搜档网
当前位置:搜档网 › 函数的奇偶性的经典总结汇编

函数的奇偶性的经典总结汇编

函数的奇偶性的经典总结汇编
函数的奇偶性的经典总结汇编

x

x x f 1)(+

=1

)(2+=

x x x f x

x f 1)(=

函数的奇偶性

一、函数奇偶性的基本概念

1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,

0)()(=--x f x f ,那么函数()x f 就叫做偶函数。

2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-,

0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。

注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及)

()

(x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。

x

x x f +=2)(,(2)

x x x f -=3)( (3)

()()()R x x f x f x G ∈--=,(4)

(5)x x x f cos )(= (6)x x x f sin )(= (7) x

x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。

(2)常见的奇函数有:x x f =)(,3

)(x x f =,x x f sin )(=, (3)常见的奇函数有:2

)(x x f =,x x f =)(,x x f cos )(=

(4)若()x f 、()x g 都是偶函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时,

)

()

(x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时,

)

()

(x g x f 是偶函数。

(6)常函数()()为常数c c x f =是偶函数,()f x =0既是偶函数又是奇函数。

(7)在公共定义域内偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数和、差仍为奇函数;奇(偶)数个奇函数积、商(分母不为零)为奇(偶)函数;一个奇函数与一个偶函数的积为奇函数.(8)对于复合函数()()[]x g f x F =;若()x g 为偶函数, ()f x 为奇(偶)函数,则()x F 都为偶函数;若()x g 为奇函数,()x f 为奇函数,则()x F 为奇函数;若()x g 为奇函数,()x f 为偶函数,则()x F 为偶函数.

题型二 三次函数奇偶性的判断

已知函数d cx bx ax x f +++=2

3

)(,证明:(1)当0==c a 时,)(x f 是偶函数 (2)当0==d b 时,)(x f 是奇函数

提示:通过定义来确定三次函数奇偶性中的常见题型,如c bx ax x f ++=2

)(,当0=b ,)(x f 是偶函数;当0==c a ,)(x f 是奇函数。

题型三 利用函数奇偶性的定义来确定函数中的参数值

1函数()23f x ax bx a b =+++是偶函数,定义域为[]1 2a a -,

,则a b += 3

1

. 2设2

()2f x ax bx =++是定义在[]1,2a +上的偶函数,则()f x 的值域是 []10,2- . 3 已知)

)(1(sin )(a x x x

x f +-=

是奇函数,则a 的值为 1

4已知)ln(sin )(2a x x x x f ++=是偶函数,则a 的值为 1

提示:(1)上述题型的思路是用函数奇偶性的定义,)()(),()(x f x f x f x f -=-=-。 (2)因为是填空题,所以还可以用)1()1(),1()1(f f f f =--=-。

(3)还可以用奇偶性的性质,如奇函数乘以奇函数是偶函数,奇函数乘以偶函数是奇函数等。 题型四 利用函数奇偶性的对称

1下列函数中为偶函数的是( B )

A .2sin y x x = x y =

B .2cos y x x =

C .ln y x =

D .2x

y -=

2下列函数中,既不是奇函数,也不是偶函数的是A A .x

e x y += B .x x y 1+

= C .x x

y 2

12+= D .21x y += 3下列函数中,为偶函数的是( C ) A .1y x =+ B .1

y x

= C .4y x = D .y x = 4函数1

()f x x x

=

-的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称

5已知函数)1(+x f 是R 上的奇函数,且4)1(=-f ,则)3(f =-4 6已知函数)2(+x f 是R 上的偶函数,则3)3(-=-f ,则)7(f =-3

提示:(1)上述题型的思路是用函数奇偶性的定义,)()(),()(x f x f x f x f -=-=-。 (2)奇函数关于原点对称,偶函数的图像关于y 轴对称。 (3)在原点有定义的奇函数必有0)0(=f 。

(4)已知函数)(t x f +是R 上的奇函数,则)(x f 关于点)0,(t 对称。 (5)已知)(t x f +是偶函数,则)(x f 关于直线t x =对称。 题型五 奇偶函数中的分段问题

1设()f x 为定义在R 上的奇函数,当0x ≥时,()22x

f x x b =++(b 为常数),则(1)f -=-3 2已知()f x 是奇函数,且当0x >时,()2f x x x =-,求0x <时,()f x 的表达式。

2)(+=x x x f

3已知函数()f x 是定义在R 上的奇函数,当0≥x 时,2

3

2)(x x x f -=,则)3(-f =-45 4已知()f x 是偶函数,当0≥x 时,x x x f 2)(2

+=,求)4(-f 24

5设偶函数()f x 满足)0(42)(≥-=x x f x

,则(){}

20x f x ->={|04}x x x <>或

提示:(1)已知奇函数)(x f ,当0≥x ,)()(x g x f =,则当0

1已知函数2)(3

+=ax x f ,求)2()2(f f +-的和为4 2已知753()6f x x bx cx dx =-+++,且(3)12f -=,则(3)f =0 3已知8)(35-++=bx ax x x f ,10)2(=-f ,)2(f =_-26__

4已知函数()f x =221

1x x x +++,若3

2)(=a f ,则=

-)(a f ( 43 ) 提示:已知)(x f 满足,t x g x f +=)()(,其中)(x g 是奇函数,则有t a f a f 2)()(=-+。 题型七 函数奇偶性的结合性质

1设()f x 、()g x 是R 上的函数,且()f x 是奇函数,()g x 是偶函数,则结论正确的是

A .()f x ()g x 是偶函数

B .|()f x |()g x 是奇函数

C .()f x |()g x |是奇函数

D .|()f x ()g x |是奇函数

2设函数()f x 和()g x 分别是R 上的偶函数和奇函数,则下列结论恒成立的是 A .)()(x g x f +是偶函 B .)()(x g x f -是奇函数 C .)()(x g x f +|是偶函数 D .)()(x g x f -|是奇函数

3设函数()f x 与()g x 的定义域是x R ∈且1x ≠±,()f x 是偶函数, ()g x 是奇函数,且

1()()1f x g x x +=

-,求()f x 和()g x 的解析式, 21()1f x x =-,2()1

x g x x =-。 提示:(1)已知)(x f 是奇函数,则)(x f 是偶函数。

(2)已知)(x h 是R 上的函数,且)(x f 也是R 上的偶函数和()g x 也是R 上的奇函数,满足

)()()(x g x f x h +=,则有2)()()(x h x h x g +-=

,2

)

()()(x h x h x f --=。

题型八 函数的奇偶性与单调性

1下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是( )

A .1y x

=

B .x y e -=

C .2

1y x =-+ D .lg y x = 2下列函数中,既是偶函数,又在区间(1,2)内是增函数的为 (A )cos 2y x =,x ∈R (B )x y 2log =,x ∈R 且x ≠0

(C )2

x x e e y --=,x ∈R (D )3

1y x =+,x ∈R

3设()sin f x x x =-,则()f x =( B )

A 既是奇函数又是减函数

B 既是奇函数又是增函数

C 有零点的减函数

D 没有零点的奇函数 4设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()

0f x f x x

--<的解集为

( (10)

(01)-,, )

5已知偶函数()f x 在[)0,+∞单调递减,()20f =,若()10f x ->,则x 的取值范围是)3,1(-. 6已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1

()3f 的x 取值范围是)3

2,31( 提示:(1)已知)(x f 是奇函数,且在)0,(-∞上是增(减)函数,则在),0(+∞上也是增(减)函数。

(2)已知)(x f 是偶函数,且在)0,(-∞上是增(减)函数,则在),0(+∞上也是减(增)函数。 (3)已知)(x f 是偶函数,必有)()()(x f x f x f ==-。 题型九 函数的奇偶性的综合问题

1已知函数()f x ,当,x y R ∈时,恒)()()(y f x f y x f +=+,且()0,0x f x ><时,又

()1

12

f =-(1)求证:()f x 是奇函数;(2)求证:)(x f 在R 上是减函数;(3)求)(x f 在

区间[]2,6-上的最值。最大值1,最小值-3。

2设()上递增,上是偶函数,在区间在0R )(∞-x f ,且有()()

322122

2+-<++a a f a a f ,求a

的取值范围。),3

2

(+∞

练习题

一、判断下列函数的奇偶性

(1) 1

)(2

+=

x x x f (2)1)(2

-=x x f (3)()())1,1(,111-∈-+-=x x x x x f (4)2)(2--=x x x f (5)R x x f ∈=,1)((5)]2,2[,0)(-∈=x x f (6)x e x f ln )(=

(7)x x x f -=3

)( (8)x x x f tan sin )(+=(9)1)(2

+=x x f ,(10)1)(+=x x f ,(11)x

x

e

e x

f -+=)(,(12)x x x f sin )(= (13) x x x f +=2)( ,(14)x x x f cos )(2

=,

(15)x x f 2)(=,(16))1ln()(2x x x x f -+=,(17)2

1

()ln(1||)1f x x x =+-+ 二、利用函数的奇偶性求参数的值

1若函数()2

(1)23f x m x mx =-++是偶函数,求m 的值。0

2若函数4)1()(23-++++=c bx x a x x f 是奇函数,求5)(2

-+c a 的值。4

3函数x x b ax x f +++=2

3

)1()(是奇函数,定义域为),1(a b -,则2

)2(++b a 的值是 9 . 4若1()21x f x a

=

+-是奇函数,则a = 1

2

5若函数a x x x f +-=2

)(为偶函数,则实数=a ___0_____.

6设函数))(()(R x ae e x x f x

x

∈+=-是偶函数,则实数=a _______-1________

7若函数)2(log )(2

2a x x x f a

++=是奇函数,则a = 2

2 .

8若(2)()

()x x m f x x

++=

为奇函数,则实数m =__-2____.

9若函数)ln()(2x a x x x f ++=为偶函数,则=a 1

10若()(

)

ax e

x f x

++=1ln 3是偶函数,则=a ____3

2

-________.

三、 函数奇偶性定义的应用 1函数y=2

2log 2x

y x

-=+的图像A (A )关于原点对称 (B )关于直线y x =-对称(C )关于y 轴对称(D )关于直线y x =对称 2已知函数()1f x =-2

x ,x R ∈则 (B )

A. ()f x -=-()f x

B.()f x 为偶函数

C.()()0f x f x -+=

D.()f x 不是偶函数 3若()f x 是偶函数,则()kf x (k 为常数) ( A ) A.是偶函数 B.不是偶函数 C.是常数函数 D.无法确定是不是偶函数 4函数()f x =??

?<->0

,1.

0,1x x 则()f x 为 ( B )

A.偶函数

B.奇函数

C.既是奇函数又是偶函数

D.既不是奇函数又不是偶函数 5已知()f x 为奇函数,则()f x x -为 ( A ) A 奇函数 B.偶函数 C.既不是奇函数又不是偶函数 D.既是奇函数又是偶函数 6已知点()1,3是偶函数()f x 图像上一点,则()1f -等(B ) A.-3 B.3 C.1 D.-1

7若点()1,3-在奇函数()y f x =的图象上,则()1f 等于(D ) A.0 B.-1 C.3 D.-3

8已知2

)(x x f y +=是奇函数,且1)1(=f .若2)()(+=x f x g ,则=-)1(g ____-1___ . 9设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=,在R 上一定是( A ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数 10设()f x 是R 上的奇函数,且)(x f y =的图象关于直线2

1=x 对称,则

=++++)5()4()3()2()1(f f f f f 0

11已知偶函数()f x 的图像关于直线2x =对称,3)3(=f ,则(1)f -=___3____. 12设函数()x f 对于任意,x y R ∈都有()()()f x y f x f y +=+,求证:()x f 是奇函数。

13已知t R ∈,函数2,0,

()(),0,

x t x f x g x x ?+≥=?

14已知奇函数()f x 的,且方程0)(=x f 仅有三个根321,,x x x ,则321x x x ++的值 0 15 设函数()x f 是R 上为奇函数,且)2()()2(f x f x f +=+,在)5(f 的值2

5 16已知偶函数)0(42)(≥-=x x f x ,求03)(4)(2

=+-x f x f 的个数7

17 已知偶函数)0(64)(2≥+-=x x x x f ,求048)(44)(12)(2

3

=-+-x f x f x f 的个数9

四、 函数奇偶性的性质

1已知)3(+x f 是偶函数,且2)0(=f ,则3)6(2-f 的值为1 2已知2)(+=x x f ,则)3()3(f f +-的值4

3已知3

()4f x ax bx =+-其中,a b 为常数,若(2)2f -=,则(2)f 的值等于( -10 ) 4已知2)(-=ax x f ,则)3()3(f f +-的值 -4

5已知2)(-+=x b ax x f ,则)31

(ln )3(ln f f +的值 -4 6已知3sin )(+-+=x c x b ax x f ,则)3

1

(ln )3(ln f f +的值 6

7已知函数())

ln

2f x x =+,则()1lg 5lg 5f f ??

+= ???

( 4 )

8已知函数())

()1ln

31,.lg 2lg 2f x x f f ??

=++= ???

则2

9已知函数3

()sin 4(,)f x ax b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =3

10设函数1

sin )1()(2

2+++=x x

x x f 的最大值为M ,最小值为m ,则m M +=_2___ 11已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,3

2

()2f x x x =+,则(2)f = 11在R 上的奇函数()f x 和偶函数()g x 满足2)()(+-=+-x

x

a

a x g x f (a >0,且0a ≠).若

()2g a =,则()2f =

15

4

12若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()x

f x

g x e -=,则有( D )

A .(2)(3)(0)f f g <<

B .

(0)(3)(2)g f f << C .(2)(0)(3)f g f << D .(0)(2)(3)g f f <<

13若函数()f x 为R 上的偶函数,且当010x <<时,()ln f x x =,则()()

2f e f e -+= 3 . 14函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有

)()1()1(x f x x xf +=+,则)2

5

(f 的值是0

15函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有

)()1()1(x f x x xf +=+,则))2

5

((f f 的值是0

16若函数2()1x a f x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为___2()1

x

f x x =+_____.

17设()f x 是R 上的奇函数,且当[)0,x ∈+∞时,()(1)f x x =+

,则当(,0)x ∈-∞时

()f x =__(1x _

18已知定义在R 上的奇函数()f x ,当0x >时,1||)(2

-+=x x x f ,那么0x <时,()f x =

12+--x x .

19函数(

31

()ln 1

x x e f x x e +=++在区间[],(0)k k k ->上的最大值为M ,最小值为m ,则=+m M 4 .

20奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( 1 ) 21设定义在R 上的奇函数,满足)2()(+=x f x f ,那么)2017()2()1(f f f +++ 的值0 22已知函数()f x 是R 上的偶函数,当0≥x ,都有)()2(x f x f =+,且当)2,0[∈x 时,

)1(log )(2+=x x f ,则有)2017()2016(f f +-的值 1

五、函数奇偶性和单调性的应用

1已知函数2

()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是 [)0,+∞

2设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()

0f x f x x

--<的解集为

( (1

0)(01)-,, )

3已知函数1

()3()3

x x

f x =-,则()f x

(A )是偶函数,且在R 上是增函数(B )是奇函数,且在R 上是增函数 (C )是偶函数,且在R 上是减函数(D )是奇函数,且在R 上是减函数

4已知奇函数()f x 在R 上是增函数.若0.8221

(log ),(log 4.1),(2)5

a f

b f

c f =-==,则,,a b c 的大小关系为

5已知()f x 是定义在R 上的偶函数,且(4)(2)f x f x +=-.若当[3,0]x ∈- 时,()6x

f x -=, 则(919)f = .

6已知偶函数()f x 在[)0,+∞单调递减,()20f =,若()10f x ->,则x 的取值范围是)3,1(-. 7已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是)3

2,31( 8若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( D ) A )2()1()23(f f f <-<- B .)

2()23

()1(f f f <-<- C .)23()1()2(-<-

3()2(-<-

9设偶函数()f x 满足3

()8(0)f x x x =-≥,则{|(2)0}x f x ->= {|04}x x x <>或 10已知函数()f x 是定义在R 上的奇函数,且在区间(),-∞+∞上单调递减,若

()()3110f x f ++≥,则x 的取值范围是__),3

2

(+∞-__.

11已知)(x f 是定义在R 上的偶函数,且在区间)0,(-∞上单调递增,若实数a 满足

)2()2(|1|->-f f a ,则a 的取值范围是( )2

3

,21( )

12已知定义在R 上的函数()2

1x m

f x -=- (m 为实数)为偶函数,记

()()0.52(log 3),log 5,2a f b f c f m === ,则,,a b c 的大小关系为c a b <<

13)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使得0)(

14已知函数)(x f 是偶函数,在),0[+∞上单调递减,则)1(2

x f -的单调递增区间是

]1,0[]1,( --∞

15 已知函数)4(+x f 是偶函数,在),4(+∞上单调递减,则))54((log 2

2++-x x f 的单调递减区间为)4,1(-

16已知)(),(x g x f 都是奇函数,如果0)(>x f 的解集是)10,4(,0)(>x g 的解集为)5,2(,则

0)()(>?x g x f 的解集为)5,4()4,5( --

17 已知函数)(x f 是R 上的偶函数,且在),0[+∞上是增函数,令

)7

5(tan ),75(cos ),72(sin

π

ππf c f b f a ===,则c b a ,,的大小,b a c >> 18已知函数)(x f 是R 上的奇函数,若当),0(+∞∈x 时,)4lg()(+=x x f ,则满足0)(>x f 的解集,),5()0,5(+∞-

19设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ?<的解集是( {}

|303x x x <-<<或 )

20设()f x 是定义在上R 的偶函数,且当0x ≥时,()2x

f x =.若对任意的[],2x a a ∈+,不

等式()()2

f x a f

x +≥恒成立,则实数a 的取值范围是 2

3

-

≤a . 21函数()f x 是R 上的偶函数,且在),0[+∞上单调递增,则下列各式成立的是( B ) A .)1()0()2(f f f >>- B .)0()1()2(f f f >->- C .)2()0()1(->>f f f D .)0()2()1(f f f >-> 22 R 上的偶函数()f x 满足:对任意的1212,[0,)()x x x x ∈+∞≠,有2121

()()

0f x f x x x -<-.则A.

(A )(3)(2)(1)f f f <-< (B) (1)(2)(3)f f f <-<

(C) (2)(1)(3)f f f -<< (D) (3)(1)(2)f f f <<- 23设函数()()()ln 1ln 1f x x x =+--,则()f x 是( A )

A .奇函数,且在)1,0(上是增函数

B .奇函数,且在)1,0(上是减函数

C .偶函数,且在)1,0(上是增函数

D .偶函数,且在)1,0(上是减函数 24已知函数()ln ln(2)f x x x =+-,则

A .()f x 在(0,2)单调递增

B .()f x 在(0,2)单调递减

C .y =()f x 的图像关于直线x =1对称

D .y =()f x 的图像关于点(1,0)对称

25函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是

26函数()()0f x x ≠是奇函数,且当()x ∈+∞0,时是增函数,若()10f =,求不等 式102f x ?

?

-

< ???

的解集。 27已知()f x 是奇函数并且是R 上的单调函数,若函数2

(2)(2)y f x f x m =++--只有一个

零点,则函数4

()(1)1

g x mx x x =+

>-的最小值是(5 ) 28已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间]2,0[上是增函数,若方程

)0()(>=m m x f 在区间

[]

8,8-上有四个不同的根

1234,,,x x x x ,则

1234_________.x x x x +++=-8

29 已知函数x x x f 4)(3

-=,求0)2(>-x f 的解集 ),4()2,0(+∞

30已知R 上的奇函数)0(44)(2

≥++-=x b x x x f ,求x x x f 83)(2

-≤的解集为 六、函数奇偶性综合应用

1已知函数()f x 是定义在R 上的奇函数,当0≥x 时,)32(2

1

)(222a a x a x x f --+-=

若R x ∈?,)()1(x f x f ≤-,则实数a 的取值范围为]6

6,66[- 2已知函数2

23

()m

m f x x -++= ()m Z ∈是偶函数,且()f x 在(0,)+∞上单调递增.

(Ⅰ)求m 的值,并确定()f x 的解析式; (Ⅱ)2()log [32()]g x x f x =--,求()g x 的定义域和值域. 答案:(Ⅰ)1m =,()2

f x x =;(Ⅱ)(],2-∞

3已知函数()f x 的定义域为()1,1-,且同时满足下列条件:

(1)()f x 是奇函数;(2)()f x 在定义域上单调递减;(3)2

(1)(1)0,f a f a -+-<求a 的取值范围。01a <<

4已知函数()y f x =的定义域为R ,且对任意,a b R ∈,都有()()()f a b f a f b +=+,且当

0x >时,()0f x <恒成立,证明:(1)函数()y f x =是R 上的减函数;(2)函数()

y f x =是奇函数。

5已知定义在R 上的奇函数)(x f 满足)()4(x f x f -=-.

(1)求)2012(f 的值;0 (2)求证:函数)(x f 的图像关于直线2=x 对称;

(3)若)(x f 在区间[0,2]上是增函数,试比较)80(),11(),25(f f f -的大小.)11()80()25(f f f <<-

6已知函数4()2

x x

n g x -=是奇函数,4()log (41)x

f x mx =++是偶函数. (1)求m n +的值;12

m n +=

(2)设1

()()2

h x f x x =+,若4()(log (21

))g x h a >+对任意[1,]x ∈+∞恒成立 ,求实数a 的

取值范围.1(,3)2

-

7已知函数31()log 1x

f x x

-=+.

(1)求函数()f x 的定义域;(1,1)- (2)判断函数()f x 的奇偶性; (3)当11[,]22

x ∈-时,()()g x f x =,求函数()g x 的值域.[1,1]-

8已知函数12()2x x b

f x a

+-+=+是定义域为R 的奇函数.

(1)求a ,b 的值;2a =,1b =

(2)若对任意t R ∈,不等式2

2

(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围.1

3

k <-

9已知定义域为R 的函数()122x

x b f x a

+-=+是奇函数.

(1)求实数 a b ,的值;2

1a b =??

=?

(2)判断()f x 在() -∞+∞,上的单调性并证明;

(3)若()()33920x x x f k f ?+-+>对任意1x ≥恒成立,求k 的取值范围.4

3

k <

10已知函数()()()()3

2

436f x x m x mx n x R =+--+-∈的图像关于原点对称(),m n R ∈.

(1)求,m n 的值;4,6m n ==

(2)若函数()()()

2F x f x ax b =-+在区间[]1,2上为减函数,求实数a 的取值范围.[)0,+∞

11已知定义在R 上的函数()22x x b f x a

-+是奇函数.

⑴求a b ,的值;1a b ==

⑵若对任意的t R ∈,不等式()()

22220f t t f t k -+-<恒成立,求实数k 的取值范围13?

?-∞- ??

?,

12设a 为实数,函数1||)(2

+-+=a x x x f ,R x ∈

(1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值。

13 已知函数c

bx ax x f ++=1

)(2(N c b a ∈,,)是奇函数,3)2(,2)1(<=f f ,且)(x f 在)

,1[+∞上是增函数,

(1)求c b a ,,的值;(2)当)0,1[-∈x 时,讨论函数的单调性。

14函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( D )

(A) ()f x 是偶函数 (B) ()f x 是奇函数 (C) ()(2)f x f x =+ (D) (3)f x +是奇函数

高中数学解题方法谈:函数奇偶性的判定方法

函数奇偶性的判定方法 函数奇偶性的判定方法较多,下面把常见的判定方法分类加以研究分析. 1.定义域判定法 例1 判定()(1)2f x x x =-- 的奇偶性. 解:要使函数有意义,须20x -≥,解得2x ≥, 定义域不关于原点对称, ∴原函数是非奇非偶函数. 评注:用定义域虽不能判定一个函数是奇函数还是偶函数,但可以通过定义域不关于原点对称,来否定一个函数的奇偶性. 2.定义判定法 例2 判断()f x x a x a =++-和奇偶性. 解: 函数()f x x a x a =++-的定义域为R ,且 ()()()()f a x a x a x a x a x a x a f x -=-++--=--+-+=-++=, ∴函数()f x 是偶函数. 评注:在定义域关于原点对称的前提下,可根据定义判定函数的奇偶性. 3.等价形式判定法 例3 判定2211 ()11x x f x x x ++-=+++的奇偶性. 解:()f x 的定义域为R ,关于原点对称,当0x =时,()0f x =, ∴图象过原点. 又0x ≠ 时,22 22 ()(1)(1)1()(1)(1)f x x x f x x x -+-+==-+--, (1)()f f x ∴-=-. 又(0)0f =,∴()f x 为奇函数. 评注:常用等价变形形式有:若()()0f x f x +-=或()1() f x f x -=-,则()f x 为奇函数;若()()0f x f x --=或 ()1() f x f x -=,则()f x 为偶函数(其中()0f x ≠). 4.性质判定法 例4 若0a >,()([])f x x a a ∈-,是奇函数,()() g x x ∈R 是偶函数,试判定()()()x f x g x ?= 的奇偶性.

基本初等函数专项训练经典题

一、简答题 1、设. (1)判断函数的奇偶性; (2)求函数的定义域和值域. 2、设函数 (Ⅰ)讨论的单调性; (Ⅱ)求在区间的最大值和最小值. 3、已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数. (1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范围; (2)解关于x的方程f(x)=|f′(x)|; (3)设函数g(x)=,求g(x)在x∈[2,4]时的最小值. 4、经市场调查,某旅游城市在过去的一个月内(以30天计),旅游人数f(t)(万人)与时间t(天)的函数关系近似满足f(t)=4+,人均消费g(t)(元)与时间t(天)的函数关系近似满足g(t)=115-|t-15|. (1)求该城市的旅游日收益w(t)(万元)与时间t(1≤t≤30,t∈N*)的函数关系式; (2)求该城市旅游日收益的最小值(万元). 5、某商场对A品牌的商品进行了市场调查,预计2012年从1月起前x个月顾客对A品牌的商品的需求总量P(x)件与月份x的近似关系是: P(x)=x(x+1)(41-2x)(x≤12且x∈N*)

(1)写出第x月的需求量f(x)的表达式; (2)若第x月的销售量g(x)= (单位:件),每件利润q(x)元与月份x的近似关系为:q(x)=,问:该商场销售A品牌商品,预计第几月的月利润达到最大值?月利润最大值是多少?(e6≈403) 6、已知函数f(x)=x2-(1+2a)x+a ln x(a为常数). (1)当a=-1时,求曲线y=f(x)在x=1处切线的方程; (2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间. 7、某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:资金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%. (1)若建立函数y=f(x)模型制定奖励方案,试用数学语言表述该公司对奖励函数f(x)模型的基本要求,并分析函数y=+2是否符合公司要求的奖励函数模型,并说明原因; (2)若该公司采用模型函数y=作为奖励函数模型,试确定最小的正整数a的值. 8、已知函数图象上一点P(2,f(2))处的切线方程为. (Ⅰ)求的值; (Ⅱ)若方程在内有两个不等实根,求的取值范围(其中为自然对数的底,); (Ⅲ)令,如果图象与轴交于,AB中点为,求 证:. 9、已知命题p:函数y=log a(1-2x)在定义域上单调递增;命题q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x 恒成立.若p∨q是真命题,求实数a的取值范围.

《函数的奇偶性与周期性》教案

教学过程 一、课堂导入 我们生活在美的世界中,有过许多对美的感受,请想一下有哪些美? 对于对称美,请想一下哪些事物给过你对称美的感觉呢? 生活中的美引入我们的数学领域中,它又是怎样的情况呢?若给它适当地建立直角坐标系,那么会发现什么特点? 数学中对称的形式也很多,这节课我们就来复习在坐标系中对称的函数

二、复习预习 1、复习单调性的概念 2、复习初中的轴对称和中心对称 3、预习奇偶性的概念 4、预习奇偶性的应用

三、知识讲解 考点1 函数的奇偶性 [探究] 1. 提示:定义域关于原点对称,必要不充分条件. 2.若f(x)是奇函数且在x=0处有定义,是否有f(0)=0?如果是偶函数呢? 提示:如果f(x)是奇函数时,f(0)=-f(0),则f(0)=0;如果f(x)是偶函数时,f(0)不一定为0,如f(x)=x2+1. 3.是否存在既是奇函数又是偶函数的函数?若有,有多少个? 提示:存在,如f(x)=0,定义域是关于原点对称的任意一个数集,这样的函数有无穷多个.

考点2 周期性 (1)周期函数: 对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y =f(x)为周期函数,称T为这个函数的周期. (2)最小正周期: 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.

四、例题精析 【例题1】 【题干】判断下列函数的奇偶性 (1)f(x)=lg 1-x 1+x ;(2)f(x)= ? ? ?x2+x(x>0), x2-x(x<0); (3)f(x)= lg(1-x2) |x2-2|-2 .

第招 如何判断函数的奇偶性

第11招 如何判断函数的奇偶性? 判断函数的奇偶性(有的还牵涉三角函数)是高考中常考的知识点,一般以选择题形式出现. 解法指导与经典范例 (一) 判断函数奇偶性的方法 1. 定义法 这是最常用的方法.其解法步骤如下:(1)确定函数的定义域是否是关于原点的对称区间.若不是,可判断该函数是非奇非偶函数.若是,再按下列步骤继续进行.(2)在定义域内任取x ,以-x 代换f(x)中的x 得f(-x).(3)依据定义得出结论. 注意:(1)既是奇函数又是偶函数的函数只能是f(x)=0. (2)若奇函数f(x)在x=0处有定义,则f(0)=0.(如例6证一) 【例1】函数 ()()是x x x x f +-? +=11( ). A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D0非奇非偶函数 解 (]()() 的奇偶性】判断函数【例原点对称的区间由于这定义域不是关于想)的定义域为函数得?????>+-<+=-≤<-≥+-00)(2. .1,19,1101122x x x x x x x f f x x x 解 当x<0时,-x>0,()()() ().)(22x f x x x x x f -=+-=-+--=-∴ 而当x>0时,-x<0,()()()()x f x x x x x f -=-=-+-=-∴22 ()()()()().,,00,为奇函数故都有对任意x f x f x f x =-+∞∞-∈∴ 【例3】2002.北京文三(22)已知f(x)是定义在R 上的不恒为零的函数,且对于任意的a 、b R ∈都满足:()()().a bf b af b a f +=? (1) 求f(0)、f(1)的值;(2)判断f(x)的奇偶性,并证明你的结论. 解(1)()()()()()()=?==?+?=?=111.00000000f f f f f f ()()1111f f ?+? ()f f ∴=,12(1)=0. (2)f(x)是奇函数.证明如下: ()()()[]()()()()().01.01,1211111=-∴=--=----=-?-=f f f f f f f 而 又 ()()()()()().,11是奇函数x f x f xf x f x f x f ∴-=-+-=?-=- 2. 利用定义的等价命题来判断 ()()()()()().00是偶函数是奇函数;x f x f x f x f x f x f ?=--?=-+ 或:当()()()()()() ().110是偶函数是奇函数;时, x f x f x f x f x f x f x f ?=-?-=-≠

(完整版)函数奇偶性知识点和经典题型归纳

函数奇偶性 知识梳理 1. 奇函数、偶函数的定义 (1)奇函数:设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有()()f x f x -=-, 则这个函数叫奇函数. (2)偶函数:设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有()()f x f x -=, 则这个函数叫做偶函数. (3)奇偶性:如果函数()f x 是奇函数或偶函数,那么我们就说函数()f x 具有奇偶性. (4)非奇非偶函数:无奇偶性的函数是非奇非偶函数. 注意:(1)奇函数若在0x =时有定义,则(0)0f =. (2)若()0f x =且()f x 的定义域关于原点对称,则()f x 既是奇函数又是偶函数. 2.奇(偶)函数的基本性质 (1)对称性:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)单调性:奇函数在其对称区间上的单调性相同,偶函数在其对称区间上的单调性相反. 3. 判断函数奇偶性的方法 (1)图像法 (2)定义法 ○ 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f(-x)与f(x)的关系; ○ 3 作出相应结论: 若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数; 若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 例题精讲 【例1】若函数2()f x ax bx =+是偶函数,求b 的值. 解:∵函数 f (x )=ax 2+bx 是偶函数, ∴f (-x )=f (x ).∴ax 2+bx= ax 2-bx. ∴2bx=0. ∴b =0. 【例3】已知函数21()f x x =在y 轴左边的图象如下图所示,画出它右边的图象. 题型一 判断函数的奇偶性 【例4】判断下列函数的奇偶性. (1)2()||(1)f x x x =+; (2)1()f x x x =;

最新函数的奇偶性的经典总结

x x x f 1)(+ =1 )(2+= x x x f x x f 1)(= 函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-, 0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-, 0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及) () (x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴ x x x f +=2)(,(2) x x x f -=3)( (3) ()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3 )(x x f =,x x f sin )(=, (3)常见的奇函数有:2 )(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时, ) () (x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时, ) () (x g x f 是偶函数。

《函数的单调性和奇偶性》经典例题

经典例题透析 类型一、函数的单调性的证明 1.证明函数上的单调性. 证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0 则 ∵x1>0,x2>0,∴∴上式<0,∴△y=f(x2)-f(x1)<0 ∴上递减. 总结升华: [1]证明函数单调性要求使用定义; [2]如何比较两个量的大小?(作差) [3]如何判断一个式子的符号?(对差适当变形) 举一反三: 【变式1】用定义证明函数上是减函数. 思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径. 证明:设x1,x2是区间上的任意实数,且x10 ∴x1f(x2) 上是减函数. 总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.

类型二、求函数的单调区间 2. 判断下列函数的单调区间; (1)y=x2-3|x|+2;(2) 解:(1)由图象对称性,画出草图 ∴f(x)在上递减,在上递减,在上递增. (2) ∴图象为 ∴f(x)在上递增. 举一反三: 【变式1】求下列函数的单调区间: (1)y=|x+1|;(2)(3). 解:(1)画出函数图象, ∴函数的减区间为,函数的增区间为(-1,+∞); (2)定义域为,其中u=2x-1为增函数,

在(-∞,0)与(0,+∞)为减函数,则上为减函数; (3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 总结升华: [1]数形结合利用图象判断函数单调区间; [2]关于二次函数单调区间问题,单调性变化的点与对称轴相关. [3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化→复合函数为增函数;内外层函数反向变化→复合函数为减函数. 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值) 3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小. 解:又f(x)在(0,+∞)上是减函数,则. 4. 求下列函数值域: (1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1); (2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2]. 思路点拨:(1)可应用函数的单调性;(2)数形结合. 解:(1)2个单位,再上移2个单位得到,如图 1)f(x)在[5,10]上单增,;

函数的奇偶性与周期性练习题

函数的奇偶性与周期性 1.奇函数f (x )的定义域为R ,若f (x +2)为偶函数,则f (1)=1,则f (8)+f (9)= ( ) A. -2 B.-1 C. 0 D. 1 2.在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π +=x y ,④)42tan(π -=x y 中,最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ 3.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 4.已知()f x 是定义在R 上的奇函数,且是以2为周期的周期函数,若当(]0,1x ∈时 2()1f x x =-,则7()2 f 的值为 A 34- B 34 C 12- D 12 5.下列函数为偶函数的是 A. sin y x = B. 3y x = C. x y e = D. y = 6.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5 ()2f -= (A) -12 (B)1 4- (C)14 (D)12 7.下列函数中,既是偶函数又在()0,+∞单调递增的函数是 (A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= 8.下列函数为偶函数的是() A.()1f x x =- B.()2f x x x =+ C.()22x x f x -=- D.()22x x f x -=+ 9.偶函数y=f(x)的图像关于直线x=2对称,f(3)=3,则f(-1)=_______. 10.函数)4)(()(-+=x a x x f 为偶函数,则实数a = . 11.已知()f x 为奇函数,()()9,(2)3,(2)g x f x g f =+-==则 .

函数的奇偶性与周期性

函数的奇偶性与周期性 1.函数的奇偶性 2.(1)周期函数 对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. (2)最小正周期 如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)若f (x )是定义在R 上的奇函数,则f (-x )+f (x )=0.(√) (2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×) (3)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.(√) (4)定义域关于原点对称是函数具有奇偶性的一个必要条件.(√) (5)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期.(√) (6)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.(√) (7)函数f (x )=0,x ∈(0,+∞)既是奇函数又是偶函数.(×) (8)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.(√) (9)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.(√) (10)若某函数的图象关于y 轴对称,则该函数为偶函数;若某函数的图象关于(0,0)对称,则该函数为奇函数.(√) 考点一 判断函数的奇偶性

奇偶性的典型例题

函数的奇偶性 一、关于函数的奇偶性的定义 定义说明:对于函数)(x f 的定义域内任意一个x : ⑴)()(x f x f =- ?)(x f 是偶函数; ⑵)()(x f x f -=-?)(x f 奇函数; 函数的定义域关于原点对称是函数为奇(偶)函数的必要不充分条件。 二、函数的奇偶性的几个性质 ①、对称性:奇(偶)函数的定义域关于原点对称; ②、整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立; ③、可逆性: )()(x f x f =- ?)(x f 是偶函数; )()(x f x f -=-?)(x f 奇函数; ④、等价性:)()(x f x f =-?0)()(=--x f x f )()(x f x f -=-?0)()(=+-x f x f ⑤、奇函数的图像关于原点对称,偶函数的图像关于y 轴对称; ⑥、可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、 非奇非偶函数。 三、函数的奇偶性的判断 判断函数的奇偶性大致有下列两种方法: 第一种方法:利用奇、偶函数的定义,主要考查)(x f 是否与)(x f -、)(x f 相等,判断步骤如下: ①、定义域是否关于原点对称; ②、数量关系)()(x f x f ±=-哪个成立; 例1:判断下列各函数是否具有奇偶性 ⑴、x x x f 2)(3+= ⑵、2 432)(x x x f += ⑶、1 )(2 3--=x x x x f ⑷、2)(x x f = []2,1-∈x

⑸、x x x f -+-=22)( ⑹、2211)(x x x f -+-= 解:⑴为奇函数 ⑵为偶函数 ⑶为非奇非偶函数 ⑷为非奇非偶函数 ⑸为非奇非偶函数 ⑹既是奇函数也是偶函数 注:教材中的解答过程中对定义域的判断忽略了。 例2:判断函数???<≥-=)0()0()(22x x x x x f 的奇偶性。 .)(),()() ()()()(,0,0) ()()(,0,0) (0)0(:22222为奇函数故总有有时即当有时即当解x f x f x f x f x x x f x x x f x x x f x x x f f =-∴-=--=-=->-<-=-=--=-<->-== 第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。 四、关于函数的奇偶性的几个命题的判定。 命题 1 函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分 条件。 此命题正确。如果函数的定义域不关于原点对称,那么函数一定是非奇非偶函数,这一点可以由奇偶性定义直接得出。 命题2 两个奇函数的和或差仍是奇函数;两个偶函数的和或差仍是偶函数。 此命题错误。一方面,如果这两个函数的定义域的交集是空集,那么它们的和或差没有定义;另一方面,两个奇函数的差或两个偶函数的差可能既是奇函数又是偶函数,如f(x)=x(x ∈〔-1,1〕),g(x)=x(x ∈〔-2,2〕),可以看出函数f(x)与g(x)都是定义域上的函数,它们的差只在区间〔-1,1〕上有定义且f(x)-g(x)=0,而在此区间上函数f(x)-g(x)既是奇函数又是偶函数。 命题3 f(x)是任意函数,那么|f(x)|与f(|x|)都是偶函数。 此命题错误。一方面,对于函数|f(x)|=? ??<-≥),0)((),(0)((),(x f x f x f x f 不能保证f(-x)=f(x)或f(-x)=-f(x);另一方面,对于一个任意函数f(x)而言,不能保证它的定义域关于原点对称。如果所给函数的定义域关于原点对称,那么函数f(|x|)是偶函数。 命题4 如果函数f(x)满足:|f(x)|=|f(-x)|,那么函数f(x)是奇函数或偶 函数。

函数的奇偶性与周期性 知识点与题型归纳

1.结合具体函数,了解函数奇偶性的含义. 2.会运用函数的图象理解和研究函数的奇偶性. 3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. ★备考知考情 1.对函数奇偶性的考查,主要涉及函数奇偶性的判断,利用奇偶函数图象的特点解决相关问题,利用函数奇偶性求函数值,根据函数奇偶性求参数值等. 2.常与函数的求值及其图象、单调性、对称性、零点等知识交汇命题. 3.多以选择题、填空题的形式出现. 一、知识梳理《名师一号》P18 注意: 研究函数奇偶性必须先求函数的定义域 知识点一函数的奇偶性的概念与图象特征 1.一般地,如果对于函数f(x)的定义域内任意一个x, 都有f(-x)=f(x),那么函数f(x)就叫做偶函数. 2.一般地,如果对于函数f(x)的定义域内任意一个x, 都有f(-x)=-f(x),那么函数f(x)就叫做奇函数. 1

2 3.奇函数的图象关于原点对称; 偶函数的图象关于y 轴对称. 知识点二 奇函数、偶函数的性质 1.奇函数在关于原点对称的区间上的单调性相同, 偶函数在关于原点对称的区间上的单调性相反. 2. 若f (x )是奇函数,且在x =0处有定义,则(0)0=f . 3. 若f (x )为偶函数,则()()(||)f x f x f x =-=. 《名师一号》P19 问题探究 问题1 奇函数与偶函数的定义域有什么特点? (1)判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. (2)判断函数f (x )的奇偶性时,必须对定义域内的 每一个x , 均有f (-x )=-f (x )、f (-x )=f (x ), 而不能说存在x 0使f (-x 0)=-f (x 0)、f (-x 0)=f (x 0). (补充) 1、若奇函数()f x 的定义域包含0,则(0)0=f . (0)0=f 是()f x 为奇函数的 既不充分也不必要条件 2.判断函数的奇偶性的方法 (1)定义法: 1)首先要研究函数的定义域,

函数的奇偶性及周期性综合运用

函数的奇偶性及周期性 1. 已知定义在 R 上的奇函数 f(x) 满足 f(x+2)= -f(x) f(6) 的值为 ( ) A.-1 B.0 C.1 D.2 【答案】 B 【解析】 ∵ f(x+2)=-f(x), ∴ f(6)=f(4+2)=-f(4)=f(2)= -f(0) 又 f(x) 为R 上的奇函数 , ∴ f(0)=0. ∴ f(6)=0. 2. 函数 f ( x) x 3 sin x 1( x R), 若 f(a)=2, 则 f(-a) 的值为 ( ) A.3 B.0 C.-1 D.-2 【答案】 B 【解析】 设 g ( x) 3 sinx, 很明显 g(x) 是一个奇函数 . x ∴ f(x)=g(x)+1. ∵ f(a)=g(a)+1=2, ∴ g(a)=1. ∴ g(-a)=-1. ∴ f(-a)=g(-a)+1=-1+1=0. 3. 已知 f(x) 是定义在 R 上的偶函数 , 并满足 f(x+2)= 1 1 x 2 时 ,f(x)=x-2, 则 f ( x) f(6.5) 等于?? ( ) A.4.5 B.-4.5 C.0.5 D.-0.5 【答案】 D 【 解 析 】 由 f(x 2) 1 得 f(x 4) 1 f ( x ) f ( x 2) f(6.5)=f(2.5). 因为 f(x) 是偶函数 , 得 f(2.5)=f(-2.5)=f(1.5), 而 1 x 2 时 ,f(x)=x-2, 所以 f(1.5)=-0.5. 综上 , 知f(6.5)=-0.5. 4. 已知函数 f(x) 是定义在 R 上的奇函数 , 当 x>0时 ,f(x)= - 是 ( ) A. ( 1) B. ( 1] C. (1 ) D. [1 ) 【答案】 A 【解析】 当 x>0时 f ( x ) 1 2 x 1 1 x 2 当 x<0时,-x>0, ∴ f( x ) 1 2 x . 又∵ f(x) 为 R 上的奇函数 , ∴ f(-x)=-f(x). ∴ f ( x ) 1 2 x . ∴ f ( x ) 2 x 1 . ∴ f ( x) 2 1 1 即 2 x 1 . x ∴ x<-1. 2 2 ∴不等式 f ( x ) 1 的解集是 ( 1) . 2 5. 设 g(x) 是定义在 R 上、以 1为周期的函数 . 若函数 f(x)=x+g(x) 则f(x) 在区间 [0,3] . f ( x) 那 么 f(x) 的 周 期 是 4, 得 2 x 则不等式 f ( x) 1 的解集 2 1 2 在区间 [0,1] 上的值域为 [-2,5],

函数的奇偶性的经典总结

x x x f 1)(+=1 )(2+= x x x f x x f 1)(=函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-,0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及 ) ()(x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴x x x f +=2)(,(2)x x x f -=3)( (3)()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3)(x x f =,x x f sin )(=, (3)常见的奇函数有:2)(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时,) ()(x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时,) ()(x g x f 是偶函数。

函数的基本性质(考点加经典例题分析)

函数的基本性质 函数的三个基本性质:单调性,奇偶性,周期性 一、单调性 1、定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当21x x <时,都有))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。 2、图像特点:在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。(提示:判断函数单调性一般都使用图像法,尤其是分段函数的单调性。) 3.二次函数的单调性:对函数c bx ax x f ++=2 )()0(≠a , 当0>a 时函数)(x f 在对称轴a b x 2- =的左侧单调减小,右侧单调增加; 当0-x f x f x f x f 或; ⑸根据定义下结论。 例2、判断函数1 2)(-+= x x x f 在)0,(-∞上的单调性并加以证明.

5.复合函数的单调性:复合函数))((x g f y =在区间),(b a 具有单调性的规律见下表: 以上规律还可总结为:“同向得增,异向得减”或“同增异减”。 例3:函数322-+=x x y 的单调减区间是 ( ) A.]3,(--∞ B.),1[+∞- C.]1,(--∞ D.),1[+∞ 6.函数的单调性的应用: 判断函数)(x f y =的单调性;比较大小;解不等式;求最值(值域)。 例4:求函数1 2-= x y 在区间]6,2[上的最大值和最小值. 二、奇偶性 1.定义: 如果对于f(x)定义域内的任意一个x,都有)()(x f x f =-,那么函数f(x)就叫偶函数; (等价于:0)()()()(=--?=-x f x f x f x f ) 如果对于f(x)定义域内的任意一个x,都有)()(x f x f -=-,那么函数f(x)就叫奇函数。 (等价于:0)()()()(=+-?-=-x f x f x f x f ) 注意:当0)(≠x f 时,也可用1) ()(±=-x f x f 来判断。 2.奇、偶函数的必要条件:函数的定义域在数轴上所示的区间关于原点对称。 若函数)(x f 为奇函数,且在x=0处有定义,则0)0(=f ; 3.判断一个函数的奇偶性的步骤 ⑴先求定义域,看是否关于原点对称; ⑵再判断)()(x f x f -=-或)()(x f x f =- 是否恒成立。

1.10基本初等函数奇偶性和周期性

1.10基本初等函数奇偶性和周期性 姓名___________ 本节重点:①能够正确判断函数的奇偶性和周期性;②运用基本初等函数的性质解题。 一.基础练习 1. 写出下列函数中,奇函数是________;偶函数是________;非奇非偶函数是________ ①sin 2y x = ②2cos y x = ③4221y x x =++ ④2(1)y x =- ⑤()x x f x e e -=- ⑥1()1 x f x x -=+ ⑦1()lg 1 x f x x -=+ ⑧23 ()f x x -= 2. 已知多项式函数32()f x ax bx cx d =+++,系数,,,a b c d 满足__________时,()f x 是奇函数; 满足___________时,它是偶函数. 3. 定义在R 上的奇函数()f x 满足(2)()f x f x +=-,则(2)f =________. 4. 函数sin 2y x =的周期是________;tan y x π=的周期是________. 5. 已知函数()f x 是定义在(-3,3)上的奇函数,当03x << ()f x 图象如右,则不等式 ()0f x x >的解集是____________. 二、例题讲解 例1:判断下列函数的奇偶性 (1)2 ()2||3f x x x =-- (2)22 2,0 ()2,0 x x x f x x x x ?-≥?=?--,实数a 的范围是____________.

函数奇偶性的判定方法

函数奇偶性的判定方法 山东 刘海 函数奇偶性的判定方法较多,下面举例介绍常见的判定方法. 1.定义域判定法 例1 判定()(1)f x x =- 解:要使函数有意义,须20x -≥,解得2x ≥, 定义域不关于原点对称,∴原函数是非奇非偶函数. 评注:用定义域虽不能判定一个函数是奇函数还是偶函数,但可以通过定义域不关于原点对称,来否定一个函数具有奇偶性. 2.定义判定法 例2 判断()f x x a x a =++-的奇偶性. 解: 函数()f x x a x a =++-的定义域为R , 且 ()()()()f x x a x a x a x a x a x a f x -=-++--=--+-+=-++=, ∴函数()f x 是偶函数. 评注:在定义域关于原点对称的前提下,可根据定义判定函数奇偶性. 3.等价形式判定法 例3 判定()f x =的奇偶性. 解:()f x 的定义域为R ,关于原点对称,当0x =时,()0f x =,∴图象过原点. 又0x ≠ 时,22 22()(1)(1)1()(1)(1) f x x x f x x x -+-+==-+--,()()f x f x ∴-=-. 又(0)0f =,()f x ∴为奇函数. 评注:常用等价变形形式有:若()()0f x f x +-=或()1() f x f x -=-,则()f x 为奇函数;若()()0f x f x --=或 ()1() f x f x -=,则()f x 为偶函数(其中()0f x ≠). 4.性质判定法 例4 若0a >,[]()()f x x a a ∈-,是奇函数,()() g x x ∈R 是偶函数, 试判定()()()x f x g x ?= 的奇偶性.

函数的奇偶性练习题[(附答案)

函数的奇偶性 1.函数f (x )=x(-1﹤x ≦1)的奇偶性是 ( ) A .奇函数非偶函数 B .偶函数非奇函数 C .奇函数且偶函数 D .非奇非偶函数 2. 已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx 是( ) A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 3. 若函数f (x )是定义在R 上的偶函数,在]0,(-∞上是减函数, 且f (2)=0,则使得f (x )<0的x 的取值范围是 ( ) A.(-∞,2) B. (2,+∞) C. (-∞,-2)?(2,+∞) D. (-2,2) 4.已知函数f (x )是定义在(-∞,+∞)上的偶函数. 当x ∈(-∞,0)时,f (x )=x -x 4,则 当x ∈(0.+∞)时,f (x )= . 5. 判断下列函数的奇偶性: (1)f (x )=lg (12+x -x ); (2)f (x )=2-x +x -2 (3) f (x )=? ? ?>+<-). 0() 1(),0()1(x x x x x x 6.已知g (x )=-x 2-3,f (x )是二次函数,当x ∈[-1,2]时,f (x )的最小值是1,且f (x )+g (x )是奇函数,求f (x )的表达式。 7.定义在(-1,1)上的奇函数f (x )是减函数,且f(1-a)+f(1-a 2 )<0,求a 的取值范围 8.已知函数21 ()(,,)ax f x a b c N bx c += ∈+是奇函数,(1)2,(2)3,f f =<且()[1,)f x +∞在上是增函数, (1)求a,b,c 的值; (2)当x ∈[-1,0)时,讨论函数的单调性. 9.定义在R 上的单调函数f (x )满足f (3)=log 23且对任意x ,y ∈R 都有 f (x+y )=f (x )+f (y ). (1)求证f (x )为奇函数; (2)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围.

函数的奇偶性与周期性试题(答案)

函数的奇偶性与周期性 一、选择题 1.(2015·四川绵阳诊断性考试)下列函数中定义域为R ,且是奇函数的是( ) A .f(x)=x2+x B .f(x)=tan x C .f(x)=x +sin x D .f(x)=lg 1-x 1+x 2.(2014·新课标全国卷Ⅰ)设函数f(x),g(x)的定义域都为R ,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( ) A .f(x)g(x)是偶函数 B .|f(x)|g(x)是奇函数 C .f(x)|g(x)|是奇函数 D .|f(x)g(x)|是奇函数 3.(2015·长春调研)已知函数f(x)=x2+x +1x2+1,若f(a)=23 ,则f(-a)=( ) A.23 B .-23 C.43 D .-43 4.已知f(x)在R 上是奇函数,且满足f(x +4)=f(x),当x ∈(0,2)时,f(x)=2x2,则f(7)等于( ) A .-2 B .2 C .-98 D .98 5.函数f(x)是周期为4的偶函数,当x ∈[0,2]时,f(x)=x -1,则不等式xf(x)>0在[-1,3]上的解集为( ) A .(1,3) B .(-1,1) C .(-1,0)∪(1,3) D .(-1,0)∪(0,1) 6.设奇函数f(x)的定义域为R ,最小正周期T =3,若f(1)≥1,f(2)=2a -3a +1 ,则a 的取值范围是( ) A .a<-1或a≥23 B .a<-1 C .-1

函数的奇偶性

函数的奇偶性 【学习目标】 1.理解函数的奇偶性定义; 2.会利用图象和定义判断函数的奇偶性; 3.掌握利用函数性质在解决有关综合问题方面的应用. 【要点梳理】 要点一、函数的奇偶性概念及判断步骤 1.函数奇偶性的概念 偶函数:若对于定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)称为偶函数. 奇函数:若对于定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)称为奇函数. 要点诠释: (1)奇偶性是整体性质; (2)x 在定义域中,那么-x 在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的; (3)f(-x)=f(x)的等价形式为:() ()()0, 1(()0)() f x f x f x f x f x ---==≠, f(-x)=-f(x)的等价形式为:() ()()01(()0)() f x f x f x f x f x -+-==-≠, ; (4)由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0; (5)若f(x)既是奇函数又是偶函数,则必有f(x)=0. 2.奇偶函数的图象与性质 (1)如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数. (2)如果一个函数为偶函数,则它的图象关于y 轴对称;反之,如果一个函数的图像关于y 轴对称,则这个函数是偶函数. 3.用定义判断函数奇偶性的步骤 (1)求函数()f x 的定义域,判断函数的定义域是否关于原点对称,若不关于原点对称,则该函数既不是奇函数,也不是偶函数,若关于原点对称,则进行下一步; (2)结合函数()f x 的定义域,化简函数()f x 的解析式; (3)求()f x -,可根据()f x -与()f x 之间的关系,判断函数()f x 的奇偶性. 若()f x -=-()f x ,则()f x 是奇函数; 若()f x -=()f x ,则()f x 是偶函数; 若()f x -()f x ≠±,则()f x 既不是奇函数,也不是偶函数; 若()f x -()f x =且()f x -=-()f x ,则()f x 既是奇函数,又是偶函数 要点二、判断函数奇偶性的常用方法

相关主题