突出的优点,能很好地满足现代制造业的需求,在实际中显示出广阔的应用前景。视觉检测技术是建立在计算机视觉研究基础上的一门新兴检测技术,可用于工业领域的很多方面,如零件检验与尺寸测量、零件的缺陷检查、零件装配、机器人的引导和零件的识别等。

轴承是机械行业的一个非常重要的零件,使用极其普遍且品种繁多,轴承的加工精度和质量关系到机械产品的使用性能和质量,因此对各种轴承的加工质量检测一直是轴承加工厂家关心的问题。

1.2 国内外的发展现状

目前我国大部分轴承产品加工企业,特别是一些中小规模的生产单位,对产品感官指标的检测还要借助于人的视觉和个人主观判断能力,因而占用了大量的人力,而且由于受到个人的视力、情绪、疲劳、光线等因素的影响,工作效率低,分选差异大。而且这种用肉眼检测轴承接触面的方法来测量齿面加工精度,这种检测方法是不足以胜任的,因为检测质量的结果依据各个检测员而不同。虽然座标检测机能对齿面进行批量检测,但目前市售测量机不能精确地检测轴面周边和不规则的表面,而且此类检测机需要相当长的检测时间。且该检测机的自动化程度不高,检测产品单一,且开发费用较高,与我国现有肉食品加工业的先进生产装备水平极不相符,也制约了机械制造业的长足发展。

1.3 课题研究内容

基于机器视觉(图像识别)的监测技术在有些行业已经得到较好的应用,而且创造了极高的价值。针对目前轴承检测过程中暴露出的问题, 为了提高生产效率,节约成本,我们必须建立一种全新的检测技术,用以替代落后的人工检测。而采用基于计算机的视觉检测和图象处理技术,设计一轴承外表的自动视觉检测系统,成为我们必然的选择。

本文根据我国目前的检测系统的发展水平,监测系统的设计要求,发展现状,今后

的发展趋势,对可以在企业内部使用的基于图像识别模式的检测系统进行研究,采用同步带做为输送线,用两个四自由度机械手代替人工操作,用CCD摄像机进行图像采集,经过处理后,用先进的单片机进行集中控制,实现了自动化,准确化检测,提高了检测系统的可靠性、准确性、实用性。

第二章系统总体设计

2.1 系统总体技术分析

基于图像识别技术的轴承检测系统是提高精确化,高速化,自动化检测的重要方法,目前图象检测技术在诸如:液面和厚度的自动检测、焊缝自动跟踪、集成电路芯片焊点的自动定位、零件表面坏损的自动检测、印刷电路板表面缺陷的自动检测等领域都已有较好的应用。

因此通过光-电技术、图象识别处理技术及计算机控制技术等,对“对轴承的感官指标进行在线图象检测”的关键性技术进行研究应该是可行的。这种采用CCD采集图像的检测技术主要有以下几个优点:

①100%的检测比例,这样可以更好地控制产品质量,而许多人工检验是抽样检验;

②一致的检验效果,不存在疲劳问题;

③可以降低检测成本,提高产品质量的可信度;

④可以面向所有的轴承产品,甚至其它的机械零部件;

2.2 系统的工作原理

轴承外表视觉检测系统,在线工作。生产流水线中被测轴承按照一定的节拍在输送带上运动,由机械手在特定的位置将其搬到戴检测位置,然后由CCD摄像机进行图像提取。图象的获取与轴承的运动同步进行;被测轴承的各检测项目信息处于特定的背景中,通过图象预处理将其从中提取出来,与设置的标准模板匹配,即对已有的模板与被检测物体进行分析,对两个图形的相似程度进行度量,并返回图形之间的相似度值,通过相似度值来判断模板与被检测物体是否相同或相似,同时将检测结果及时报告或通讯给其它执行系统,从而实现对轴承加工质量的正确分类(一定要求的正品和废品)。因此,该视觉检测系统由下列子系统组成:光源和光学成像系统;摄像与图象处理系统;用于控制摄像、图象处理、图象分析的计算机系统;与生产线的同步通讯和运动控制系统;输出检测结果系统,执行系统。其一般过程如图1所示。具体工作流程如下:

1当启动检测线,第一个轴承到位以后,经过视觉传感器,判断目标是否到位,然后由控制机发出启动机械手甲的指令,当甲手启动到位的时候,要

求那个轴承也恰好到位,此时,机械手可直接抓取目标;

2当机械手甲将目标放到检测位置时,由传感器2判断目标到位情况,然后由控制机发出指令,启动CCD,进行第一个目标检测,经过一系列的图像

处理,判断图形真伪,然后传给控制机;

3当为不合格的目标时,控制机发出指令,机械手乙动作,将目标放到废品箱;

4如果不是废品,则将目标放到生产线上。

5以后,每隔4秒钟,CCD获取图像一次。而两个机械手则实现放料,送料。

2.3 系统描述及关键问题分析

轴承质量的检测方法,检测系统,既要适应检测生产线工作方式的不同,又要适应轴承换型的要求,同时还要满足一定的实时性要求.由于生产过程中,必须对每一个轴承都进行检测,这就要求图像检测、图像处理的速度必须跟得上生产线的运行速度.在摄像用光方面,既可采用背光也可采用正光.实践表明:如果采用背光,有利于对图像进行目标分割

采用图像处理方法,进行轴承质量在线检测,需要解决以下几个关键问题:

(1)目标(轴承,下同)分割轴承的合格与否,最终要归于它所包含的每一个检测小目标是否全部合格,所以能否把这些小目标全部并且正确地从图像背景中分割提取出来,是整个检测任务中的首要问题.

(2)摄像同步及目标定位在获取药板图像时,我们让一幅图像里只包含一个完整的轴承,也就是一次只检测一轴承.这样,每当开启整个生产线后,一个轴承被传送到图1中A处时,必须由生产线即时给出表示该轴承已就位的同步信号,并送给计算机以启动图像采集和处理.以后CCD则按照一定的频率进行图像采集。

目标定位与CCD图像传感器的工作原理,以及同步信号的接入位置有关.这里采用廉价的主要应用于普通监控场合的CCD图像传感器进行轴承图像获取,它按照普通电视制式工作而没有外部触发拍摄功能,它的一帧视频图像一般占时40ms.图像传感器与生产线相互独立地工作生产线给出的同步信号送给计算机,通知计算机在从视频采集卡送来的视频流中截获一帧图像.由于生产线给出的同步信号的周期取决于所要检测的轴承在运动方向的长度。.因此,大多数情况下,同步信号周期不是40ms的整倍数,这样在轴承被传送到CCD图像传感器视场中心位置的瞬间,生产线发出同步信号通知计算机试图采集此时的视场景物图像,然而大多数情况下此时的视场景物并不能被捕获到,实际获取到的图像大多数都是在中心位置之前或之后一段时间(不大于40ms)拍摄到的,即实际获取到的图像与中心位置的图像发生了错位, CCD图像传感器实际获取到的发生了错位的图像.由于目标偏出视场,这就需要把摄像区扩大,以使目标不会偏出,但也不能过分大,以免一幅图像中包含两个完整轴承.所以,在实际检测识别时就需要跟踪这种错位导致的抖动以捕获到目标.

(3)机械手跟生产线,CCD的同步问题。当地一个轴承到位以后,经过传感器的判断,由控制机发出启动机械手甲的指令,当甲手启动到位的时候,要求那个轴承也恰好到位,此时,机械手可直接抓去;当机械手甲将目标放到检测位置时,控制机发出指令,CCD动作。进行第一个目标检测,以后,每隔一定时间,CCD获取图像一次。当有不合格的目标是,控制机发出指令,机械手乙动作,将目标放到废品箱,如果没有废品,则将目标放到生产线上。

(4)机械手的协调运动;要求机械手为四轴联动,这样,就对机械手的内部构造,动力系统的控制同步技术等提出了一定的要求;

2.4 轴承缺损检测系统的组成

基于机器视觉技术的轴承缺损检测系统总体上由硬件和软件两大部分组成

由图1我们可以看出,硬件装置包括传送装置,机械手。传送装置在机器中分为两个区域:检测区和分离区。在检测区,通过高速CCD摄像机将传送中连续的轴承图像传输到计算机中,计算机对记录下的图像进行分析,分辨出损坏轴承。当轴承进入分离区时,横向机械操作手执行剔除命令,使废品落入废品箱,而成品正常落入成品区,从而实现成品和废品的分离。

软件主要包括对机械手控制程序的设计,计算机图像处理,控制机的指令设计。

因此整个系统包括:传送线、机械手、CCD摄像机、一些传感器、控制电路,上

位机、下位机等。

2.5总体系统设计任务

1 传送带的形式、速度、及其它参数;

2 机械手的设计和工艺要求;

3 为机械手各轴选择电机和驱动机构;

4 电机的控制顺序等;

5 计算机控制系统设计;;

2.6.设计工作量

(1)设计图量A0号4张:

其中:

总布置图A0一张

部件装配图A0一张

零件图折合A0一张

单片机控制原理图A0一张(2)说明书2.5万字左右

图像边缘检测系统设计

学号 数字图像处理 课程设计说明书 图像边缘检测系统设计 起止日期:2016年12月5日至2016年12月9日 学生某 班级13电信科1班

成绩 指导教师(签字) 计算机与信息工程学院电子信息工程系 2016年12月9日 课程设计任务书 2016—2017学年第一学期 计算机与信息工程学院电子信息与科学技术专业1班级 课程设计名称:数字图像处理课程设计 设计题目:图像边缘检测系统设计 完成期限:自2016年12月5日至2016年12月9日共1周 一、课程设计依据 在掌握数字图像处理基本算法的基础上,利用MATLAB、VC++、Java等编程语言设计具有指定功能的图形用户界面。 二、课程设计内容 1、设计一个实现图像边缘检测功能的界面 2、界面可以采用MATLAB、VC++、Java等编程语言设计 3、要求界面能够读入并显示图片,通过各种控件选择并进行图像的边缘检测操作,操作结果在对比窗口中显示 4、图像边缘检测功能至少包括单方向一阶微分检测(水平/垂直方向)、无方向微分检测

(Roberts算子、Sobel算子、Prewitt算子、Laplacian算子、LOG算子)等,每项功能可采用一个或多个算法实现 三.课程设计要求 1、要求每个同学独立完成设计任务。 2、课程设计说明书封面格式要求见《课程设计说明书格式要求》。 3、课程设计的说明书要求简洁、通顺,图像表达内容完整、清楚、规X。 4、课程设计说明书要求: 1)说明题目的设计原理和思路、采用方法及设计流程。 2)可采用图表或文字对图形用户界面各子模块的功能以及各子模块之间的关系做 较详细的描述。 3)详细说明代码的编写流程。 4)采用图像及文字详细说明各功能的演示结果。 指导教师(签字): 系主任(签字): 批准日期:2016年12月1日

图像识别技术的研究现状论文

图像识别技术研究现状综述 简介: 图像识别是指图形刺激作用于感觉器官,人们辨认出它是经验过的某一图形的过程,也叫图像再认。在图像识别中,既要有当时进入感官的信息,也要有记忆中存储的信息。只有通过存储的信息与当前的信息进行比较的加工过程,才能实现对图像的再认。图像识别技术是以图像的主要特征为基础的,在图像识别过程中,知觉机制必须排除输入的多余信息,抽出关键的信息。在人类图像识别系统中,对复杂图像的识别往往要通过不同层次的信息加工才能实现。对于熟悉的图形,由于掌握了它的主要特征,就会把它当作一个单元来识别,而不再注意它的细节了。这种由孤立的单元材料组成的整体单位叫做组块,每一个组块是同时被感知的。图像在人类的感知中扮演着非常重要的角色,人类随时随处都要接触图像。随着数字图像技术的发展和实际应用的需要,出现了另一类问题,就是不要求其结果输出是一幅完整的图像,而是将经过图像处理后的图像,再经过分割和描述提取有效的特征,进而加以判决分类,这就是近20年来发展起来的一门新兴技术科学一图像识别。它以研究某些对象或过程的分类与描述为主要内容,以研制能够自动处理某些信息的机器视觉系统,代替传统的人工完成分类和辨识的任务为目的。 图像识别的发展大致经历了三个阶段:文字识别、图像处理和识别及物体识别:文字识别的研究是从1950年开始的,一般是识别字母、数字和符号,并从印刷文字识别到手写文字识别,应用非常广泛,并且已经研制了许多专用设备。图像处理和识别的研究,是从1965年开始的。过去人们主要是对照相技术、光学技术的研究,而现在则是利用计算技术、通过计算机来完成。计算机图像处理不但可以消除图像的失真、噪声,同时还可以进行图像的增强与复原,然后进行图像的判读、解析与识别,如航空照片的解析、遥感图像的处理与识别等,其用途之广,不胜枚举。物体识别也就是对三维世界的认识,它是和机器人研究有着密切关系的一个领域,在图像处理上没有特殊的难点,但必须知道距离信息,并且必须将环境模型化。在自动化技术已从体力劳动向部分智力劳动自动化发展的今天,尽管机器人的研究非常盛行,还只限于视觉能够观察到的场景。进入80年代,随着计算机和信息科学的发展,计算机视觉、人工智能的研究已成为新的动向 图像识别与图像处理的关系: 在研究图像时,首先要对获得的图像信息进行预处理(前处理)以滤去干扰、噪声,作几何、彩色校正等,以提供一个满足要求的图像。图像处理包括图像编码,图像增强、图像压缩、图像复原、图像分割等。对于图像处理来说,输入是图像,输出(即经过处理后的结果)也是图像。图像处理主要用来解决两个问题:一是判断图像中有无需要的信息;二是确定这些信息是什么。图像识别是指对上述处理后的图像进行分类,确定类别名称,它可以在分割的基础上选择需要提取的特征,并对某些参数进行测量,再提取这些特征,然后根据测量结果做出分类。为了更好地识别图像,还要对整个图像做结构上的分析,对图像进行描述,以便对图像的主要信息做一个好的解释,并通过许多对象相互间的结构关系对图像加深理解,以便更好帮助和识别。故图像识别是在上述分割后的每个部分中,找出它的形状及纹理特征,以便对图像进行分类,并对整个图像做结构上的分析。因而对图像识别环节来说,输入是图像(经过上述处理后的图像),输出是类别和图像的结构分析,而结构分析的结果则

简单介绍图像识别技术在各类行业的应用

简单介绍图像识别技术在各类行业的应用 图像识别作为计算视觉技术体系中的重要一环,一直备受重视。微软在两年前就公布了一项里程碑式的成果:它的图像系统识别图片的错误率比人类还要低。如今,图像识别技术又发展到一个新高度。这有赖于更多数据的开放、更多基础工具的开源、产业链的更新迭代,以及高性能的AI计算芯片、深度摄像头和优秀的深度学习算法等的进步,这些都为图像识别技术向更深处发展提供了源源不断的动力。 其实对于图像识别技术,大家已经不陌生,人脸识别、虹膜识别、指纹识别等都属于这个范畴,但是图像识别远不只如此,它涵盖了生物识别、物体与场景识别、视频识别三大类。发展至今,尽管与理想还相距甚远,但日渐成熟的图像识别技术已开始探索在各类行业的应用。 01 网络搜索 以Facebook和谷歌为例,近日,Facebook专门为图像和视频理解打造了一个专业计算机视觉平台Lumos,该平台可以为整个社交网络提供视觉搜索功能,它将从两个方面改善社交网络上的用户体验:基于图片本身(而不是图片标签和拍照时间)的搜索;升级的自动图片描述系统(可向视觉障碍者描述图片内容)。而对于谷歌而言,图片识别已经攻克,它的下一个挑战是视频识别,目标是提升图像识别技术,最终能够识别和搜索视频本身的原内容,从而改善视频推荐服务。除此以外,Snap和Twitter等也都在致力于此。 02 智能家居 在智能家居领域,通过摄像头获取到图像,然后通过图像识别技术识别出图像的内容,从而做出不同的响应。举个例子,我们在门口安装了摄像头,当有物体出现在摄像头范围内的时候,摄像头自动拍摄下图像进行识别,如果发现是可疑的人或物体,就可以及时报警给户主。如果图像和主人的面部匹配,则会主动为主人开门。还有家庭用的智能机器人,

数字图像处理系统毕业设计论文

毕业设计说明书基于ARM的嵌入式数字图像处理系统 设计 学生姓名:张占龙学号: 0905034314 学院:信息与通信工程学院 专业:测控技术与仪器 指导教师:张志杰 2013年 6月

摘要 简述了数字图像处理的应用以及一些基本原理。使用S3C2440处理器芯片,linux内核来构建一个简易的嵌入式图像处理系统。该系统使用u-boot作为启动引导程序来引导linux内核以及加载跟文件系统,其中linux内核与跟文件系统均采用菜单配置方式来进行相应配置。应用界面使用QT制作,系统主要实现了一些简单的图像处理功能,比如灰度话、增强、边缘检测等。整个程序是基于C++编写的,因此有些图像变换的算法可能并不是最优化的,但基本可以满足要求。在此基础上还会对系统进行不断地完善。 关键词:linnux 嵌入式图像处理边缘检测 Abstract This paper expounds the application of digital image processing and some basic principles. The use of S3C2440 processor chip, the Linux kernel to construct a simple embedded image processing system. The system uses u-boot as the bootloader to boot the Linux kernel and loaded with file system, Linux kernel and file system are used to menu configuration to make corresponding configuration. The application interface is made using QT, system is mainly to achieve some simple image processing functions, such as gray, enhancement, edge detection. The whole procedure is prepared based on the C++, so some image transform algorithm may not be optimal, but it can meet the basic requirements. On this basis, but also on the system constantly improve. Keywords:linux embedded system image processing edge detection

数字图像处理考试

1. 对下列信源符号进行Huffman 编码,并计算其冗余度和压缩率。 符号 a1 a2 a3 a4 a5 a6 概率 0.1 0.4 0.06 0.1 0.04 0.3 原始信源 信源简化 符号 概率 1 2 3 4 a2 0.4 0.4 0.4 0.4 0.6 a6 0.3 0.3 0.3 0.3 0.4 a1 0.1 0.1 0.2 0.3 a4 0.1 0.1 0.1 a3 0.06 0.1 a5 0.04 从最小的信源开始一直到原始的信源 编码的平均长度: 压缩率:13 1.3642.2 R avg n C L ==≈ 冗余度:11110.26691.364D R R C =- =-≈ (0.4)(1)(0.3)(2)(0.1)3(0.1)(4)(0.06)(5)(0.04)(5) 2.2/avg L bit =+++++=()符号

1. 简述灰度分辨率、空间分辨率与图像质量的关系。: 空间分辨率是看原图像转化为数字图像的像素点数,越多图像质量越高;灰度分辨率,即每一个像素点的灰度级数,灰度级越大,图像越清晰. 2. 简述采样和量化的一般原则: 空间坐标的离散化叫做空间采样,而灰度的离散化叫做灰度量化。图像的空间分辨率主要由采样所决定,而图像的幅度分辨率主要由量化所决定。 3. 图像锐化与图像平滑有何区别与联系?: 图象锐化是用于增强边缘,导致高频分量增强,会使图象清晰;图象平滑用于去噪,对图象高频分量即图象边缘会有影响。都属于图象增强,改善图象效果。 4. 伪彩色增强与假彩色增强有何异同点?: 伪彩色增强是对一幅灰度图象经过三种变换得到三幅图象,进行彩色合成得到一幅彩色图像;假彩色增强则是对一幅彩色图像进行处理得到与原图象不同的彩色图像;主要差异在于处理对象不同。 1. 对于椒盐噪声,为什么中值滤波效果比均值滤波效果好?:均值滤波器是一种最常用的线性低通平滑滤波器,可抑制图像中的加性噪声,但同时也使图像变得模糊;中值滤波器是一种最常用的非线性平滑滤波器,可消除图像中孤立的噪声点,又可产生较少的模糊。一般情况下中值滤波的效果要比邻域平均处理的低通滤波效果好,主要特点是滤波后图像中的轮廓比较清晰。因此,滤除图像中的椒盐噪声采用中值滤波。 2.什么是区域?什么是图像分割?:图像分割就是把图像分成若干个特定 的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。 3.写出颜色RGB模型转换到HIS模型的变换公式;并说明HSI模型各分 量的含义及取值围对应的颜色信息。书上 4.灰度图像:当点足够小,观察距离足够远时,人眼就不容易分开各个小 点,从而得到比较连续,平滑的灰度图像。 5.GIF格式:GIF格式是一种公用的图像文件格式,它是8位文件格式, 所以最多只能存储256色图像,不支持24位的真彩色图像。GIF文件中的图像数据均经过压缩,采用的压缩算法是改进的LZW算法,所提供的压缩率通常在1:1到1:3之间,当图像中有随机噪声时效果不好

机器视觉检测系统的工作原理与检测流程【干货】

机器视觉检测系统的工作原理与检测流程 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 在机器视觉检测系统工作流程中,主要分为图像信息获取、图像信息处理和机电系统执行检测结果3个部分,另外根据系统需要还可以实时地通过人机界面进行参数设置和调整。 当被检测的对象运动到某一设定位置时会被位置传感器发现,位置传感器会向PLC控制器发送“探测到被检测物体”的电脉冲信号,PLC控制器经过计算得出何时物体将移动到CCD相机的采集位置,然后准确地向图像采集卡发送触发信号,采集开检测的此信号后会立即要求CCD相机采集图像。被采集到的物体图像会以BMP文件的格式送到工控机,然后调用专用的分析工具软件对图像进行分析处理,得出被检测对象是否符合预设要求的结论,根据“合格”或“不合格”信号,执行机会对被检测物体作出相应的处理。系统如此循环工作,完成对被检测物体队列连续处理。如下图所示。

机器视觉检测系统工作原理 一个完整的机器视觉检测系统的主要工作过程如下: ①工件定位传感器探测到被检测物体已经运动到接近机器视觉摄像系统的视野中心,向机器视觉检测系统的图像采集单元发送触发脉冲。 ②机器视觉检测系统的图像采集单元按照事先设定的程序和延时,分别向摄像机和照明系统发出触发脉冲。 ③机器视觉摄像机停止目前的扫描,重新开始新的一帧扫描,或者机器视觉摄像机在触发脉冲来到之前处于等待状态,触发脉冲到来后启动一帧扫描。 ④机器视觉摄像机开始新的一帧扫描之前打开电子快门,曝光时间可以事先设定。 ⑤另一个触发脉冲打开灯光照明,灯光的开启时间应该与机器视觉摄像机的曝光时间相匹配。 ⑥机器视觉摄像机曝光后,正式开始新一帧图像的扫描和输出。 ⑦机器视觉检测系统的图像采集单元接收模拟视频信号通过A/D转换器将其数字化,或者是直接接收机器视觉摄像机数字化后的数字视频信号。 ⑧处理结果控制生产流水线的动作、进行定位、纠正运动的误差等。 从上述的工作流程可以看出,机器视觉检测系统是一种相对复杂的系统。大多监控和检测对象都是运动的物体,系统与运动物体的匹配和协调动作尤为重要,所以给系统各部分的动作时间和处理速度带来了严格的要求。在某些应用领域,例如机器人、飞行物体制导等,对整个系统或者系统的一部分的重量、体积和功耗等都会有严格的要求。 尽管机器视觉应用各异,归纳一下,都包含一下几个过程: ①图像采集:光学系统采集图像,将图像转换成数字格式并传入计算机存储器。

基于matlab的图像预处理技术研究文献综述

毕业设计文献综述 题目:基于matlab的图像预处理技术研究 专业:电子信息工程 1前言部分 众所周知,MATLAB在数值计算、数据处理、自动控制、图像、信号处理、神经网络、优化计算、模糊逻辑、小波分析等众多领域有着广泛的用途,特别是MATLAB的图像处理和分析工具箱支持索引图像、RGB 图像、灰度图像、二进制图像,并能操作*.bmp、*.jpg、*.tif等多种图像格式文件如。果能灵活地运用MATLAB提供的图像处理分析函数及工具箱,会大大简化具体的编程工作,充分体现在图像处理和分析中的优越性。 图像就是用各种观测系统观测客观世界获得的且可以直接或间接作用与人眼而产生视觉的实体。视觉是人类从大自然中获取信息的最主要的手段。拒统计,在人类获取的信息中,视觉信息约占60%,听觉信息约占20%,其他方式加起来才约占20%。由此可见,视觉信息对人类非常重要。同时,图像又是人类获取视觉信息的主要途径,是人类能体验的最重要、最丰富、信息量最大的信息源。通常,客观事物在空间上都是三维的(3D)的,但是从客观景物获得的图像却是属于二维(2D)平面的。 图像存在方式多种多样,可以是可视的或者非可视的,抽象的或者实际的,适于计算机处理的和不适于计算机处理的。 图像处理它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在 1964 年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动

浅析人工智能中的图像识别技术

浅析人工智能中的图像识别技术 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 图像识别技术是信息时代的一门重要的技术,其产生目的是为了让计算机代替人类去处理大量的物理信息。随着计算机技术的发展,人类对图像识别技术的认识越来越深刻。图像识别技术的过程分为信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。文章简单分析了图像识别技术的引入、其技术原理以及模式识别等,之后介绍了神经网络的图像识别技术和非线性降维的图像识别技术及图像识别技术的应用。从中可以总结出图像处理技术的应用广泛,人类的生活将无法离开图像识别技术,研究图像识别技术具有重大意义。 1 图像识别技术的引入 图像识别是人工智能科技的一个重要领域。图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。图像识别,顾名思义,就是对图像做出各种处理、分析,最终识别我们所要研究的

目标。今天所指的图像识别并不仅仅是用人类的肉眼,而是借助计算机技术进行识别。虽然人类的识别能力很强大,但是对于高速发展的社会,人类自身识别能力已经满足不了我们的需求,于是就产生了基于计算机的图像识别技术。这就像人类研究生物细胞,完全靠肉眼观察细胞是不现实的,这样自然就产生了显微镜等用于精确观测的仪器。通常一个领域有固有技术无法解决的需求时,就会产生相应的新技术。图像识别技术也是如此,此技术的产生就是为了让计算机代替人类去处理大量的物理信息,解决人类无法识别或者识别率特别低的信息。 图像识别技术原理 其实,图像识别技术背后的原理并不是很难,只是其要处理的信息比较繁琐。计算机的任何处理技术都不是凭空产生的,它都是学者们从生活实践中得到启发而利用程序将其模拟实现的。计算机的图像识别技术和人类的图像识别在原理上并没有本质的区别,只是机器缺少人类在感觉与视觉差上的影响罢了。人类的图像识别也不单单是凭借整个图像存储在脑海中的记忆来识别的,我们识别图像都是依靠图像所具有

简单数字图像处理系统

数字图像课程设计简单数字图像处理系统 function varargout = untitled(varargin) % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @untitled_OpeningFcn, ... 'gui_OutputFcn', @untitled_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before untitled is made visible. function untitled_OpeningFcn(hObject, eventdata, handles, varargin) %界面初始化函数 setappdata,'I',0); % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to untitled (see VARARGIN) % Choose default command line output for untitled = hObject;

图像识别技术发展状况及前景

医学图像配准技术 罗述谦综述 首都医科大学生物医学工程系(100054) 吕维雪审 浙江大学生物医学工程研究所(310027) 摘要医学图像配准是医学图像分析的基本课题,具有重要理论研究和临床应用价 值。本文较全面地介绍了医学图像配准的概念、分类、配准原理、主要的配准技术及评 估方法。 关键词医学图像配准多模 1 医学图像配准的概念 在做医学图像分析时,经常要将同一患者的几幅图像放在一起分析,从而得到该患者的多方面的综合信息,提高医学诊断和治疗的水平。对几幅不同的图像作定量分析,首先要解决这几幅图像的严格对齐问题,这就是我们所说的图像的配准。 医学图像配准是指对于一幅医学图像寻求一种(或一系列)空间变换,使它与另一幅医学图像上的对应点达到空间上的一致。这种一致是指人体上的同一解剖点在两张匹配图像上有相的空间位置。配准的结果应使两幅图像上所有的解剖点,或至少是所有具有诊断意义的点及手术感兴趣的点都达到匹配。 医学图像配准技术是90年代才发展起来的医学图像处理的一个重要分支。涉及“配准”的技术名词除registration外,mapping、matching、co-registration、integration、align-ment和fusion 等说法也经常使用。从多数文章的内容看,mapping偏重于空间映射;fu-sion指图像融合,即不仅包括配准,而且包括数据集成后的图像显示。虽然在成像过程之前也可以采取一些措施减小由身体移动等因素引起的空间位置误差,提高配准精度(称作数据获取前的配准preacquisition),但医学图像配准技术主要讨论的是数据获取后的(post-acquisition)配准,也称作回顾式配准(retrospective registration)。当前,国际上关于医学图像配准的研究集中在断层扫描图像( tomographic images,例如CT、MRI、SPECT、PET等)及时序图像(time seriesimages,例如fMRI及4D心动图像)的配准问题。 2 医学图像基本变换 对于在不同时间或/和不同条件下获取的两幅图像I1(x1,y1,z1)和I2(x2,y2,z2)配准,就是寻找一个映射关系P:(x1,y1,z1) (x2,y2,z2),使I1的每一个点在I2上都有唯一的点与之相对应。并且这两点应对应同一解剖位置。映射关系P表现为一组连续的空间变换。常用的空间几何变换有刚体变换(Rigid body transformation)、仿射变换(Affine transformation)、投影变换(Projec-tive transformation)和非线性变换(Nonlin-ear transformation)。 (1)刚体变换: 所谓刚体,是指物体内部任意两点间的距离保持不变。例如,可将人脑看作是一个刚体。 处理人脑图像,对不同方向成像的图像配准常使用刚体变换。刚体变换可以分解为旋转和平移:P(x)=Ax+b(1) x=(x,y,z)是像素的空间位置;A是3×3的旋转矩阵,b是3×1的平移向量。

数字图像处理系统论文

数字图像处理系统论文

毕业设计说明书基于ARM的嵌入式数字图像处理系统 设计 学生姓名:张占龙学号: 0905034314 学院:信息与通信工程学院 专业:测控技术与仪器 指导教师:张志杰 2013年 6月

摘要 简述了数字图像处理的应用以及一些基本原理。使用S3C2440处理器芯片,linux内核来构建一个简易的嵌入式图像处理系统。该系统使用u-boot作为启动引导程序来引导linux内核以及加载跟文件系统,其中linux内核与跟文件系统均采用菜单配置方式来进行相应配置。应用界面使用QT制作,系统主要实现了一些简单的图像处理功能,比如灰度话、增强、边缘检测等。整个程序是基于C++编写的,因此有些图像变换的算法可能并不是最优化的,但基本可以满足要求。在此基础上还会对系统进行不断地完善。 关键词:linnux 嵌入式图像处理边缘检测 Abstract This paper expounds the application of digital image processing and some basic principles. The use of S3C2440 processor chip, the Linux kernel to construct a simple embedded image processing system. The system uses u-boot as the bootloader to boot the Linux kernel and loaded with file system, Linux kernel and file system are used to menu configuration to make corresponding configuration. The application interface is made using QT, system is mainly to achieve some simple image processing functions, such as gray, enhancement, edge detection. The whole procedure is prepared based on the C++, so some image transform algorithm may not be optimal, but it can meet the basic requirements. On this basis, but also on the system constantly improve. Keywords:linux embedded system image processing edge detection

机器视觉检测系统

机器视觉检测系统 1机器视觉检测的一般模式 机器视觉检测的对象千差万别,检测的目的也不尽相同。农产品如柑橘、玉米等通常是检测其成熟度,大小,形态等,工业产品如工业零件,印刷电路板通常是检测其几何尺寸,表面缺陷等。不同的应用场合,就需要采用不同的检测设备和检测方法。如有的检测对精度要求高,就需要选择高分辨率的影像采集装置;有的检测需要产品的彩色信息,就需要采用彩色的影像采集装置。正是由于不同检测环境的特殊性,目前世界上还没有一个适用于所有产品的通用机器视觉检测系统。虽然各个检测系统采用的检测设备和检测方法差异很大,但其检测的一般模式却是相同的。机器视觉检测的一般模式是首先通过光学成像和图像采集装置获得产品的数字化图像,再用计算机进行图像处理得到相关检测信息,形成对被测产品的判断决策,最后将该决策信息发送到分拣装置,完成被测产品的分拣。 机器视觉检测的一般模式如图1所示: 图1 机器视觉检测的一般模式 1.1图像获取 图像获取是机器视觉检测的第一步,它影响到系统应用的稳定性和可靠性。图像的获取实际上就是将被测物体的可视化图像和内在特征转换成能被计算机处理的图像数据。机器视觉检测系统一般利用光源,光学镜头,相机,图像采集卡等设备获取被测物体的数字化图像。 1.2视觉检测 视觉检测通过图像处理的方法从产品图像中提取需要的信息,做出决策并发送相应消息到分拣机构。通常这部分功能由机器视觉软件来完成。优秀的机器视觉软件可对图像中的目标特征进行快速准确地检测,并最大限度地减少对硬件系统的依赖性,而算法设计不够成熟的机器视觉软件则存在检测速度慢,误判率高,对硬件依赖性强等特点。在机器视觉检测系统中视觉信息的处理主要依赖于图像处理方法,它包括图像增强,数据编码和传输,平滑,边缘锐化,分割,特征提取,目标识别与理解等内容。 1.3分拣 对于一个检测系统而言,最终是要实现次品(含不同种类的次品)与合格品的分离即分拣,这部分功能由分拣机构来完成。分拣是机器视觉检测的最后一个也是最为关键的一个环节"对于不同的应用场合,分拣机构可以是机电系统!液压系统!气动系统中的某一种。但无论是哪一种,除了其加工制造和装配精度要严格保证以外,其动态特性,特别是快速性和稳定性也十分重要,必须在设计时予以足够的重视。 2机器视觉检测系统的构成 一个典型的机器视觉检测系统主要包括光源、光学镜头、数字相机、图像采集卡、图像处理模块、分拣机构等部份。其构成如图2所示。 图2 典型的机器视觉检测系统

图像处理与识别论文.doc

辽宁工业大学 关于图像识别技术的论述 --图像处理与识别结课论文 学院:电子与信息工程学院 班级:电子102班 学号:100404054 姓名:包媛

关于图像识别技术的论述 随着科学技术的不断发展,计算机应用领域的不断开拓,一种全新的图像处理方法应运而生,这就是数字图像处理技术,即利用计算机设备将图像转变成数字信息来进行保存、处理、传输和重现。数字图像识别技术则是从数字图像处理技术中延伸出来的一个重要的研究方向。目前,数字图像处理与识别的应用范围越来越广。但就目前的水平而言,计算机对外部的感知能力还比较薄弱,还需要投入大量人力、物力从事数字图像处理与识别的理论和应用的研究。图像处理与识别的应用有很多种,如指纹识别,条码识别,人脸识别,车牌识别,残损纸币识别等等在生活,生产中,和警方侦破案件中都有很多很重要的应用。数字图像处理方法的分类以及数字图像处理系统的基本部件,“数字图像处理的基本方法”、“人脸识别”及“残损纸币识别”进行详细叙述。一些数字图像处理的基本方法,包括图像增强与图像检测两部分。人脸识别”当中,可采用SN-tuple神经网络的方法进行识别,同时网络参数的变化对识别率也会有所影响影响。对于“残损纸币识别”,可以选择边缘检测、Fisher判别和神经网络三种方法进行识别。其中,边缘检测需要区分纸币的面值和正反,之后方可识别,但性能较为稳定,识别效果较好;Fisher判别无需区分纸币的面值和正反,但识别率受样本选择的影响,不同样本,识别率有可能相差较大;神经网络方法也可不区分纸币的面值与正反,但识别率较低,若区分面值与正反,则可获得较高的识别率。下面分别对车牌识别,纸币、票据识别和手势识别做陈述。 随着我国国民经济的迅速增长,机动车的规模与流量大幅增加,随之而来的管理问题也日益严重。因此迫切需要采用高科技手段,对这些违法违章车辆牌照进行登记,汽车牌照识别系统的出现成为了交通管制必不可少的有力武器。汽车牌照的识别系统在公共安全,交通管理,及相关军事部门有着重要的应用价值。它是一个基于数字图像处理和字符识别的智能化交通管理系统,该系统先通过图像采集,再对图像进行处理以克服图像干扰,改善识别效果,而后进行二值化,归一化等处理,最后进行识别。车牌识别系统使得车辆管理更趋于数字化,网络化,大大提高了交通管理的有效性与方便性。车牌识别系统作为整个智能交通系统的一部分,其重要性不言而喻。 车牌识别是一项涉及到数字图像处理、计算机视觉、模式识别、人工智能等多门学科的技术,它在交通监视和控制中占有很重要的地位,已成为现代交通工程领域中研究的重点和热点之一。该项技术应用前景广泛,例如用在自动收费系统、不停车缴费、失窃车辆的查寻、停车场车辆管理、特殊部门车辆的出入控制

数字图像处理车牌识别课程设计matlab实现附源代码

基于matlab的车牌识别系统 一、目的与要求 目的:利用matlab实现车牌识别系统,熟悉matlab应用软件的基础知识,了解了基本程序设计方法,利用其解决数字信号处理的实际应用问题,从而加深对理论知识的掌握,并把所学的知识系统、高效的贯穿到实践中来,避免理论与实践的脱离,巩固理论课上知识的同时,加强实践能力的提高,理论联系实践,提高自身的动手能力。同时不断的调试程序也提高了自己独立编程水平,并在实践中不断完善理论基础,有助于自身综合能力的提高。 要求: 1.理解各种图像处理方法确切意义。 2.独立进行方案的制定,系统结构设计要合理。 3.在程序开发时,则必须清楚主要实现函数的目的和作用,需要在程序书写时说明做适当的注释。如果使用matlab来进行开发,要理解每个函数的具体意义和适用范围,在写课设报告时,必须要将主要函数的功能和参数做详细的说明。 4、通过多幅不同形式的图像来检测该系统的稳定性和正确性。 二、设计的内容 学习MATLAB程序设计,利用MATLAB函数功能,设计和实现通过设计一个车牌识别系统。车牌识别系统的基本工作原理为:将手机拍摄到的包含车辆牌照的图像输入到计算机中进行预处理,再对牌照进行搜索、检测、定位,并分割出包含牌照字符的矩形区域,然后对牌照字符进行二值化并将其分割为单个字符,然后将其逐个与创建的字符模板中的字符进行匹配,匹配成功则输出,最终匹配结束则输出则为车牌号码的数字。车牌识别系统的基本工作原理图如图1所下所示:

三、总体方案设计 车辆牌照识别整个系统主要是由车牌定位和字符分割识别两部分组成,其中车牌定位又可以分为图像预处理及边缘提取模块和牌照的定位及分割模块;字符识别可以分为字符分割和单个字符识别两个模块。 为了用于牌照的分割和牌照字符的识别,原始图象应具有适当的亮度,较大的对比度和清晰可辩的牌照图象。但由于是采用智能手机在开放的户外环境拍照,加之车辆牌照的整洁度、自然光照条件、拍摄时摄像机与牌照的矩离等因素的影响,牌照图象可能出现模糊、歪斜和缺损等严重缺陷,因此需要对原始图象进行识别前的预处理。 牌照的定位和分割是牌照识别系统的关键技术之一,其主要目的是在经图象预处理后的原始灰度图象中确定牌照的具体位置,并将包含牌照字符的一块子图象从整个图象中分割出来,供字符识别子系统识别之用,分割的准确与否直接关系到整个牌照字符识别系统的识别率。 由于拍摄时的光照条件、牌照的整洁程度的影响,和摄像机的焦距调整、镜头的光学畸变所产生的噪声都会不同程度地造成牌照字符的边界模糊、细节不清、笔划断开或粗细不均,加上牌照上的污斑等缺陷,致使字符提取困难,进而影响字符识别的准确性。因此,需要将拍出的车牌进行处理,在这个过程中,我采用画图工具,将汽车图像的车牌部分进行裁剪,并将车牌的蓝色部分过亮的地方颜色加深,还将车牌中的一个白色的原点抹去,另外还将车牌上的铆钉使用车牌的蓝色背景覆盖,这样分割出的字符更加准确。 车牌识别的最终目的就是对车牌上的文字进行识别。主要应用的为模板匹配方法。 因为系统运行的过程中,主要进行的都是图像处理,在这个过程中要进行大量的数据处理,所以处理器和内存要求比较高,CPU要求主频在600HZ及以上,内存在128MB 及以上。系统可以运行于Windows7、Windows2000或者Windows XP操作系统下,程序调试时使用matlabR2011a。 四、各个功能模块的主要实现程序 (一)首先介绍代码中主要的函数功能及用法:

仪器仪表数字图像的识别及其应用

摘要:本文针对仪器仪表应用环境的实际情况,设计了数字图像识别硬件平台,采用STC12LE5A60S2单片机驱动图像传感器OV7670采集图像,可减少由人为因素或传感器干扰引起的数据错误,省去采集卡,节省了成本。通过无线通信,成功地将数字图像识别技术应用到了检测环境中。经过试验,证明了系统的稳定性。 关键词:图像采集;无线通信;STC12LE5A60S2;OV7670引言 目前,仪器仪表被广泛地应用于各行各业的测量系统中。但是,由于某些仪器仪表只是通过LCD、LED数码管或者表盘来显示数值,并没有提供数据传送的接口,因此很难实现数据的自动采集以及保证数据的实时性和准确性,难以满足对测量系统工作自动化的要求[1]。现如今,随着科学技术的不断进步,对测量系统的管理也从人工监管方式逐步向自动管理方式转变[2]。为了提高系统的工作效率,需要对测量系统所采集的数据进行实时监控,控制中心要快速、准确、自动获取所需数值,这是急需解决的问题。 为了使系统能够很好地实现控制功能,笔者设计出基于数字图像的仪器仪表读数识别系统。该系统利用单片机控制图像传感器自动读取仪器仪表的数字图像,经过图像处理和图像识别技术,将识别结果通过无线网络传输,传送至控制中心,由控制中心对采集数据进行综合管理,从而真正实现数据的统一管理和对系统控制的自动化。 数字图像识别系统 仪器仪表数字图像采集系统主要组成部分有单片机、图像传感器、LCD显示器、无线收发模块以及数据存储器,系统功能框图如图1所示。单片机作为系统的控制核心,

控制图像传感器采集仪器仪表数字图像,将仪器仪表图像数据存储在扩展的外部数据存储器中,利用数字图像处理和模式识别技术读取仪器仪表数字,通过无线收发模块将仪器仪表数字发送到控制中心,控制中心可以直观地显示所采集的数据并对数据进行统一管理。 图像采集电路 本设计中,仪器仪表图像数据采集模块选用的图像传感器是美国OmniVision公司的彩色/黑白CMOS图像传感器OV7670,该传感器可以通过I2C总线进行对其内部寄存器进行配置,使得输出数据速率、格式都可以得到改变,且输出数据已经做完分离,处理起来相对也比较容易[3~4]。基于功能的实现和价格两方面的考虑,本设计最终决定选取该型号图像传感器作为图像数据采集的核心器件。 由于OV7670图像传感器的工作电压为2.45V到3V,对外部工作时钟频率在 10MHz到48MHz,因此控制芯片选用宏晶科技的单时钟/机器周期的 STC12LE5A60S2单片机。该单片机工作电压在2.2V到3.6V,能够和OV7670图像传感器理想匹配;工作频率在0~35MHz,且内部含有波特率发生器,最大可以产生12MHz的方波[5~6],该信号可以作为OV7670图像传感器的外部工作时钟,也满足了OV7670图像传感器对工作时钟频率的要求。图像采集硬件电路图如图2所示。 图像传感器的SDA和SCL分别为内部寄存器配置数据线和时钟线,单片机通过 P1.2、P1.3模拟I2C总线对图像传感器内部寄存器进行配置,使得图像数据输出为QVGA格式,在QVGA的基础之上再次对输出数据进行水平、垂直方向分别8抽样,使得最终输出为像素为60×80;帧同步输出信号VSYNC引脚接入单片机P3.2口,由P3.2引脚捕捉该信号,当捕捉到帧同步输出信号时,开始采集仪表图像数据,图像有效数据是通过单片机对有效像素信号捕捉获取的,有效像素信号是指图像传感器像素时钟信号PCLK接74HC74二分频后与行同步信号HREF经过与非门的信号;主函数中对像素时钟信号PCLK进行捕捉,在该信号有效时,选通图像采集数据控制线,将图像保存在缓存,然后使图像数据线无效,将缓存数据存储到62LV256存储器中,这样就得到了一个像素点的灰度值;行同步信号HREF接入单片机定时器T0中断,当单片机捕

基于Matlab的数字图像处理系统设计要点

论文(设计)题目: 基于MATLAB的数字图像处理系统设计 姓名宋立涛 学号201211867 学院信息学院 专业电子与通信工程 年级2012级 2013年6月16日

基于MATLAB的数字图像处理系统设计 摘要 MATLAB 作为国内外流行的数字计算软件,具有强大的图像处理功能,界面简洁,操作直观,容易上手,而且是图像处理系统的理想开发工具。 笔者阐述了一种基于MATLAB的数字图像处理系统设计,其中包括图像处理领域的大部分算法,运用MATLAB 的图像处理工具箱对算法进行了实现,论述了利用系统进行图像显示、图形表换及图像处理过程,系统支持索引图像、灰度图像、二值图像、RGB 图像等图像类型;支持BMP、GIF、JPEG、TIFF、PNG 等图像文件格式的读,写和显示。 上述功能均是在MA TLAB 语言的基础上,编写代码实现的。这些功能在日常生活中有很强的应用价值,对于运算量大、过程复杂、速度慢的功能,利用MATLAB 可以既能快速得到数据结果,又能得到比较直观的图示。 关键词:MATLAB 数字图像处理图像处理工具箱图像变换

第一章绪论 1.1 研究目的及意义 图像信息是人类获得外界信息的主要来源,近代科学研究、军事技术、工农业生产、医学、气象及天文学等领域中,人们越来越多地利用图像信息来认识和判断事物,解决实际问题,由此可见图像信息的重要性,数字图像处理技术将会伴随着未来信息领域技术的发展,更加深入到生产和科研活动中,成为人类生产和生活中必不可少的内容。 MATLAB 软件不断吸收各学科领域权威人士所编写的实用程序,经过多年的逐步发展与不断完善,是近几年来在国内外广泛流行的一种可视化科学计算软件。MATLAB 语言是一种面向科学与工程计算的高级语言,允许用数学形式的语言来编写程序,比Basic、Fortan、C 等高级语言更加接近我们书写计算公式的思维方式,用MATLAB 编写程序犹如在演算纸上排列出公式与求解问题一样。它编写简单、编程效率高并且通俗易懂。 1.2 国内外研究现状 1.2.1 国内研究现状 国内在此领域的研究中具有代表性的是清华大学研制的数字图像处理实验开发系统TDB-IDK 和南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件。 TDB-IDK 系列产品是一款基于TMS320C6000 DSP 数字信号处理器的高级视频和图像系统,也是一套DSP 的完整的视频、图像解决方案,该系统适合院校、研究所和企业进行视频、图像方面的实验与开发。该软件能够完成图像采集输入程序、图像输出程序、图像基本算法程序。可实现对图像信号的实时分析,图像数据相对DSP独立方便开发人员对图像进行处理,该产品融合DSP 和FPGA/CPLD 两个高端技术,可以根据用户的具体需求合理改动,可以分析黑白和彩色信号,可以完成图形显示功能。 南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件可实现数字图像的采集、传输与处理。可利用软件及图像采集与传输设备,采集图像并实现点对点的数字图像传输,可以观察理解多种图像处理技术的效果和差别,

相关主题