搜档网
当前位置:搜档网 › 演算工房盾构隧道自动测量系统说明

演算工房盾构隧道自动测量系统说明

演算工房盾构隧道自动测量系统说明
演算工房盾构隧道自动测量系统说明

再始发时系统调是基本程序说明

再始发时系统调是基本程序说明

1.首先请将旧的资料备份到其他的硬盘空间

2.进入D:\ARiGATAYA\IHI-TJ-411\下执行FileInit.exe(如下图)

选取 全部选择 后单击 执行 将旧有资料清除

3.接着将计划线资料转换至系统中

请先准备好计划线资料同附件中的20080225.csv

接着执行senkei.exe(出现如下图)

请在Input File 下输入 准备好的档名20080225.csv

之后 单击RUN 则在该目录下会出现一新档案 PlnDvlp.csv

接着将此档案复制到 D:\ARiGATAYA\IHI-TJ-411\MESU 下覆盖之前的旧档 完成后将电脑重起即完成 计划线输入 (请注意计划线的正确性)

4.棱镜的几何关系在设定

首先打开TargetCalc2(hantai).exe 如下图

请将基本资料及棱镜绝对座标的部份依照实测值输入 其中平移长度请输入0即可 请注意高程测设部份 (天宝 和 莱卡 全站仪 棱镜不共用所以系数也不同)

都输入完成后 单击 计算 (坡度和转度 请须确认和盾构上的已经调适到一样) 则 棱镜几何座标会出现计算结果 接着将结果输到下面的画面中

此画面中 名称部份请勿修改 输入后按保存即可 5.接着 将站点和后视点座标往系统里输入

6.修正 目前盾构的最新积累距离TD

将积累距离TD的当前值 修改成目前盾构的积累距离 则完成调适

隧道监控量测技术

1隧道监控量测的定义:隧道现场监控量测是指在隧道施工过程中,对围岩和支护、衬砌受力状态的量测。现场监控量测是监视围岩稳定,判断支护、衬砌结构设计是否合理,施工方法是否正确的一种手段;也是保证新奥法安全施工、提高经济效益的重要条件;为施工中可能有的工程变更提供科学依据;它贯穿隧道施工的全过程。为此《公路隧道施工技术规范》(JTJ 042-94)中第9.1.1条作出下列规定:采用复合式衬砌的隧道,必须将现场监控量测项目列入施工组织设计,制定监控量测计划,并在施工中认真实施。 2、监控量测的目的与要求:量测的目的为: ⑴掌握围岩动态和支护结构的工作状态,利用量测结果修改设计,指导施工. ⑵预见事故和险情,以便及时采取措施,防患于未然. ⑶积累资料,为以后的新奥法设计提供类比依据. ⑷为确定隧道安全提供可靠的信息 ⑸量测数据经分析处理与必要的计算和判断后,进行预测和反馈,以保证施工安全和隧道稳定. 量测的要求:快速埋设测点.(一般设置在距掌子面、工作面2m范围内,开挖后24小时、下次爆破前测取第一次读数。)测量读数在隧道内尽量要快;保证测量点不被破坏;读数准确可靠。 3监控量测的任务:⑴确保安全。⑵指导施工。⑶修正设计。⑷积累资料。 4现场工作程序:准备工作;确定埋设断面;测点埋设;数据采集;数据整理分析;资料归档 5监控量测的项目与方法:隧道监控量测的内容应根据隧道工程地质条件,围岩类别(级别)、围岩应力分布情况、隧道跨度、埋深、工程性质、开挖方法、支护类型等因素确定。通常分为必测项目和选测项目,如地表下沉对城市地铁项目应为必测项目;但对于山地交通隧道可把地表下沉做为选测项目。《公路隧道施工技术规范》(JTJ042-94)对复合式衬砌的隧道现场监控量测要求内容见5.4下表 5.1监控量测的项目与方法:必测项目选测项目 5.2必测量测项目:必测项目:必测项目:包括围岩地质和支护描述、地表沉降观测、拱顶下沉量测、周边收敛量测。这类量测是为了在设计、施工中确保围岩稳定的经常性量测工作。量测方法简单,量测密度大,量测信息直观可靠,费用较少,贯穿在整个施工过程中,对监视围岩稳定,指导设计和施工有巨大的作用。土建施工完成量测工作亦告结束。 5.3必测量测项目所需设备:精密水准仪、塔尺、钢圈尺(测地表沉降、拱顶下沉);周边收敛仪(测周边收敛)。 5.4隧道现场监控量测要求内容表: 5.5地质、支护状态观察:该项目包括对掌子面观察和支护结构的支护效果观察。掌子面工程地质和水文 地质情况观察包括岩石的名称、岩层产状、断层、层理、节理等结构面的分布、走向、产状。每茬炮后需要观测一次。支护状态观察包括初期支护状态和已成峒支护效果观察。如喷射砼开裂部位、宽度长度及深度。二次衬砌的整体性、防水效果等,每天观察一次。洞内状态观察是可靠性很高且最直接的判断资料。 对洞外边仰坡稳定和地表渗透观察按要求进行描述;做好相关的观察记录。观察使用地质罗盘、地质锤、钢卷尺、放大镜、秒表、手电、照相机或摄像机等。 5.6 周边收敛量测:5. 6.1必测量测项目:围岩周边位移量测:在预设点的断面,隧道开挖爆破以后,沿隧道 周边的拱顶、拱腰和边墙部位分别埋设测桩。测桩埋设深度30cm,钻孔直径φ42,用快凝水泥或早强锚固剂固定,测桩头需设保护罩,测桩每断面6组共12根。采用钢尺式周边收敛仪量测周边收敛变形。所有测点布置在量测断面位置。 ①周边收敛量测是最基本的主要量测项目之一,布置在主测断面。先在测点处用凿岩机(或电钻)在待测 部位成孔,然后将藕合剂(锚固剂)置入孔中,最后将收敛预埋件敲入,旋正收敛钩,尽量使两预埋件轴线在基线方向上,以利收敛计悬挂和观测。待凝固后,周边收敛量测采用收敛计进行数据采集。 连拱必测项目测点断面布置图 我们用测线布置图中的BC和DE边的值变化来实现对净空水平收敛的量测。周边收敛数据处理:回归分析时,一般同时采用下面的三种函数,通过对比,推算最终位移时采用三个函数中回归精度(拟合程度)较高的一个函数,不同测点的回归函数可能不同。

工程测量毕业论文 隧道监控量测技术应用

毕业设计 隧道监控量测技术应用 系部测绘工程系 专业名称工程测量 指导教师 学生姓名

毕业设计(论文)任务书学生用表. 日月年指导教师签名: 摘要 随着我国改革开放不断深化,国民经济蓬勃发展,在山区公路建设中突破过去传

统的修路思想,不采取盘山绕行,不破坏沿线生态环境,不增长公路里程用设置隧道避免因采取高边坡路基带来的滑坡、塌方、滚石、泥石流等自然灾害,确保了行车的安全可靠,亦缩短了行车时间,同时又适应了建设与自然的和谐发展。由于隧道工程的特殊性、复杂性和隧道围岩的不确定性,对隧道围岩及支护结构进行监控量测是保证隧道工程质量、安全的必不可少的手段。通过量测,及时对隧道个别围岩失稳趋势的区段提供了预报,为施工单位及时调整支护参数以及合理确定二次衬砌时间提供了可靠的科学依据。通过大量量测发现隧道开挖及初期支护后大约30d围岩基本上稳定,于是建议施工单位及时施作二次衬砌。同时由于监控措施得当,及时的指导施工和修改设计,从而保证了隧道施工的安全、经济、收到了良好的效果。但由于监控量测工作是一项具体而又复杂的工作,在实际过程中尚需不断积累经验和完善相关理论。 此论文是本生于2010年十月~2011年四月于中铁十一局四公司京福闽赣Ⅰ标第一项目部从事监控量测工作时所写。 关键词理处据数,降沉表地,测量控:隧道施工,监. 目录 第一章工程概况 (6) 1.1 工程概况 (6) 1.2工程地质及水文特征 (7) 1.3 地震动参数 (7) 第二章人员仪器配置 (8) 2.1监控量测人员配备 (8) 2.2监控量测仪器配备 (8) 第三章监控量测基本规定 (9) 3.1监控量测设计内容 (9) 3.2对施工单位要求 (9) 3.3现场监控量测工作主要内容 (9) 3.4 注意事项 (9) 第四章监控量测技术要求 (11)

隧道围岩监控量测技术

隧道围岩监控量测施工技术 孟朋伟,何俊华 (中铁十二局柳南二项目部) 摘要:隧道围岩监控量测是铁路隧道设计文件的重要组成内容,也是铁路隧道施工作业中关键的重要环节。在铁路隧道工程中,隧道围岩监控量测技术获得了广泛的应用,并取得了明显的技术经济效果。隧道围岩监控量测施工技术在隧道内施工过程中,使用专用的仪器、设备,对围岩和支护结构的受力、变形进行观测,并对其稳定性、安全性进行评价,以坛碰1#隧道的成功实例,确保了在隧道施工中顺利贯通。 关键字:沉降观测埋设观测数据分析 1、工程概况 1.1 隧道设置 坛碰1#隧道全长758米,进洞里程为DK721+180,出口里程为DK721+938。隧道进口位于直线上,出口段位于曲线上,隧道纵坡为单面上坡,全隧坡度为11.9‰。 本隧道Ⅳ级围岩230米,Ⅴ级围岩528米。Ⅴ级围岩分别是:DK721+180~DK721+210、DK721+210~DK721+347、DK721+497~DK721+582、DK721+662~DK721+782、DK721+782~DK721+893、DK721+893~DK721+923;Ⅳ级围岩分别是:DK721+347~DK721+497、 DK721+582~DK721+662。 1.2隧道地质情况 1.2.1 地形地貌 测区属低山丘陵地貌,海拔高程97~190m,山坡自然坡度10°~30°,隧道埋深50~80m,地形起伏较大,植被一般,测段覆土较薄。 1.2.2 地质构造 隧道位于昆仑关复式背斜内,岩层层理产状变化较大,岩体节理发育,岩体被切割成块状、碎块状。 1.2.3 水文地质特征 测段内地下水以孔隙潜水。基岩裂隙水为主。受大气降水及地表水补给。地下水较发育。 1.2.4 不良地质及特殊软土 隧道不良地质为顺层。特殊为软土。 1.2.5 工程地质条件评价 隧道区覆土薄,岩层软硬不均,风化层较厚,岩层产状变化较大,倾角较缓,岩体节理发育,地表出露风化带岩体被切割成块状或碎块状,洞身地表冲沟发育,进出口及浅埋地段风化厚度大。 2、隧道围岩监控量测编制依据 2.1编制依据: 2.1.1《铁路隧道围岩监控量测测量技术规程》JB 10212 - 2007 2.1 .1《隧道设计图》

盾构机激光导向测量系统原理研究

盾构机激光导向测量系统原理研究 盾构机激光导向测量系统原理研究 摘要:以我公司在某工程使用的海瑞克S481盾构机为例,介绍该盾构机配套的激光导向测量系统的组成,探讨该激光导向系统的工作过程,从测绘学角度,研究该激光导向系统的工作原理。 关键字:盾构施工盾构机导向测量系统姿态 中图分类号:V556文献标识码: A 引言 目前,盾构法已成为我国隧道施工的一种主要方法,包括地铁隧道,电缆隧道,大的输水隧洞,伴随着激光、计算机及自动控制等技术的发展成熟,激光导向测量系统得到成功运用和发展。我国盾构施工技术自20世纪50、60年代引进以来,在许多领域有了进步和发展,但在激光导向系统方面,尤其是测绘学原理方面研究不深,在一定程度上影响了盾构施工对隧洞中心轴线控制,而且对我国自行研发也不利。 全面理解激光导向系统的测量原理,有助于工程技术人员在盾构施工中解决问题,保证隧道中心轴线和准确贯通。 1、盾构机激光导向系统组成及其作用 激光导向系统是综合运用测绘技术、激光传感技术、计算机应用技术以及机械电子等技术指导盾构施工的独立运行体系,它主要由:(1)激光全站仪(激光发射和接收源、距离和角度量测设备)和黄盒子(信号传输和供电装置,共2个);(2)激光接收靶(内置光栅和横、竖向测斜仪)和小棱镜;(3)主控室的中继箱、工业电脑(包括安装的软件)、PLC;(4)油缸伸长量测量装置等。海瑞克盾构机激光导向系统核心是VMT测量系统软件。 在整个盾构施工过程中,激光导线测量系统起着非常重要的作用,它比作盾构机的“眼睛”,如下图2-1盾构施工基本过程图所示,盾构机激光导向系统贯穿整个盾构施工过程: 在测量系统工业电脑上动态显示盾构机轴线相对于隧道设计轴

盾构现场施工隧道监测方法

精心整理上海长兴岛域输水管线工程盾构推进 环境监测 技术方案

目录 一工程概况 二盾构推进对周边环境影响程度的分析和估计三监测施工的依据 四监测内容

上海长兴岛域输水管线工程盾构推进环境监测技术方案 前言 科学技术的发展与试验技术的发展息息相关。历史上一些科学技术的重大突破都得益于试验测试技术。因此,试验测试技术是认识客观事物最直接、最有效的方法,也是解决疑难问题的必要手段,试验测试对保证工程质量、促进科学的发展具有越来越重要的地位和作用。测量技术在土建工程中同样占有重要地位,它在各类工程建筑,尤其是在地下工程中已成为一个不可或缺的组成部分。随着科学技术的发展,测量的地位更显关键和重要。早期地下工程的建设完全 工作井相连。 输水管线总长约10563.305m,其中东线长5280.993m,西线长5282.312m。全线最小平曲线半径为R=450m;最大纵坡为8.9‰。具体详见下表。

施工工序,第一台盾构自原水过江管工作井始发推进(东线)至中间盾构工作井进洞后盾构主机解体调头,继续西线隧道推进施工。第二台盾构自中间盾构工作井始发推进(东线)至水库出水输水闸井进洞后盾构转场回中间盾构工作井,继续进行西线隧道推进施工。总体筹划详见下图: 二盾构推进对周边环境影响程度的分析和估算 因很复杂,其中隧道线形、盾构形状、外径、埋深等设计条件和土的强度、变形特征、地下水位分 V l S (x )i Z -地面至隧道中心深度。 φ-土的内摩擦角。 在已知盾构穿越的土层性质、覆土深度、隧道直径及施工方法后,即可事先估算盾构施工可能引起的地面沉降量,同时可及时地采取措施把影响控制在允许范围内。在推进过程中根据盾构性能及监测数据及时调整施工参数,控制变形量,确保周边环境的绝对安全,实现信息化施工。 三监测施工的依据 3.1技术依据 1) 上海长兴岛域输水管道工程技术标卷(甲方提供)

现代高新技术在隧道监控量测的应用分析

第五节新技术的示范试点 为解决隧道建设过程中关键数据的快速感知、安全风险的动态评价与反馈等关键问题,选取试点工程进行示范,通过积极应用激光、图像、红外、光纤或其他自主研发的新型自动化巡查感知技术与装备,动态快速感知掌子面围岩特征、变形和支护质量状态,提高施工过程中安全状态的感知效率与精度,有效降低施工安全风险,消除重大安全隐患,减少因工期延长、安全风险产生的经济损失,有效控制意外事故的影响。示范工作将直接指导本项目公路隧道建设,还可推广应用至全国类似隧道工程的建设。通过在代表性隧道区段进行新技术创新应用,达到以下预期成效: 1)动态感知隧道掌子面围岩特征,包括发育节理的倾角/间距迹长、夹层或断层宽度及倾角等参数:快速分析围岩稳定状态,及时反馈临空面失稳区域、关键风险源,有效指导施工过程中的隐患排查和风险管控工作; 2)自动化观测识别软弱围岩段掌子面围岩变形,提前预测软弱围岩段开挖面鼓出变形、溜塌风险: 3)沿隧道轴向、环向空间覆盖式的动态感知隧道初期支护轮廓状态与钢拱架间距,分析初期支护轮廓、变形状态及超欠挖情况,解决现有技术检测断面少、数据误差大等问题。 现代高新技术在隧道监控量测的应用分析监控量测是隧道工程施工中的重要工序,作为保障隧道施工安全,验证和调整施工方法和支护参数的重要手段,隧道监控量测具有以下几个特点:量测设备的可靠性和量测数据的准确性、量测信息发布的及时性和广泛性。随着现代高新技术的发展,并应用与监控量测技术的开发研究和创新上,有效减少了测量人力资源的投入,节约成本,提高效率;同时具有数据精度高、可靠性强、数据处理及信息发布及时、自动化、网络化的优点,为隧道信息化施工提供有力保障。 0 综述 公路隧道施工监控量测是保障隧道施工安全的重要信息基础。公路隧道施工监控量测分选测项与必测项,必测项洞内外观察、周边位移、拱顶下沉、地表下沉和拱脚下沉五项,通过监控这五项参数可掌握围岩动态和支护结构的工作状态,对量测数据经过分析处理后,可用来预测围岩变形趋势,来验证和修改设计支护参数,从而采取相应的施工措施,科学的组织和指导施工,保证隧道施工安全。随着现代高新技术的发展,并应用与监控量测技术的开发研究和创新上,越来越多高效的数据采集和处理手段产生。 目前比较高新的监控量测技术主要是将传统的隧道变形监测系统和互联网技术、移动设备技术有机的结合起来,设计一套全自动监控测量设备及云监控平台,实现对隧道初期支护变形的自动连续监测。自动监控量测设备实时采集数据,将数据通过物联网传输到监控中心进行分析、处理并自动预报预警。相比通过测量人员定时到现场测量的方式,自动监控量测技术能连续监测隧道变形情况,避免了人为测量隧道变形数据时对监测数据的篡改,能够自动及时预报预警,具有连续性、真实性、

VMT自动导向系统在盾构法施工中的应用

VMT自动导向系统在盾构法施工中的应用 摘要利用自动仿真技术,结合应用广泛的测量仪器,针对盾构法地铁施工,采用无线数据传输功能,方便、快捷地将盾构机掘进姿态以图形和文字的双重效果实时显示在计算机屏幕上,指导盾构机操作手调整盾构掘进参数,可真正实现操作可视化、同步化。 关键词控制测量联系测量导向系统盾构法地铁施工 1引言 盾构法施工工艺目前已经被绝大多数城市轨道交通工程予以采用。本文通过对国内城市轨道交通盾构法施工工艺的研究及成都地铁1、2 号线一期工程的实践,介绍地铁盾构施工中的控制测量、联系测量、盾构机自动导向系统,其中重点介绍海瑞克盾构机配置的VMT 导向系统的应用和研究。 2控制测量 2.1 平面控制测量 2.1.1 平面控制测量概述 地铁施工领域里平面控制网分两级布设,首级为GPS 控制网,二级为精密导线网。施工前建设单位提供一定数量的GPS 点和精密导线点,施工单位根据自身需要在标段范围内加密导线点,以满足在施工过程中测设工作的需要。 2.1.2 地面平面控制测量 在业主交接桩后,施工单位要对所交桩位进行复测,同时在所交桩的基础上加密精密导线点;特别是在始发井附近,一定要保证有足够数量的控制点。 控制测量采用导线边角测量方法进行,测量仪器应符合下列精度要求:角度≧2″,距离≧1.5 mm+2×10-6D/2.4s,人工测量应不低于4 个测回。 2.1.3 地下平面控制测量 洞内导线控制网是隧道掘进的基本框架,洞内施工控制导线一般采用双支导线的形式向前传递,然后将双支导线最前点连接起来,构成复合导线的形式。如果是在满足条件的成型隧道内,应尽量构成三角控制网的形式进行测设。测量精度要求同于地面测量。 洞内控制导线点一般采用在隧道最大跨度附近安装强制对中托架,这样测量起来非常方便,且可以提高对中精度,同时不影响洞内运输。 2.2 高程控制测量 2.2.1 高程控制测量概述 高程控制测量主要包括地面精密水准测量和高程传递测量及洞内精密水准测量,在一般情况下,城市地铁领域里的精密水准测量按城市二等水准测量标准施测。 2.2.2 地面高程控制测量 在业主交桩后,应及时对桩位进行复测,同时在标段范围内加密高程控制点,在始发井附近不得少于 1 个,根据情况也可以用导线点作为高程加密点。 2.2.3 地下高程控制测量 由于成型隧道一般都需要进行水平运输,底部铺设了钢轨,所以在布设洞内高程控制点时一定要确保点位不能突出最低轨面,否则很容易被电动机车破坏;但也不应过低,应避免被隧道底部淤泥掩埋,造成不必要的重测。 2.3 联系测量 2.3.1 联系测量概述

隧道围岩监控量测

山西中南部铁路通道ZNTJ-1标 第四项目部隧道围岩监控量测 测量负责人:罗科 技术负责人:武飞龙 工程负责人:董俊瑞 中铁十二局第四项目部 二〇一〇年八月十三日

监控量测实施方法说明 一、围岩量测的目的 现场监控量测是隧道施工管理的重要组成部分,它不仅能指导施工,预报险情,确保安全,而且通过现场监测获得围岩动态的信息(数据),为修正和确定初期支护参数,混凝土衬砌支护时间提供信息依据,为完善隧道工程设计与指导施工提供可靠的足够的数据。 二、编制依据 (1)《铁路隧道监控量测技术规程》(TB10121-2007) (2)山西中南铁路通道隧道施工图,隧道参考图。 三、适用范围 适用于冯家墕隧道、程家塔隧道、姚好塔隧道、刘家曲隧道、王家会隧道、曹家坡道围岩监控量测。 四、量测项目 隧道监控量测的项目根据工程特点、规模和设计要求综合选定,量测项目可分为必测项目和选测项目两大类。监控量测工作要求必须紧跟开挖、支护作业。

按设计要求布设测点,并根据具体情况及时调整或增加量测的内容。根据本段隧道的特点,本段隧道必测项目包括:⑴洞内、外观察;⑵水平净空变化;⑶拱顶下沉。选测项目包括:洞顶地表下沉量测。 五、量测方法和要求 根据设计文件、结合铁路隧道监控量测技术规程,制定本段隧道围岩量测方案。拱顶下沉、收敛量测起始读数宜在开挖后3~6h内完成,其他量测应在每次开挖后12h内取得起始读数,最迟不得大于24h,且在下一循环开挖前必须完成。 测点应牢固可靠、易于识别,并注意保护,严禁损坏。观测周期及观测时间根据现场实际情况确定。 观测计划及观测方案应征得监理批准,观测结果异常时应立即报设计单位拿出处理意见,情况紧急时,应果断采取措施,确保施工安全。 测试中按各项量测操作规程安装好仪器仪表,每测点一般测读二次,取算术平均值作为观测值;每次测试都要认真做好原始数据记录,并记录开挖里程、支护施工情况以及环境温度等,保持原始记录的准确性。各项量测作业均应持续到变形基本稳定后2~3周后结束。具体方法和要求下表。

盾构测量

内容提要:通过广州轨道交通四号线大学城专线隧道盾构掘进的实践,介绍了地铁盾构施工中的控制测量、联系测量、VMT导向系统、盾构姿态人工检测、管环检测的技术和经验,其中VMT导向系统的应用和维护及经验教训是本文介绍的重点。 关键词:平面控制、高程控制、联系测量、导向系统、盾构姿态、管环检测 1控制测量 1.1平面控制测量: 1.1.1平面控制测量概述: 地铁施工领域里平面控制网分两级布设,首级为GPS控制网,二级为精密导线网。施工前业主会提供一定数量的GPS点和精密导线点以满足施工单位的需要。施工单位需要做的是在业主给定的平面控制点上加密地面精密导线点,然后是为了向洞内投点定向而做联系测量,最后是在洞内为了保证隧道的掘进而做施工控制导线测量。不管是地面精密导线还是洞内施工控制导线都是精密导线测量,虽然边长不满足四等导线的要求,但是基本上是采用四等导线的技术要求施测,其中具体技术要求在《地下铁道、轻轨交通工程测量规范》都有规定。 1.1.2地面平面控制测量: 在业主交接桩后,施工单位要马上对所交桩位进行复测。业主交桩数量有限,不一定能很好地满足施工的需要,所以经常要在业主所交桩的基础上加密精密导线点,以方便施工。特别是在始发井附近,一定要保证有足够数量的控制点,不少于3个。其具体技术要求在《地下铁道、轻轨交通工程测量规范》都有规定。 1.1.3 洞内平面控制测量 洞内施工控制导线一般采用支导线的形式向里传递。但是支导线没有检核条件,很容易出错,所以最好采用双支导线的形式向前传递。然后在双支导线的前面连接起来,构成附合导线的形式,以便平定测量精度。洞内施工控制导线一般采用在管片最大跨度附近安装牵制对中托架,测量起来非常方便,且可以提高对中精度,还不影响洞内运输。强制对中托架尺寸形状要控制好,以便可以直接安装在管片的螺栓上面,不需要电钻打眼安装。由于盾构施工一般都是双线隧道错开50环左右掘进,如果错开环数很大,后面掘进的盾构机由于推力很大,会对前面另一个洞的导线点产生影响。特别是在左右线间距较小岩层很软时,影响很大,很容易导致测量出大错。还有就是如果在曲线隧道里,管片上的导线点间的边角关系经常受盾构机的推力和地质条件的影响,所以要经常复测。 1.2 高程控制测量: 1.2.1高程控制测量概述:

监控量测在地铁区间隧道盾构施工中应用

庞旭卿:监控量测在地铁区间隧道盾构施工中应用 监控量测在地铁区间隧道盾构施工中应用 庞旭卿1,2 (1.陕西铁路工程职业技术学院,陕西渭南714000;2.长安大学地测学院,西安710054) 【摘要】在地铁区间主体、车站、及附属结构施工中按照设计及规范要求采用科学先进、准确可靠的监测手段及时反馈信息指导施工,是确保施工安全的关键。针对深圳地铁5号线盾构施工区间隧道地质条件较差的特点,就盾构施工监控量测工艺流程及盾构施工测量、监测质量保证措施进行设计,保证了盾构隧道工程安全经济顺利地进行。 【关键词】地铁;区间隧道;盾构;监控量测 【中图分类号】U231;U45【文献标识码】B【文章编号】1001-6864(2011)09-0107-02 盾构法是地下隧道的一种施工方法,对地层的适应性也越来越好,因此在地下工程(尤其是地铁区间)中被广泛采用[1]。然而,在软土层中采用盾构法掘进隧道,会引起地层移动而导致不同程度的沉降和位移,因此,通过盾构法施工地铁中监控量测的实施及信息反馈,对控制周围位移量、确保临近建筑物的安全是非常必要的[2]。 1工程概况 深圳地铁5号线线路全长40.933km,区间以盾构施工为主。工程地质与水文地质条件复杂,有特殊土等不良地质现象,特别是淤泥层较厚,地下水丰富。含水层主要为砂层,结构松散,自稳性差,透水性强,施工中易发生坍塌、涌水、涌砂、变形、失稳等现象。临近地面建筑物多,施工干扰大;围护结构受土的侧压力后有向内收缩的趋势,钢管支撑预应力施加的控制难度大,预应力大则围护结构外扩,不够则围护结构收缩。 2盾构施工监控量测 2.1监测项目 主要包括:地表隆陷、隧道隆陷、土体内部位移、衬砌环内力和变形、土层压应力等[3]。具体内容详见表1。 表1盾构隧道施工监测项目汇总 序号监测项目量测器工具测点布置监测目的与要求量测频率 1地表隆陷水准仪每30m设一断面,过既有建筑物时加密每10m一断面 2隧道隆陷水准仪、钢尺5m设一断面 3周边净空 收敛位移 收敛仪 每5 50m一个断面, 每断面1 3个测点 4管片裂缝观察、目测 5管片实际 位置监测 水准仪每环 监测隧道施工引起的地 表变形、隧道变形情况, 确保施工安全。 掘进面前后<20m时测1 2 次/d,掘进面前后<50m时测1 次/2d,掘进面前后>50m时测1 次/周 随时观察 每天 2.2施工监测工艺流程 隧道与土体变形监测成果是确定盾构机掘进参数的重要依据,为保证盾构机正常掘进,信息化施工是重要手段,盾构区间施工监测的工艺流程如图1所示。 2.3施工监测实施 (1)测点布置:如图3 图5所示。地面沉降(隆陷)监测点布置:根据隧道通过的围岩条件布置测点,一般地段30m设一断面。 地面沉降观测点的观测周期:盾构机机头前10m和后20m范围每天早晚各观测一次,并随施工进度递进[4]。每次观测点应与上一次观测点部分重合,以做比较,掘进前后50m范围内两天观测一次,范围之外的检测点每周观测一次,直至稳定。当沉降或隆起超过规定限差(-30/+10mm)或变化异常时,应加大监测频率和检测范围。并将信息及时传递给有关部门。 监测方法:用精密水准仪进行测量。 监测要点:监测时严格按照GB12987-91国家二等水准测量规范执行,沉降点复测周期按照《城市测量规范》执行。 数据处理:地表沉降监测随施工进度进行,并将各沉降点沉降值存入计算机监测管理管理系统汇总成沉降变化曲线、沉降速度变化曲线统一管理,绘制报表。 (2)隧道隆陷。每5m设一断面;周边净空收敛位移测量:每10 20m设一断面。监测方法:用收敛仪测量。测量精度:?1mm。数据处理:监测值存入计算机监测管理系统统汇总成位移变化曲线、位移速度变化曲线统一管理。 (3)管片裂缝。监测方法:观察、目测。监测要点:发 701

隧道监控量测观测标埋设要求(仅供参考)

一.地表沉降监测点 在与隧道中线垂直的横断面上布置监控量测测点,间距2~5m,在一个断面上布置7~11个点,靠近中线位置测点适当加密,量测范围为中线两侧不小于HO+B,明挖段量测范围为基坑开挖边线两侧不小于3倍开挖深度。其测点布置如下图所示。

地表沉降测点纵向间距 测点埋设:在地表开挖90cm 深基坑,浇筑混凝土基础,同时放入长300mm ,直径22mm 的圆头钢筋,外露5mm ,四周填实。在开挖影响范围以外设置水平基准点2~3个,水平基准点埋设方法见"基准点布置示意图"。 基准点布置示意图(单位cm )

二.洞内监控量测 1.洞内观察 开挖后及初支后及时采用肉眼观察和地质罗盘仪对开挖面揭示的地质情况进行描述,包括围岩岩性、岩质、断层破碎带、节理裂隙发育程度和方向、有无松散坍塌、剥落掉块现象、有无渗漏水等;初期支护状态包括喷层是否产生裂隙、剥离和剪切破坏、钢支撑是否压屈进行观察分析。详细描述、记录、并予以评估,作为支护参数选择的参考及量测等级选择的依据。 2.洞内净空收敛监测点 净空收敛点量测断面间距根据围岩级别、隧道断面尺寸、埋置深度及工程重要性确定,参考下表确定。 必测项目监控量测断面间距表 净空收敛量测点距开挖面应小于1~2m,在每次开挖后尽早埋设读数,初始读数应在开挖后12h内读取,最迟不得大于24h,而且在下一循环前必须完成初期支护变形的读数。

测线布置和数量与地质条件、开挖方法、位移速度等因素有关,本段隧道施工工法包括全断面法、台阶法、三台阶法、三台阶临时仰拱方法、六步CD法,其主要布置形式见图“拱顶下沉和净空收敛测线布置图” 3.拱顶下沉监测点 拱顶下沉量测断面间距、量测频率、初读数的测取等同收敛量测。每个断面布置1~3个测点,测点设在拱顶中心或其附近。量测时间应延续到拱顶下沉稳定后。主要布置形式见图“拱顶下沉和净空收敛测线布置图” 洞内监控量测点不得焊于钢拱架上,必须单独打孔直接安装于岩体中,预埋测点由钢筋加工而成,采用冲击电锤或风钻钻孔,埋入钢筋采用直径不小于16mm的螺纹钢,前端外露钢筋(外露部分不得小于6mm)与正方形钢板焊接(60*60),然后贴上反射膜片(50*50)。测点用快凝水泥或锚固剂与围岩锚固稳定,埋入围岩深度不小于20cm,若围岩破碎松软,应适当增加测点埋入深度不得小于50cm。

盾构导向系统横向比较

盾构导向系统横向比较 1、比较的导向系统 SLS-T 盾构导向系统(简称SLS-T ) MTG-T 盾构导向系统(简称MTG-T ) ROBOTEC 盾构导向系统(简称ROBOTEC ) ZED GLOBAL 盾构导向系统(简称ZED GLOBAL ) PPS 盾构导向系统(简称PPS ) RMS-D 盾构导向系统(简称RMS-D ) 2、关键技术 1.1系统原理 1.1.1 激光靶系统 图1激光靶偏航角测量示意图 如图1所示,激光靶的关键技术是精确感应激光束与激光靶轴线间的偏航角度,激光靶集成有精密角度传感器,能精确测定激光靶的转动角及俯仰角。 1.1.2 棱镜系统 图2棱镜技术原 如图2所示,棱镜技术是通过测量安装在盾构机上的两个棱镜及盾构机的转动角,通过数学 激光束 激光靶 偏航角 激光靶轴线

的方法计算盾构的位置姿态。 1.1.3 两种原理的差别 安装 1)、激光靶安装 图3 激光靶安装 激光靶系统在盾构机上仅需安装一个激光靶设备,易于安装、保护和维护。 2)、棱镜安装 图4 棱镜安装 除安装两个开关棱镜外,还需要安装一个角度传感器,共在盾构机上安装三个设备,每个设备需要供电及通讯。 通视状况 1)、激光靶系统

图5 激光靶通视状况 激光靶系统具有较好的通视距离,可很好的应用于狭窄测量通道的盾构机及小型盾构机。2)、棱镜系统 图6 棱镜系统通视状况 棱镜系统易发生棱镜被遮挡的情况,在狭窄测量通道的盾构机上应用受限,不能应用于小型盾构机。 测量精度及稳定性 1)、激光靶系统 方位角:0.25~0.5mm/m; 俯仰角:0.18~0.5mm/m; 转动角:0.18~0.5mm/m; 位置:1mm 测量结果稳定性:稳定。 2)、棱镜系统 方位角:与棱镜之间的距离有关; 俯仰角:0.18~0.5mm/m; 转动角:0.18~0.5mm/m; 测量结果稳定性:与棱镜安装位置有关。

盾构工程施工测量和监控量测方案

盾构工程施工测量和监控量测方案 1 施工测量 1.1 控制测量 为确保施工控制点的稳定可靠,测量与相邻标段测量点联测闭合,对地面首级和二级控制网点进行同等精度的复测工作。 (1)复测 按照招标文件的要求及《城市轨道交通工程测量规范》GB50308的规定,施工前,测量队对业主在交接桩时提供工程范围测区精密控制网、精密水准点等进行复测。复测时按照首级控制网点同等精度进行观测,并与邻近标段的平面和高程控制网点进行贯通联测,做好工程测量的相互衔接。将复测成果书面上报监理单位。 在工程施工期间,每两个月对首级控制网复测一次,并将复测成果上报监理单位。如监测发现施工场地周围的地面有变形时,及时对首级控制网进行复测,增加复测频率,确认控制点无误后才可以继续使用。如发现首级控制网测量超出规范允许范围时,立即报告监理单位,重新交桩后才可以使用首级控制网。 (2)控制测量 复测工作完成后,在首级控制网点的基础上,根据工程项目的施工需要并结合本标段工程特点城市道路交通建筑物等实际情况定平面和高程控制网方案,现场选点埋设控制网标石后组织施测。

(3)平面控制测量 为满足施工需要,严格地按四等导线测量规范增设了导线点,在盾构竖井处适当位置增设了精密导线点和精密水准点。将新增设的控制点与地面首级控制网进行了联测,确保竖井投点在多方控制中。 盾构始发井投点测量 为指导盾构掘进施工,必需把导线数据导入始发井强制对中平台上,施工完成到设计标高时,根据现场的实际情况和现有的仪器设备,采用投点仪投点(投点仪标称精度不低于1/30000),把井口上测设的

为了提高投点精度,在竖井口长边对角适当位置设置投点P1,P2点,如图10-1-1-1。然后利用地面上的控制网进行联测,将测量数据进行平差后,计算出P1、P2各点的坐标(或用前方交会法,定出P1、P2各点),将P1、P2点投在井下的投点板上,如图10-1-1-2所示。 为了检核投点精度,在井上作多次投点,投在投点板上的P1′、P2′、P1″、P2″…点。取中定出P1、P2的投影。然后将全站仪分别架设在各点上。观测通道内设置的P3、P4,采用全圆法观测各点的角度、距离、平差后计算出各点坐标,以此作为通道、隧道暗挖控制的定向边(P3~P4)。 洞内导线测量 通过竖井定向,导线严格按四等导线要求联测至隧道内,并在隧道内设置通视效果好且稳固的导线点,导线点采用强制对中的形式,直线隧道施工导线点平均边长150米,特殊情况下不短于100米。为

监控量测技术在公路隧道中的应用 (2)

监控量测技术在公路隧道中的应用 :公路隧道已广泛采用新奥法设计与施工,现场监控量测是新奥法设计与施工的重要组成部分。通过对隧道进行监控量测,可预测预报围岩变化,优化设计和指导施工,确保隧道施工安全,使工程投资经济合理。通过对公路隧道的拱顶下沉、水平收敛、地表沉降、喷层应力、钢拱架应力等多项涉及围岩稳定性及支护合理与否的参数进行跟踪量测, 实时确定了合理的二次衬砌施工时间,成功避免了施工中重大安全事故的发生,确保了隧道施工安全和质量,对隧道施工具有指导意义。 关键词: 公路隧道新奥法监控量测 隧道围岩变形量测是新奥法现场量测的首要内容,是确认或修改支护设计参数和判别围岩稳定的依据,是保证隧道施工安全的一项重要措施。为了保证隧道的设计净空断面,监理人员应严格要求施工单位按规定进行拱顶下沉和净空量测,量测数据及分析结果应及时与设计进行比较,掌握地表沉陷、围岩和支护的工作状态,对围岩稳定性作出评价,确定或调整支护结构、支护参数和支护时间;评价支护结构的合理性及其安全性,并对设计和施工的合理性进行评估和信息反馈,以确保施工安全和隧道的稳定。 一隧道围岩的量测 1.1 隧道监控量测的必测项目 为了保护隧道的顺利开挖及二次衬砌的时间,隧道围岩的量测必测项目一般包括地址及支护状况观察、周边收敛量测、拱顶下沉量测、地表下沉。地质及支护状况观察包括岩性、岩层产状、结构面、溶洞、断面描

述、支护结构裂缝等;周边收敛量测是量测隧道周边位移,了解收敛状况、断面变形状态,判断稳定性;拱顶下沉量测是监视拱顶下沉,了解断面的变形状态,判断隧道拱顶的稳定性;地表下沉是根据地表下沉位移量判定隧道开挖对地表下沉的影响,以确定隧道支护结构。 1.2 隧道监控量测的选测项目 隧道围岩量测的选测项目:围岩内部位移量测、锚杆轴力量测、衬砌应力量测、围岩压力量测及支护压力、型钢支撑应力量测及弹性波测试。围岩内部位移量测是了解隧道围岩的松弛区、位移量及围岩应力分布,为准确判断围岩的变形发展提供数据;锚杆轴力量测是根据锚杆所承受的拉力,判断锚杆布置是否合理;衬砌应力量测是根据量测二次衬砌内应力、喷射混凝土层内轴向应力,了解支护衬砌内的受力情况;根据围岩压力及层间支护压力,判断复合衬砌中围岩荷载大小,判断初期支护与二次衬砌各自分担围岩压力情况;量测型钢支撑内应力,推断作用在型钢支撑上的压力大小,判断型钢支撑尺寸、间距及设置型钢支撑的必要性;通过声波测试,判断围岩松动区大小、裂隙发育情况。 二隧道围岩量测的手段要求 量测数据的质量好坏直接影响监控的成败。监控现场量测手段应满足下列要求: 1、尽快埋设测点。隧道开挖过程中,围岩压力场、位移场的变化与开挖作业面的空间位置密切相关。一般情况下,位移的变化在量测断面前后总计两倍洞径范围内最大。为了全面量测应力、位移的变化值,要求测点埋设紧靠开挖作业面,且要尽快埋设,以减少对施工的干扰。第一

盾构段监控量测方案

广深港客运专线ZH-4标 益田路隧道工程盾构段监控量测方案 编制: 审核: 批准: 中铁十五局广深港客运专线ZH-4标六工区 2010年6月13日 目录

1.编制目的 (4) 2.编制依据 (4) 3.工程概况 (4) 3.1地理位置 (4) 3.2工程范围 (4) 3.3设计参数 (5) 3.4建(构)筑物调查情况 (5) 4.地表沉降变形机理 (6) 4.1沉降机理分析 (6) 4.2地表沉降变形的演变分析 (6) 4.2.1前期沉降阶段 (6) 4.2.2通过期间沉降阶段 (6) 4.2.3盾尾间隙沉降阶段 (6) 4.2.4后期沉降阶段 (6) 5.工程施工特点 (7) 6.监测的目的及方法 (7) 6.1地表沉降监测 (7) 6.2监测控制网的施测精度 (7) 6.3监测的主要内容和测点布设 (8) 6.3.1地表变形监测 (8) 6.3.2洞外观察 (8)

6.3.4深层土体位移监测 (8) 6.3.5地下水位监测 (9) 6.3.6地下管线位移监测 (9) 7.施工监测资源配置 (10) 7.1监控测量仪器 (10) 7.2监控量测人员组织 (10) 8.施工监测控制精度和监测频率 (11) 8.1施工监测控制精度 (11) 8.2监测频率 (11) 8.3控制标准 (11) 8.3.1建筑物变形控制标准 (11) 8.3.2地表变形控制标准 (12) 8.3.3深层土体变形控制标准 (12) 8.3.4地下水位、管线位移控制标准 (12) 9.隧道结构变形监测 (12) 9.1隧道结构变形监测内容 (12) 9.2变形控制标准 (13) 9.3隧道结构变形监测频率 (13) 9.4隧道结构变形控制方法 (13) 10.监测数据的整理和分析 (14)

盾构施工隧道监测方案

上海长兴岛域输水管线工程盾构推进 环境监测 技术方案 上海东亚地球物理勘查有限公司 二00八年五月

目录 一工程概况 二盾构推进对周边环境影响程度的分析和估计三监测施工的依据 四监测内容 五监测技术方案 六监测人员安排 七技术及质量保证措施 八附图

上海长兴岛域输水管线工程盾构推进环境监测技术方案前言 科学技术的发展与试验技术的发展息息相关。历史上一些科学技术的重大突破都得益于试验测试技术。因此,试验测试技术是认识客观事物最直接、最有效的方法,也是解决疑难问题的必要手段,试验测试对保证工程质量、促进科学的发展具有越来越重要的地位和作用。测量技术在土建工程中同样占有重要地位,它在各类工程建筑,尤其是在地下工程中已成为一个不可或缺的组成部分。随着科学技术的发展,测量的地位更显关键和重要。早期地下工程的建设完全倚赖于经验,19世纪才逐渐形成自己的理论,开始用于指导地下结构设计与施工。于是在重大或长大隧道中,及时掌握现场的第一手资料,进行动态分析,就成为施工控制的重要项目之一。 因此施工量测项目显得更加突出和重要。为了验证设计和计算是否合理,运营是否安全,各种工程试验与测试技术的研究和应用也越来越受到施工和科研工作者的重视。地下工程的设计,必须将现场监控量测列入设计文件,并在施工中实施。现场监控量测是判断围岩和隧道的稳定状态,保证施工安全,指导施工顺序,进行施工管理,提供设计信息的重要手段。掌握围岩和支护动态,按照动态管理量测断面的信息,正确而经济的施工;量测数据经分析处理与必要的计算和判断,预测和确定到最终稳定时间,指导施工工序和实施二次衬砌的时间;根据隧道开挖后围岩稳定性的信息,进行综合分析,检验和修正施工前的预设计;积累资料,已有工程的量测结果可应用到其他类似的工程中,作为其他工程设计和施工的参考依据。 盾构在推进过程中必然会造成地面沉陷、位移现象,针对这种情况本监测工程设置了相应的监测手段,对在盾构推进过程中产生的各种变形进行实时监测。 一工程概况 长兴岛域输水管线工程位于长兴岛上,起点于牛棚圩以北的丁字坝附近,与青草沙水库出水输水闸井相接;终止于永和路以南120m左右的上海崇明越江通道东侧绿化带内,与长江原水过江管工作井相连。 输水管线总长约10563.305m,其中东线长5280.993m,西线长5282.312m。全线最小平曲线半径为R=450m;最大纵坡为8.9‰。具体详见下表。

盾构施工监测总结报告

XXXX~XXXX区间盾构施工监测 总结报告 编制: 审核: 审批: XXXXX轨道交通X号线X期工程XX标项目经理部 二○一二年一月三十日

目录 1 工程概况 (3) 1.1工程简述 (3) 1.2工程地质及水文地质情况 (3) 2 监测作业方案 (5) 2.1监测依据 (5) 2.2监测内容 (6) 2.3监测频率 (6) 2.4监测精度 (7) 2.5警戒值的执行 (8) 3.监测成果质量 (9) 3.1质量控制 (9) 4监测组织实施 (9) 4.1投入的仪器设备 (9) 4.2监测人员组织 (10) 5完成监测工作量 (10) 6监测成果总结 (11) 6.1监测统计成果 (11) 6.2监测成果曲线 (11) 7监测成果分析 (11)

1 工程概况 1.1工程简述 XXXX~XXXX区间设计范围为Y(Z)DK16+915.15~Y(Z)DK18+733,右线长1817.85m,左线长1794.332m(短链23.518m),线路自XXX站向南穿越万国商业广场、南塘村、白沙湾路与曲塘路交汇处、并穿越杜花路立交和京珠高速公路,向南到达XXXX。区间线间距为13~15m,线路平面最小曲线半径为450m。区间隧道最大纵坡为26‰。本区间采用盾构法施工,隧道埋深约在15~40m之间。区间在YDK17+276.055、YDK17+876.055和YDK18+400处各设置一条区间联络通道,其中YDK17+876.055兼做泵房,联络通道及泵房采用矿山法施工。 1.2 工程地质及水文地质情况 1.2.1 地形、地貌 本段地貌单元主要为XXXⅠ级阶地,地形平坦开阔,河湖发育,水塘星罗棋布,局部可见残丘、岗地,地面标高32~38m,局部岗地标高可达60多m。 1.2.2 地层岩性 各岩土层具体分部特征及土性变化情况见《地层特性表》。 本盾构区间隧道主要穿越地层为残积粉质粘土(4-1)、强风化泥质粉砂岩(5-1)、中风化泥质粉砂岩(5-2)。盾构上覆土层主要为杂填土(1-2)、粉质粘土(2-1)、圆砾(2-4)、卵石(2-5)、粉质粘土(4-1)、残积粉细砂(4-2)、强风化泥质粉砂岩(5-1)、全风化泥质粉砂岩(5-1a)、中风化泥质粉砂岩(5-2)。 1.2.3 地质构造及地震烈度

隧道监测设计

隧道监测设计 隧道监控测量设计 隧道监控量测应达到下列目的: 1 确保隧道施工安全及结构的长期稳定性; 2 验证隧道支护结构效果,确认支护参数和施工方法的准确性或为调整支护参数和施工方法提供依据; 3 确定装配式衬砌组装方案; 4 监控工程对隧道周围环境影响; 5 积累量测数据,为信息化设计与施工提供依据。量测项目 该隧道的量测项目包括:管片的尺寸、螺栓接头、千斤顶顶力作用、隧道上浮、盾构的掘进(防止过大偏向)、衬砌管片的拼装、地表沉降及地面沉降和地下管线变化、拱顶下沉、周边净空收敛位移、衬砌管片的防水。 主要考虑因素有:①工程地质和水文地质情况(主要在水下);②隧道埋深、跨度、衬砌结构型式和施工工艺;③隧道施工影响范围内现有建筑物的结构特点、形状尺寸及与隧道轴线的相对位置关系。量测方法 本工程采取的监控量测项目、方法和频率详见下表。 监控量测项目、方法及频率 监测项目管片的尺寸监测方法和仪器现场观察监测频率对每一片管片尺寸、强度都要检测备注主要检测

螺栓接头是否因为承受的正负弯矩相差螺栓接头现场观察每个施工周期检测1到2次过大而引起的接缝张开量过大,导致止水带松弛漏水。水准测量的方法,千斤顶顶力作用水准仪、塔尺现场观察水准测量的方法,隧道上浮水准仪、塔尺现场观察偏向≥5mm/d,2次/d;偏向1~5mm/d,1次/d;偏向≤1mm/d,1次/3d 偏向≥5mm/d,2次/d;偏向1~5mm/d,1次/d;偏向≤1mm/d,1次/3d 防止管片受力不均导致接缝过大漏水盾构的掘进水准测量的方法,旋转角度≥1度/d,2次/d;水准仪、塔尺旋转角度≤1mm/d,1次/3d 在任何情况下一次纠编量不能过大主要检测组装时环面不平整积累过多引起较大的施工应力。管片衬砌管片的拼装水准测量的方法,水准仪、塔尺施工期间的对准安放。还有于盾构堆进时对衬砌施加了很大的顶力,可能发生螺栓连接松动开挖面距量测断面前后<2B时1-2次地表沉降及地面沉降和地下管线变化水准仪和水平尺 /d 开挖面距量测断面前后<5B时1次/d 开挖面距量测断面前后>5B时1次/周每10m到50m一个断面,每个断面7-11个测点开挖面距量测断面前后<2B时1-2次/d 拱顶下沉水准仪、钢尺等开挖面距量测断面前后<5B时1次/d 开挖面距量测断面前后>5B时1次/周开挖面距量测断面前后<2B 时1-2次/d 周边净空收敛位移收敛计开挖面距量测断面前后<5B时1次/d 开挖面距量测断面前后>5B时1次/周

相关主题