搜档网
当前位置:搜档网 › 低品位硫化锌矿生物浸出液中锌的富集和铁的去除

低品位硫化锌矿生物浸出液中锌的富集和铁的去除

低品位硫化锌矿生物浸出液中锌的富集和铁的去除
低品位硫化锌矿生物浸出液中锌的富集和铁的去除

六方晶系四指数推导

1.4 晶向指数和晶面指数 一晶向和晶面 1 晶向 晶向:空间点阵中各阵点列的方向(连接点阵中任意结点列的直线方向)。晶体中的某些方向,涉及到晶体中原子的位置,原子列方向,表示的是一组相互平行、方向一致的直线的指向。 2 晶面 晶面:通过空间点阵中任意一组阵点的平面(在点阵中由结点构成的平面)。晶体中原子所构成的平面。 不同的晶面和晶向具有不同的原子排列和不同的取向。材料的许多性质和行为(如各种物理性质、力学行为、相变、X光和电子衍射特性等)都和晶面、晶向有密切的关系。所以,为了研究和描述材料的性质和行为,首先就要设法表征晶面和晶向。为了便于确定和区别晶体中不同方位的晶向和晶面,国际上通用密勒(Miller)指数来统一标定晶向指数与晶面指数。 二晶向指数和晶面指数的确定 1 晶向指数的确定方法 三指数表示晶向指数[uvw]的步骤如图1所示。 (1)建立以晶轴a,b,c为坐标轴的坐标系,各轴上的坐标长度单位分别是晶胞边长a,b,c,坐标原点在待标晶向上。 (2)选取该晶向上原点以外的任一点P(xa,yb,zc)。 (3)将xa,yb,zc化成最小的简单整数比u,v,w,且u∶v∶w = xa∶yb∶zc。 (4)将u,v,w三数置于方括号内就得到晶向指数[uvw]。 图1 晶向指数的确定方法 图2 不同的晶向及其指数 当然,在确定晶向指数时,坐标原点不一定非选取在晶向上不可。若原点不在待标晶向上,那就需要选取该晶向上两点的坐标P(x1,y1,z1)和Q(x2,y2,z2),然后将(x1-x2),(y1-y2),

(z 1-z 2)三个数化成最小的简单整数u ,v ,w ,并使之满足u ∶v ∶w =(x 1-x 2)∶(y 1-y 2)∶(z 1-z 2)。则[uvw ]为该晶向的指数。 显然,晶向指数表示了所有相互平行、方向一致的晶向。若所指的方向相反,则晶向指数的数字相同,但符号相反,如图3中[001]与[010]。 说明: a 指数意义:代表相互平行、方向一致的所有晶向。 b 负值:标于数字上方,表示同一晶向的相反方向。 c 晶向族:晶体中原子排列情况相同但空间位向不同的一组晶向。用表示,数字相同,但排列顺序不同或正负号不同的晶向属于同一晶向族。晶体结构中那些原子密度相同的等同晶向称为晶向轴,用表示。 <100>:[100] [010] [001] [001] [010] [100] <111>:[111] [111] [111] [111] [111] [111] [111] [111] 图3 正交点阵中的几个晶向指数 2 晶面指数的确定 国际上通用的是密勒指数,即用三个数字来表示晶面指数(h k l )。图4中的红色晶面为待确定的晶面,其确定方法如下。 图4 晶面指数的确定 (1)建立一组以晶轴a ,b ,c 为坐标轴的坐标系,令坐标原点不在待标晶面上,各轴上的坐标长度单位分别是晶胞边长a ,b ,c 。 (2)求出待标晶面在a ,b ,c 轴上的截距xa ,yb ,zc 。如该晶面与某轴平行,则截距为∞。 (3)取截距的倒数1/xa ,1/yb ,1/zc 。 (4)将这些倒数化成最小的简单整数比h ,k ,l ,使h ∶k ∶l = 1/xa ∶1/yb ∶1/zc 。 (5)如有某一数为负值,则将负号标注在该数字的上方,将h ,k ,l 置于圆括号内,写成(hkl ),则(hkl )就是待标晶面的晶面指数。 说明:晶面指数所代表的不仅是某一晶面,而是代表着一组相互平行的晶面。 a 指数意义:代表一组平行的晶面;

浸矿微生物技术

课程结业论文 题目浸矿微生物技术 姓名李诚 所在学院化工学院 专业班级化学工程与工艺09级2班 学号 2009301767 指导教师张东晨 二〇一 1 年 4 月28 日

学年论文指导教师评阅意见

浸矿微生物技术 摘要:概述了将微生物技术应用于矿业加工技术之中的原理,其中涉及到的菌种极其培养条件和各种石矿运用这种技术进行浸出的实例应用 关键词:矿业、微生物、浸出 大多数金属硫化矿如黄铜矿、辉铜矿、黄铁矿、黝铜矿、闪锌矿和某些金属氧化矿如铀矿、氧化锰矿难溶于稀硫酸等一般工业浸出剂。但人们可利用某些特殊微生物,在合适条件下将上述矿物中的金属用稀硫酸浸出。 生物浸出的基本原理 生物浸出是利用微生物在生命活动中自身的氧化和还原特性,使资源中的有用成分氧化或还原,以水溶液中离子态或沉淀的形式与原物质分离,或靠微生物的代谢产物与矿物作用,溶解提取矿物有用成分。 矿石(硫化矿)的生物浸出是水溶液中多相体系的一个复杂过程,它同时包含了化学氧化、生物氧化和电化学氧化反应。一般认为,在生物浸出过程中,微生物的作用表现在两方面,即直接氧化作用和间接氧化作用。 1、微生物的直接氧化作用 直接氧化作用是指微生物与目的矿物直接接触,加速固体矿物被氧化成可溶性盐的反应过程,如许多金属硫化矿物在浸矿微生物的直接氧化作用下会发生浸出反应。 直接氧化作用中细菌的“催化”功能是通过酶催化溶解机制来完成的,细菌在酶解矿物晶格的过程中获得生长所需的能量。 2、微生物的间接氧化作用 间接氧化作用是指通过微生物代谢产生的化学氧化剂溶解矿物的作用,如上述反应产生的硫酸亚铁又可作为能源被细菌氧化为硫酸高铁。 硫酸铁是一种强氧化剂,可通过化学氧化作用溶解矿物。 间接氧化作用是细菌代谢产物的化学溶解作用,细菌在其中的作用是再生氧化剂———硫酸高铁,完成生物化学循环,细菌可不与矿物接触。 在实际细菌浸出过程中,既有直接氧化作用,又有间接氧化作用,属于一种耦合作用。生物浸出应用的菌种 用于生物浸出的微生物种类繁多,但主要可分为两大类:化能无机自养型和化能有机异养型。化能无机自养型细菌主要用于有色金属硫化物的氧化浸出,化能有机异养型中的真菌、藻类等主要用于从硅酸盐和碳酸盐矿物中提取金属,如浸金。 已研究过用于生物浸出的微生物有20多种,分布于硫杆菌属、钩端螺菌属、硫化杆菌属、硫化叶菌属、酸菌属、生金球菌属和硫球菌属等。其中比较重要的有以下几种: 1、硫杆菌属 硫杆菌属中最为重要的3个种为氧化亚铁硫杆菌、氧化硫硫杆菌和排硫硫杆菌。 (1)氧化亚铁硫杆菌

硫化锌精矿的加压酸浸(一)

书山有路勤为径,学海无涯苦作舟 硫化锌精矿的加压酸浸(一) A 加压酸浸的机理加压氧化酸浸是液、固、气多相反应,浸出中氧对硫 化锌精矿有氧化作用和金属氧化物的酸溶作用,实质上是将传统湿法炼锌的焙 烧、浸出两个过程合为一个过程进行。硫化锌精矿加压氧化酸浸的机理基本上 可分为两种类型,即电化腐蚀机理和吸附配合物机理。 a 电化腐蚀机理硫化 物的溶解类似于金属腐蚀的电化反应。阴极反应:O2+2H++2e ==== H2O2 H2O2+2H++2e ==== 2H2O 阳极反应:MeS ==== Me2++S+2e MeS+4H2O ==== Me2++SO42-+8H++8e 总反应:1MeS+ ——O2+2H+ ==== Me2++H2O+S 2 MeS+2O2 ==== MeSO4 硫化物中的S2-在矿粒阳极部位氧化放出电子,通过矿粒本身转送到阴极部位,使氧还原,完成一个闭路微电池。 氧的还原通过一个H2O2 中间物进行转移。硫化锌在100℃下进行氧化酸溶试验,其动力学曲线如下图所示。溶液中的氧压与所需酸量的关系是:氧压愈 高,要求的酸浓度愈高;氧压一定时,酸超过极限含量,反应速率则不再增 大,保持一个恒定值。在130℃时硫化锌进行氧化酸溶也可得到类似的曲线, 证实属于电化学腐蚀机理。 [next] b 吸附配合物机理假设在固相S 与液相B 之间的反应中途形成吸附配合物S·B,其反应机理可用下式表示。S 固+B 液==== S·B—→产物 吸附配合物的形成是过程的最缓慢阶段,为过程速率的控制步骤。过程的 反应动力学可以推导如下:设Q 为形成吸附配合物过程中参与反应的部分, 1 - Q = 没有参与反应的游离部分设形成配合物的速率ξ1为ξ1= K1(1-Q) [B]n 设配合物分解(成组分)的速率ξ2为ξ2= K2Q 设配合物分解(成产物)的速率ξ3为ξ3= K3Q 式中,K1,K2,K3 均为速率常数。当n=1 反应

微生物冶金研究及应用示例

微生物冶金研究及应用示例 摘要:微生物冶金是微生物学与矿物加工学相交叉而产生的一门新兴的边缘学科,开展这方面的研究具有重要的学术意义及广阔的应用前景。本文主要对微生物冶金以及其在矿物开采中的应用进行了较全面的综述,包括微生物冶金发展概况、冶金微生物、微生物冶金技术及冶金过程的机理,并介绍了微生物冶金技术的应用现状。 关键词:生物冶金;硫化矿;冶金技术;生物浸出 矿产资源的开发与利用是支持全球经济发展与社会进步的重要基础之一。随着全球工业化迅速发展带来的自然资源的飞速开发,导致优质富矿资源日趋枯竭,从而品位低以及成分复杂的贫矿资源开始受到人们日渐关注,难选冶炼矿石所占比例不断攀升。常规冶金技术在对低品位低矿物的加工过程中所体现出的产量低、成本高、污染大等缺点,在技术和经济上已无法满足工业生产需求,微生物冶金技术逐渐受到人们的重视[1]。 生物冶金技术又称生物浸出技术,其本质是利用自然界中的微生物或其代谢产物溶浸矿石中有用金属的一种技术。这些微生物为适温细菌,靠无机物生存,对生命无害,它们可以通过多种途径对矿物作用,将矿物中的酸性金属氧化成可溶性的金属盐,不溶的贵金属留在残留物中。并一旦溶液可与残留物分离,在溶液中和之前,采取传统加工方式,如溶剂萃取等方法来回收溶液中的金属;可能存在于残留物中的金属,经细菌氧化后,通过氰化物提取。生物冶金技术具有能耗少、设备简单、操作方便、成本低、工艺流程简单、无污染等优点[2-3],在矿物加工及冶金领域逐渐受到重视并发展壮大起来,是未来冶金行业发展的重要方向之一[4]。因此,微生物冶金技术的研究及其应用对冶金学的发展具有重要的理论和实际意义[5-6]。 1 微生物冶金发展概况 生物冶金的应用研究开始于20世纪40年代。1947年,Colmer和Hinkel[7]首次从酸性矿坑水中分离到氧化亚铁硫杆菌。其后,Temple等[8]和Leathen等[9]先后发现这种细菌能够将Fe2+氧化为Fe3+,并且能够将矿物中的硫化物氧化为硫

高铁硫化锌精矿加压浸出工艺

高铁硫化锌精矿加压浸出新工艺 瞿仁静王晓曼鲁艳梅 (云南省冶金研究设计院,云南昆明650031) 摘要:高铁硫化锌精矿加压浸出冶炼工艺与传统工艺不同,锌精矿焙烧过程发生的氧化反应和锌焙砂浸出过程发生的酸溶反应合并在一起进行,主体设备为高压釜。该技术较传统工艺节能30%,锌浸出率≥95%,铁浸出率≤30%,浸出指标好,有广阔的发展前景。本文介绍了这种工艺的原理、流程、特点以及该新兴工艺在工业上的具体应用。 关键词:高铁硫化锌精矿;加压浸出;节能;环保;锌浸出率;铁浸出率。 New Process of Pressure Leaching on High-iron Zinc-sulphide Concentrate Qu Renjing Wang Xiaoman Lu Yanmei (Yunnan Metallurgical Research and Design Institute, Kunming, Yunnan 650031, China) ABSTRACT:Different with the traditional process, pressure leaching on high-iron zinc-sulphide concentrate combines the oxidation reaction occurs zinc concentrate roasting process and the acid-soluble reaction occurs zinc calcine leaching process together, and the main equipment is autoclave. The process saves 30% energy compared with traditional technology, and with the high rate of zinc leaching processes. Zinc leaching rate is greater than or equal to 95%, iron leaching rate is less than or equal to 30%, leaching index was better, and has broad prospects for development. The principles, processes, characteristics and the industrial applications of this new technology were described. KEYWORDS:high-iron zinc sulphide concentrate;pressure leaching;energy saving;environmental protection;zinc leaching rate;iron leaching rate 1 前言 在现代经济建设中,锌已成为不可缺少且用量大的基础有色金属。我国锌储量居世界第一位,云南锌资源十分丰富,锌探明储量超过2000万t,其中高铁锌资源储量700万t,占云南锌资源储量的三分之一。 高铁硫化锌精矿中,铁以类质同相替代矿物晶格中的锌,通过机械磨矿和选矿的物理方法难以使铁分离,产出的锌精矿含锌低(40~45%),含铁高(14~20%),其化学成分低于铁精矿质量四级品标准要求。采用传统湿法炼锌工艺,焙烧时铁大量生成铁酸锌,锌浸出率低,浸出渣含锌高。采用高温高酸浸

【采矿课件】第十二章矿物微生物浸出

第十二章矿物微生物浸出 教学大纲要求 本章主要介绍了微生物粉冶金的基本概念,细菌浸矿的作用机理,以及影响细菌浸出的主要因素 。主要内容包括: 1.矿物微生物浸出的基本概念 2.浸矿微生物种类 3.微生的浸出的基本原理 4.影响细菌浸出的主要因素 教学时间 6学时。 教学重点 1. 浸矿细菌的培养; 2. 微生物浸出的作用机理。教学难点 微生物浸矿的主要作用机制。 教学方法 课堂教学为主。

教学要求 掌握浸矿微生物培养、筛选方法,微生物浸出的主要作用机制。 讨论 微生物冶金方法与传统冶金方法间的优劣。 教学参考书 1. 浸矿技术编委会,浸矿技术,:原子能,1994. 2. 聂树人,索有瑞,难选冶金矿石浸金,:地质,1997. 3. 童雄,微生物浸矿的理论与实践,:冶金工业,1997. 4. 杨显万,邱定蕃,湿法冶金,:冶金工业,1998. 12.1 固结过程的气体力学简单叙述生物冶金和细菌浸出的基本概念和发展状况。12.2 浸矿微生物教学内容 主要内容包括浸矿微生物的种类、来源、生理生态特征,细菌的采集、分离、培养与驯化,细菌生 长规律,层透气性的基本概念、透气性变化规律定量描述与影响料层透气性的主要因素。 教学时间 2学时。 本节重点 微生物的生长规律。 教学方法 课堂教学为主。 教学要求 了解浸矿细菌的种类、采集、培养、驯化过程,掌握细菌生长的基本规律。 12.3 微生物浸出基本原理教学内容

主要内容包括微生物浸出的直接作用说、间接作用说和复合作用说的内涵。教学时间 3学时。 本节重点 微生浸矿的三种作用机制。 本节难点 不同作用机理之间的差异。 教学方法 课堂教学为主。 教学要求 熟练掌握微生物浸矿的作用机制。 12.4 细菌浸出影响因素和浸出动力学教学内容 主要内容包影响微生物浸出各种因素以及浸出动力学规律。 教学时间 2学时。 教学方法课堂教学为主。 教学要求 了解微生物浸矿过程影响浸出效率和速度的各种因素。

微生物实验原理

大肠埃希菌检测 胆盐乳糖培养基:通过胆盐或者去氧胆酸钠抑制革兰氏阳性菌;选择利用乳糖为碳源的革兰氏阴性菌; 溴甲酚紫 可以用作乳酸乳球菌的培养基制备时的指示剂,其pH变色范围5.2(黄色)~6.8(紫色); 胆酸盐 MUG 培养基试验 亚硫酸钠和去氧胆酸钠为选择性抑菌剂;菌的葡萄糖醛酸苷酶在碱性条件下,作用于4-甲基伞形酮-β-D葡萄糖醛酸苷的β糖醛酸苷键,使其水解,释放的4-甲基伞形酮在366nm紫外灯下产生蓝白色荧光。97%的大肠埃希氏杆菌、10%的沙门氏菌以及少量的志贺氏菌具有葡萄糖醛酸苷酶。 靛基质试验 某些细菌具有色氨酸酶,能分解蛋白胨水中的色氨酸生成吲哚,当加入吲哚试剂(对位二甲氨基苯甲醛)后则形成红色的玫瑰吲哚。(变形杆菌和霍乱弧菌亦可以产生靛基质阳性) 色氨酸酶 催化色氨酸厌氧分解产生吲哚和丙酮酸和氨的反应的酶。在微生物中特别是大肠杆菌有大量存在,以磷酸吡哆醛为辅酶,对半胱氨酸和丝氨酸也有一定作用。在动物体内无此酶。 伊红美蓝培养基 伊红为酸性染料,美蓝为碱性染料,两种苯胺类染料,可以抑制革兰氏阳性菌的生长。当大肠杆菌分解乳糖产酸时细菌带正电荷被染成红色,再与美蓝结合形成紫黑色菌落,并带有绿色金属光泽。而产气杆菌则形成呈棕色的大菌落。 在碱性环境中不分解乳糖产酸的细菌不着色,伊红和美蓝不能结合,故沙门氏菌等为无色或琥珀色半透明菌落。金葡菌在此培养基上不生长。 麦康凯琼脂培养基 利用胆盐来抑制革兰阳性细菌的生长,而对伤寒等沙门菌有促进生长的作用.利用乳糖发酵,中性红的颜色可把分解乳糖和不分解乳糖的细菌区别开.沙门菌及志贺菌呈无色菌落,大肠埃希菌呈桃红色菌落. 沙门氏菌检测 生化特性 发酵葡萄糖,麦芽糖,甘露醇和山梨醇产气;不发酵乳糖、蔗糖和侧金盏花醇;不产吲哚、V-P反应阴性;不水解尿素和对苯丙氨酸不脱氨。伤寒沙门氏菌、鸡伤寒沙门氏菌及一部分鸡白痢沙门氏菌发酵糖不产气,大多数鸡白痢沙门氏菌不

硫化锌精矿的沸腾焙烧工序

6.1硫化锌精矿的沸腾焙烧工序(甲24m2沸腾炉操作规程) 6.1.1备料部分: (1)备料的基本任务: ①保证入沸腾炉的精矿主成份和杂质含量均匀、稳定,对不同的精矿进 行合理搭配。 ②确保入沸腾炉的精矿含水量为6-8%。 ③保证入沸腾炉的精矿粒度小于10毫米,并不含机械夹杂,干燥后精矿 要进行破碎和筛分。 (2)备料工艺流程: ①工艺流程简述: 入精矿库后的精矿利用桥式抓斗起重机抓入湿式圆盘给料机,通过皮带运输机运至回转干燥窑干燥,干燥后精矿通过锤式破碎机破碎,再利用斗式提升机提至振动筛过筛,筛上物返回破碎机破碎,筛下物入沸腾炉焙烧。 ②工艺流程图(见图6.1-1) (3)设备名称、规格、性能(见表6.1-1) (4)主要技术操作条件及技术指标: ①锌精矿质量标准:(应符合YS/T320-2007三级以上标准) ②入沸腾炉锌精矿质量标准: ③干燥窑进料量:<10吨/小时。 ④干燥窑温度窑头600-650℃,窑尾150-200℃。 干燥精矿煤气消耗105Nm3/吨精矿

锌精矿 排空 废气 (送沸腾炉) 图6.1-1 24m2沸腾炉备料工艺流程图

表6.1-1 备料部分设备名称规格

(5)主要岗位操作法: ①抓斗桥式起重机岗位: A 严格按抓斗桥式起重机使用、维护规程和安全规程操作。 B抓斗桥式起重机运行时,大车、小车、抓斗不能同时运行,最多只能两者同时运行。 C 交接班和班中应经常检查钢丝绳和制动器、滑轮、行程开关、各润滑点,发现异常情况及时处理。 D 及时将入库的精矿抓到指定的地点堆存备用。 E 按规定要求配料,以保证入炉精矿成份稳定均匀。 F 圆盘料仓最多只能贮放两抓斗精矿。 ②圆盘给料岗位: A 根据干燥岗位要求调整圆盘转速和圆盘出料口闸门,保证给料稳定、正常。 B 保证圆盘出料口不堵塞不断料。 ③1#皮带岗位:

微生物检测原理

1、胆盐乳糖培养基原理 蛋白胨为氮源、乳糖为碳源,胆酸盐为抑制剂(抑制革兰氏阳性细菌),溴甲酚紫指示剂(变黄则细菌产酸)该培养基为选择性培养基,选择性生长利用乳糖为碳源的革兰氏阴性菌,根据是否产酸产气判断样品是否为大肠菌群。 2、玫瑰红纳培养基原理 胨提供碳氮源,葡萄糖提供能源,磷酸二氢钾提供缓冲剂,硫酸镁提供微量元素,玫瑰红纳未选择抑菌剂,可抑制细菌的生长,并可减缓莫些霉菌生长过而导致菌落蔓延生长通常黑曲霉为孢子黑色白色念珠菌为奶油色 3、酵母浸出粉胨葡萄糖琼脂培养基原理 酵母浸出粉提供B族维生素能促进酵母生长 4、靛基质实验原理 莫些细菌可能分解蛋白质中的色氨酸生成吲哚,吲哚的存在可用显色表现,吲哚对对二甲基氨基苯醛结合成玫瑰吲哚 5、乙酰甲基甲醇生成实验(v-p) 莫些细菌分解葡萄糖生成丙酮酸,丙酮酸缩合脱羧生成乙酰甲基甲酸,乙酰甲基甲酸可在强碱条件下被空气中的氧氧化为二乙酰,二乙酰与蛋白胨中的瓜基生成红色化合物 6、枸橼酸盐利用实验原理 不同的细菌有不同的酶,分解产物各有差异,以枸橼酸纳为唯一碳源于Ph为7的培养基上,产气杆菌分解枸橼酸生成碳酸盐,是培养基由中性变为碱性培养基中指示剂溴麝香草酚蓝(ptb)有浅绿色变为深蓝色,此为枸橼酸利用实验阳性,大肠杆菌因不能利用为阴性 7、曙红亚甲基蓝琼脂平板实验原理 蛋白胨和牛肉浸粉提供氮源、维生素、氨基酸和碳源;氯化钠能维持均衡的渗透压;乳糖是大肠菌群可发酵的糖类;琼脂是培养基凝固剂;曙红钠和亚甲蓝是抑菌剂和pH指示剂,可抑制革兰氏阳性菌,在酸性条件下产生沉淀,形成紫黑色菌落或具黑色中心的外围无色透明的菌落 MUG培养基在大肠杆菌中检测的原理 8、一种基于荧光方法检测大肠杆菌的MUG培养基,其主要组分和含量(重量份)为:MUG0.030-0.1,乳糖3-10,pH值为7.0-7.5。由于本发明在培养基中加入胆盐,可抑制部分革兰氏阳性细菌的生长,有利于大肠杆菌的生长。在培养基中加入乳糖,同时考察培养液产气和产荧光两个因素,大大减少假阳性,提高检测准确性。 微生物限度检查法 附录ⅪJ 微生物限度检查法 微生物限度检查法系指非规定灭菌制剂及其原、辅料受到微生物污染程度的一种检 查方法,包括染菌量及控制菌的检查。 供试品应随机抽样。一般抽样量为检验用量(2个以上最小包装单位)的3倍量。 检查的全过程,均应严格遵守无菌操作,严防再污染。 除另有规定外,本检查法中细菌培养温度为30~35℃,霉菌、酵母菌培养温度为25 ~28℃,控制菌培养温度为36℃±1℃。 检验结果的报告以1g、1ml或10cm<2>为单位。 培养基及其制备方法 除另有规定外,培养基制备的灭菌条件为121℃20分钟。

微生物浸出技术及其在尾矿开发中的应用

微生物浸出技术及其在尾矿开发中的应用 摘要:介绍了微生物浸出技术发展概况,阐述了该技术的研究现状,特别是在尾矿开发中的应用,包括优良菌种的培育、细菌浸出的主要影响因素和浸出工艺,指出尾矿的生物浸出是微生物浸出技术的发展方向,尾矿专属浸矿细菌的选育、尾矿生物浸出影响因素的研究、尾矿原位浸出技术的开发,是尾矿资源得以利用的关键。 关键词:生物浸出;尾矿;菌种选育;浸出工艺 微生物浸出技术,是利用微生物自身代谢过程对硫化矿中硫、铁等元素的氧化还原作用,从矿石中选择性浸出有价金属的过程。微生物浸出技术与传统冶炼工艺相比,具有能耗较低、能够综合利用资源、投资和操作费用少、环境友好等特点,能够处理传统冶炼方式不能处理或难以处理的低品位或难处理的原矿、尾矿资源,在国内外被广泛研究并应用于工业实践。目前,微生物浸出技术已经成功应用于多种有价金属的提取,包括铜、金、银、铀、镍、钴、钼、锰、锌和镉等。但是,该技术多应用于从低品位硫化矿中回收有价金属和难选冶精矿的预氧化处理,是一门新兴的湿法冶金技术,而把这项技术引入到尾矿中有价金属的浸出上,在国内外报道的还较少。矿产资源是不可再生资源,经过多年的开采利用,高品位易选冶矿产资源已日趋减少,我国还有大量的尾矿资源正待开发,因此尾矿的开发已成当务之急。 1 微生物浸出技术发展概况 微生物浸出技术的应用研究始于20 世纪40 年代末。1947 年,Colmer 和Hinkel 首次分离到一种能够氧化硫化矿的细菌,后被命名为氧化亚铁硫杆菌。1958 年,Zimmerley 等,首次申请了生物堆浸技术的专利,并将这项专利付诸于实践,从而开启了微生物浸出技术的现代工业应用。 微生物浸出技术最初是应用于从低品位铜矿石中回收铜,继1958年美国率先将这项技术应用于铜矿石的堆浸生产后,智利、加拿大、澳大利亚、巴西、西班牙、日本、印度等国也先后采用微生物堆浸法来处理低品位铜矿石,或采用原位浸出法回收难采矿石中的金属铜。1980 至1996 年的十几年间,智利的Lo Aguirre 矿采用微生物浸出技术对铜矿石进行堆浸,处理量达到16000 t/d 。随着对微生物浸出技术研究的不断深入,该技术也逐渐应用到铜精矿的生物浸出中。澳大利亚的一家铜矿利用细菌浸出铜精矿,采用萃取-电积工艺处理浸出液,使铜精矿的微生物浸出在技术和经济上具有了可行性。微生物浸出技术应

金属矿微生物浸出开采

金属矿微生物浸出开采 1、简介: 某些微生物及其代谢产物,能对金属矿物产生氧化、还原、溶解、吸附、吸收等作用,使矿石中的不溶性金属矿物变为可溶性盐类,转入水溶液中,为进一步提取这些金属创造条件。微生物浸出开采就是利用微生物的这一生物化学特性对金属矿进行开采。 微生物矿浸是生物工程、冶金工程与采矿工程相结合的一门新型技术,是近几十年迅速发展起来的一种新的采矿方法。近20年来,微生物浸矿的研究工作非常活跃,国内外对浸矿微生物选育、驯化、改良,微生物浸矿机理,微生物浸矿工艺技术等方面进行了深入的研究,取得了十分可喜的成果,大大促进了微生物浸矿技术的发展。 浸矿微生物:据报道可用于浸矿的微生物的细菌有几十种,按他们最佳的生长温度可分为:中温菌(mesophile),中等嗜热菌(moderate thermophile)与高温菌(thermophile)。中等嗜热菌 2、特点: 1)微生物浸矿是一种集采矿、选矿、冶金于一体的新的采矿理论和采矿方法,具有成本低,投资少,能耗低,污染小,可重复利用的特点,是未来采矿冶金行业发展的理想方向之一。 2)微生物浸矿主要针对贫矿,含矿废石,复杂难选的金属矿等。常规冶金技术在这类矿物加工过程中,成本高,污染大,使用微生物浸矿技术,通俗的讲就是用含细菌的菌液进行浸泡,它们以矿石为食,通过氧化获取能量,这些矿石由于被氧化,从不溶于水变成可溶,人们就能够从溶液中提取出矿物。 3)目前,微生物浸矿仍处于发展之中,微生物与采矿结合还有自身的一些局限性,如反应速度慢、细菌对环境的适应性差,超出了一定的温度、PH范围细菌难以成活,经

不起搅拌,等等。为此,一些科学家建议应从遗传工程方面开展工作,通过基因工程得到性能优良的菌种。 3、微生物浸矿的工业应用范围 微生物浸矿应用范围较广,主要处理一下几种金属矿产资源: 1)用传统方法不易分离的混合精矿 2)因为存在某些有害的物理化学因素,如含砷、有机碳、锑、包裹金、微细粒金等金矿,用传统化学方法提取浸出率低,或生产成本高,而用微生物浸出法十分有利 3)通过降低精矿品位可以提高实收率的某些精矿 4)大量贫矿、表外矿、尾矿、废弃矿山积存的矿石、露天剥离尚含有极低有用组分的废石 5)小而分散的矿山,地处边远,集中处理运费搞,就地进行微生物浸出则较为合理4、微生物浸出采矿方法 微生物浸出的工艺方法基本上与溶浸采矿工艺相同。分为地表浸出和地下浸出两类。地表浸出包括堆浸法和槽浸法。地下浸出包括就地破碎浸出和原地钻孔浸出。 槽浸法:是一种渗滤型浸出作业,通常在浸出池或浸出槽中进行,槽浸也是因此而得名。微生物槽浸工艺多用来处理品位较高的矿石或精矿,待处理矿石的粒度一般为~3mm 或~5mm。每一个浸出池(或槽)一次装矿石数十t至数百t,浸出周期为数十天到数百天。 矿堆浸法:堆浸一般都在地面以上进行。该工艺通常利用斜坡地形。将待处理大块矿石(未经破碎或经过一段粗碎)堆置在不透水的地基上,形成矿石堆,在矿堆表面设置喷淋管路,向矿堆中连续或间断地喷洗沙设备洒微生物浸出剂进行浸出,并在地势较低的一侧建筑集液池收集浸出液。 微生物原地钻孔浸出:这种浸矿工艺是由地面钻孔至金属矿体,然后从地面将微生物浸出剂注入到矿体中,原地溶浸有用矿物,最后用泵将浸出液抽回地面,回收溶解出来的金属。为了使微生物在地下能正常生长并完成浸矿作水泥生产工艺用,除了在浸出剂中加入足够的微生物营养物质以外,还必须通过专用钻孔向矿体内鼓入压缩空气,为微生物提供所需要的氧气和二氧化碳。 微生物地下就地破碎浸出:与一般就地破碎浸出工艺基本相同,所不同的就是溶浸液。微生物地下就地破碎浸出比地表堆浸有更好的微生物生长繁殖条件,比较稳定的温度,不受季节变化的影响。 技术难题:物理方面 l)矿石含泥量高、渗透性差,溶液分布不均,不能与矿石充分接触,导致溶浸死角和浸出盲区,降低矿堆浸出率; 2)矿堆内有效浸矿区域难以控制,溶浸液流失问题严重。 生物化学方面 l)生物堆浸体系物理、化学、生物等因素祸合机理及浸出动力学等研究不够全面、深入; 2)缺乏适用于原生硫化矿浸出的高效专属菌种,微生物对毒性离子的耐受性差。

矿物性质对黄铜矿微生物浸出的影响-矿产综合利用

矿物学因素对黄铜矿微生物浸出影响的研究现 状 暨静1,顾帼华 (中南大学资源加工与生物工程学院,湖南长沙,410083) 摘要:黄铜矿微生物浸出一直是近年来的研究热点,研究者们主要从化学、矿物学及生物化学等角度展开对黄铜矿与细菌相互作用的研究。本文综述了影响黄铜矿微生物浸出的矿物学因素方面的研究,指 出晶格能、晶格缺陷和同质多像等是影响微生物浸出黄铜矿的重要因素,并对未来的研究趋势进行了展望,这对日后黄铜矿微生物浸出工作的发展具有重要的意义。 关键词:黄铜矿;微生物浸出;矿物学 doi:10.3969/j.issn.1000-6532.2015.04.00x 中图分类号:TD952 文献标志码:A 文章编号:1000-6532(2015)04-00 铜是工业发展必不可少的资源,传统的提铜工艺主要是火法冶金。但随着富矿、易处理矿产资源日渐减少,环保要求的不断提高,向传统选冶技术提出了挑战。微生物冶金技术因其具有工艺成本低、污染小,能有效开发利用低品位、难处理矿产资源等特点而显示出优越性,因此有关低品位硫化铜矿微生物冶金成为全球矿冶领域研究的热点。黄铜矿作为典型的硫化铜矿,由于自身晶格能高,浸出效率低,一直是微生物冶金研究的焦点。近十几年来学者分别从化学、表面化学、矿物学、生物化学和分子生物学等方面研究微生物与黄铜矿的相互作用机制,并取得显著进展。本文主要对近些年有关影响黄铜矿微生物浸出的矿物学因素的研究进行综述。 1 不同产地黄铜矿微生物浸出的研究 白静[1]研究了三个产地的黄铜矿矿石浮选精矿在不同pH值和矿浆浓度条件下的极端噬热菌的浸出差异性,这三种黄铜矿矿石分别来自江西德兴(斑岩型铜矿),云南大红山(海相火山岩型铜矿)和青海赛什塘(矽卡岩型铜矿)。研究结果表明:(1)在pH值为0.5~2.0范围内,赛什塘黄铜矿和德兴黄铜矿的铜浸出率明显低于大红山黄铜矿;(2)三种黄铜矿矿石对细菌生长的影响不同,大红山黄铜矿达到最大菌体浓度需要的时间更长;(3)三种类型的黄铜矿浸渣成分不一样,大红山铜矿浸渣里含有黄铁矿及铜蓝而另外两种浸渣里含有闪锌矿和黄钾铁矾。 傅开彬[2-3]等研究对比了浙江绍兴漓渚(黄铁矿型铜矿)与江西德兴(斑岩型铜矿)两地黄铜矿矿石的嗜酸氧化亚铁硫杆菌浸出及其钝化。研究结果显示:黄铁矿型黄铜矿矿石的浸出效果较好,且浸出过程中氧化还原电位较低;两者的钝化机制不一样,黄铁矿型黄铜矿矿石的钝化膜为硫及其多聚物,而斑岩型黄铜矿矿石的钝化膜为富铜贫铁层,且富铜贫铁层对嗜酸氧化亚铁硫杆菌浸出黄铜矿的阻碍能力强于硫及其多聚物的。 Ying-bo Dong[4]等研究了嗜酸氧化亚铁硫杆菌ATF 6在两种黄铜矿矿石(黄铁矿型铜矿和斑岩型收稿日期:2014-12-17 1基金项目:国家自然科学基金项目51374249和国家重大基础研究项目(973)2010CB630903 作者简介:暨静(1991-),女,湖南长沙人,硕士研究生。

【采矿课件】第十二章矿物微生物浸出

【采矿课件】第十二章矿物微生物浸出 教学大纲要求 教学内容 本章要紧介绍了微生物粉冶金的差不多概念,细菌浸矿的作用机理,以及阻碍细菌浸出的要紧因素 。要紧内容包括: 1.矿物微生物浸出的差不多概念 2.浸矿微生物种类 3.微生的浸出的差不多原理 4.阻碍细菌浸出的要紧因素 教学时刻 6学时。 教学重点 1. 浸矿细菌的培养; 2. 微生物浸出的作用机理。 教学难点

微生物浸矿的要紧作用机制。 教学方法 课堂教学为主。 教学要求 把握浸矿微生物培养、选择方法,微生物浸出的要紧作用机制。 讨论 微生物冶金方法与传统冶金方法间的优劣。 教学参考书 1. 浸矿技术编委会,浸矿技术,北京:原子能出版社,1994. 2. 聂树人,索有瑞,难选冶金矿石浸金,北京:地质出版社,1997. 3. 童雄,微生物浸矿的理论与实践,北京:冶金工业出版社,1997. 4. 杨显万,邱定蕃,湿法冶金,北京:冶金工业出版社,1998. 12.1 固结过程的气体力学 简单叙述生物冶金和细菌浸出的差不多概念和进展状况。 12.2 浸矿微生物 教学内容 要紧内容包括浸矿微生物的种类、来源、生理生态特点,细菌的采集、分离、培养与驯化,细菌生 长规律,层透气性的差不多概念、透气性变化规律定量描述与阻碍料层透气性的要紧因素。 教学时刻 2学时。 本节重点

微生物的生长规律。 教学方法 课堂教学为主。 教学要求 了解浸矿细菌的种类、采集、培养、驯化过程,把握细菌生长的差不多规律。 12.3 微生物浸出差不多原理 教学内容 要紧内容包括微生物浸出的直截了当作用讲、间接作用讲和复合作用讲的内涵。教学时刻 3学时。 本节重点 微生浸矿的三种作用机制。 本节难点 不同作用机理之间的差异。 教学方法 课堂教学为主。 教学要求 熟练把握微生物浸矿的作用机制。 12.4 细菌浸出阻碍因素和浸出动力学 教学内容 要紧内容包阻碍微生物浸出各种因素以及浸出动力学规律。

微生物浸矿技术及其发展趋势简述

微生物浸矿技术及其发展趋势简述【摘要】本文简要介绍了微生物浸矿的作用机理,浸矿流程及工艺方法,微生物浸矿与传统技术相比所具有的优势,并探讨了了当前微生物浸矿技术存在的问题,最后根据我国当前的经济发展形势大胆猜测了微生物技术的发展方向。【关键词】生物浸矿;作用机理;流程;工艺方法;优势;发展方向20世80年代以来人类对矿物的需求量不断增加,矿床开采难度不断加大,同时环境法规日趋严厉,这就迫使人们不断开发新技术以期充分利用矿物资源。为此,科技人员从各方面(包括选矿设备和药剂生物技术等)进行了深入的研究并取得了巨大的发展,尤其是生物技术的研究与应用倍受人们的关注。 微生物浸矿是借助某些微生物的催化作用,使矿石中的金属溶解的湿法冶金过程,它特别适合于处理贫矿、废矿、表外矿及难采、难选、难冶矿的堆浸和就地浸出,并具有传统选矿方法所不具有的巨大优势,因此,微生物浸矿技术的研究进展及其应用越来越受到广泛地关注。 1 微生物浸矿机理 在金属硫化物矿物的微生物浸出体系中,金属的溶解一般认为包括以下三个方面的作用:(1)酸浸作用;(2)直接作用;(3)间接作用。 1.1酸浸作用 硫化物矿物的微生物浸出体系一般为pH值1.8-2.5的稀硫酸溶液,稀硫酸对固体矿物具有一定的化学溶解作用: 2MS+2H2SO4+O2 2MSO4+2H2O+2S 如果没有微生物的存在,化学溶解会因为硫酸得不到补充而逐渐减弱甚至停止。T.f菌适应环境后,可以氧化单质硫而提供硫酸: 2S+3O2+2H2O 2H2SO4 总反应为:MS+2O2MSO4 1.2 直接作用 直接作用是指吸附于矿物颗粒表面的细菌依靠细胞内特有的铁氧化酶和硫氧化酶对硫化物矿物的直接催化氧化,并从中得到能源和其它营养元素的浸出作用,直接作用需要细菌与矿物颗粒的直接接触。直接作用过程中发生的主要反应为:

第12章 矿物微生物浸出

第12章矿物微生物浸出 习题解答 1. 简述微生物浸出基本原理的基本原理。 【解】微生物浸出基本原理: (1)细菌浸出直接作用说:在有水和空气的条件下,受氧化铁硫杆菌作用,金属硫化矿会被细菌缓慢地氧化,在溶液之中,而当溶液中出现大量细菌时,浸出反应已经完成了。 (2)细菌浸出间接作用说:在有水和空气的条件下,受氧化铁硫杆菌作用,金属硫化矿会被细菌氧化成一种中间的产物,而这种产物再作用于矿物,达到浸出所要求的金属离子。 (3)细菌浸出复合作用说:既有细菌的直接作用,又有通过Fe3+氧化的间接作用。 2. 分析影响微生物浸出主要因素。 【解】细菌浸出影响因素: (1)细菌培养基组成的影响——除提供细菌所需要的营养外,还要提供细菌进行代谢活动所需的能源; (2)环境酸度的影响——浸矿用的硫杆菌属细菌,是一种产酸又嗜酸的细菌; (3)金属及非金属离子的影响——细菌培养基中含有数种微量金属离子,这些离子在细菌生长中起重要作; (4)铁离子的影响——低价铁Fe2+的氧化铁硫杆菌的能源,细菌将Fe2+氧化为Fe3+而获得能量,Fe3+是金属矿物的氧化剂,但是不能够太高,太高会引起水解生成氢氧化三铁; (5)固体物的影响——含固量(矿浆浓度)对细菌生长及矿石浸出效果影响很大; (6)光线的影响——可用紫外线灭菌,用于浸矿的细菌; (7)表面活性剂的影响——利用表面活性剂改善矿石中的亲水性和渗透性,达到加快浸出速度的目的;

(8)通气条件的影响——浸矿细菌为好氧菌,而且靠大气中的CO2作为碳源。所以在这类细菌的培养和浸出作业中,充分供气是很重要的; (9)催化金属离子的影响——大多数金属硫化矿的氧化反应速度都很慢。加入一些适当的催化离子,可使反应明显加快。 3.说明微生物菌种采集的一般方法及注意事项。 【解】微生物采集的一般方法和注意事项:取50~250mL细口瓶,洗净并配好胶塞,用牛皮纸包扎好瓶口,置于120℃烘箱灭菌20min,待冷却后即可作为细菌取样瓶,带取样瓶到上述矿山取酸性坑水。如矿坑水的pH值为1.5~3.5并呈棕色(说明有Fe3+存在),则很可能存在氧化铁硫杆菌。可对此水样进行取样分离培养。

晶体结构

第二章答案 1依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么? 答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。 离子键的特点是没有方向性和饱和性,结合力很大。共价键的特点是具有方向性和饱和性,结合力也很大。金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。范德华键是通过分子力而产生的键合,分子力很弱。氢键是两个电负性较大的原子相结合形成的键,具有饱和性。 2 等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙? 答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。 3 n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的? 答:n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。 不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。 4、已知Mg2+半径为0.072nm,O2-半径为0.140nm,计算MgO晶体结构的堆积系数与密度。 解:MgO为NaCl型,O2-做密堆积,Mg2+填充空隙。rO2- =0.140nm,rMg2+=0.072nm,z=4,晶胞中质点体积:(4/3×πr O2-3+4/3×πrMg2+ 3)×4,a=2(r++r-),晶胞体积=a3,堆积系数=晶胞中MgO体积/晶胞体积=68.5%,密度=晶胞中MgO质量/晶胞体积=3.49g/cm3。 5从理论计算公式计算NaC1与MgO的晶格能。MgO的熔点为2800℃,NaC1为80l℃, 请说明这种差别的原因。 、解:u=z1z2e2N0A/r0×(1-1/n)/4πε0,e=1.602×10-19,ε0=8.854×10-12,N0=6.022×1023,NaCl:z1=1,z2=1,A=1.748,nNa+=7,nCl-=9,n=8,r0=2.81910-10m,u NaCl=752KJ/mol;MgO:z1=2,z2=2,A=1.748,nO2-=7,nMg2+=,n=7,r0=2.1010m,uMgO=392KJ/mol;∵uMgO> uNaCl,∴MgO的熔点高。 6 解释下列概念: 晶系:根据晶体的特征对称元素所进行的分类。晶体根据其在晶体理想外形或综合宏观物理性质中呈现的特征对称元素可划分为立方、六方、三方、四方、正交、单斜、三斜等7类,是为7个晶系,分属于3个不同的晶族。高级晶族中只有一个立方晶系;中级晶族中有六方、四方和三方三个晶系;低级晶族中有正交、单斜和三斜三个晶系。晶体:是内部质点在三维空间成周期性重复排列的固体。或晶体是具格子构造的固体。 晶体常数:晶轴轴率或轴单位,轴角。 类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+分布在四面体空隙、而B3+分布于八面体空隙,称为正尖晶石;反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面体空隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。 晶胞:任何晶体都对应一种布拉菲格子,因此任何晶体都可划分出与此种布拉菲格子平行六面体相对应的部分,这一部分晶体就称为晶胞。晶胞是能够反映晶体结构特征的最小单位。

第2章 晶体结构

第2章晶体结构 为了便于对材料进行研究,常常将材料进行分类。如果按材料的状态进行分类,可以将材料分成晶态材料,非晶材料及准晶材料。因所有的晶态材料有其共同的规律,近代晶体学知识就是为研究这些共同规律而必备的基础。同时为了研究非晶材料与准晶材料及准晶材料也必须以晶体学理论做为基础。在一般的教材中对晶体学的基础知识已经有了不同深度的阐述,作为辅导教材,对教科书上已经有较多阐述的内容,本章中就简要的进行说明,而重点在于用动画形式,将在教材中难以用文字表达清楚的内容进行较多的阐述,加深对教材内容的理解记忆 2.1晶体学基础 2.1.1 空间点阵和晶胞 具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。将晶胞作三维的重复堆砌就构成了空间点阵。 为了便于分析研究晶体中质点的排列规律性,可先将实际晶体结构看成完整无缺的理想晶体并简化,将其中每个质点抽象为规则排列于空间的几何点,称之为阵点。这些阵点在空间呈周期性规则排列并具有完全相同的周围环境,这种由它们在三维空间规则排列的阵列称为空间点阵,简称点阵。同一空间点阵可因选取方式不同而得到不相同的晶胞 <晶胞、晶轴和点阵矢量> 根据6个点阵参数间的相互关系,可将全部空间点阵归属于7种类型,即7个晶系。按照"每个阵点的周围环境相同"的要求,布拉菲(Bravais A.)用数学方法推导出能够反映空间点阵全部特征的单位平面六面体只有14种,这14种空间点阵也称布拉菲点阵。

空间点阵是晶体中质点排列的几何学抽象。 1 空间点阵 最初人们认为凡是具有规则外形的天然矿物均为晶体。但现在人们认识到晶体的规则的几何外形是内部结构规律的外在反映. 近代的科学研究表明了下面的两个基本事实: 1)如果说某一种材料是晶体,其基本的特征是:组成该材料的内部的微观粒子(原子,分子,离子等)在三微的空间做有规则的周期性的排列。 2)这种排列的规律决定了材料的性能。 根据这样的事实我们可以抽象出个的重要概念即空间点阵。为了清楚地表明原子在空间排列的规律性,常常将构成晶体的实际质点抽象为纯粹的几何点,称之为点阵或节点。 2 晶胞 1 晶胞定义 晶胞:单位格子圈出的晶体结构.即将单位格子中的格点换成基元该格子就成为晶胞. 图2-2 2 晶格常数 晶胞的边长度一般称为晶格常数或点阵常数,在X,Y,Z轴上分别以表示。 3 棱间夹角 晶胞间夹角又称轴间夹角,通常用Y-Z轴,z-x轴和x-y轴之间的夹角分别用表示. 2.1.2 晶向指数和晶面指数 为了便于确定和区别晶体中不同方位的晶向和晶面,国际上通用密勒(Miller)指数来统一标定晶 向指数与晶面指数。

相关主题