搜档网
当前位置:搜档网 › 中考压轴大题--抛物线+新定义 教师版

中考压轴大题--抛物线+新定义 教师版

中考压轴大题--抛物线+新定义 教师版
中考压轴大题--抛物线+新定义 教师版

001如果一条抛物线y =ax 2+bx +c (a ≠0)与x 轴有两个交点,那么以这两个交点和该抛物线的顶点、对称轴上一点为顶点的菱形称为这条抛物线的“抛物菱形”.

(1)若抛物线y =ax 2+bx +c (a ≠0)与x 轴的两个交点为(-1,0),(3,0),且这条抛物线的“抛物菱形”是正方形,求这条抛物线的函数解析式;

(2)如图,四边形OABC 是抛物线y =-x 2+bx (b >0)的“抛物菱形”,且∠OAB =60°. ①求“抛物菱形OABC ”的面积;

②将直角三角板中含有“60°角”的顶点与坐标原点O 重合,两边所在直线与“抛物菱形OABC ”的边AB ,BC 交于E ,F ,△OEF 的面积是否存在最小值,若存在,求出此时△OEF 的面积;若不存在,说明理由.

解:(1)∵抛物线y =ax 2+bx +c (a ≠0)与x 轴的两个交点为(-1,0),(3,0),四边形OABC 是

正方形,∴A (1,2)或(1,-2),当A (1,2)时,???

0=a -b +c ,

0=9a +3b +c ,

2=a +b +c ,解得???

a =-12

b =1,

c =32.

当A (1,

-2)时???

0=a -b +c ,

0=9a +3b +c ,

-2=a +b +c ,

解得???

a =12

b =-1,

c =-32.

∴抛物线的解析式为:y =-12x 2+x +3

2

或y

=12x 2-x -32

; (2)①∵由抛物线y =-x 2+bx (b >0)可知OB =b ,∵∠OAB =60°,∴A ????b 2,3

2b ,代入y =

-x 2+bx 得:32b =-????b 22+b·b

2,解得b =23,∴OB =23,AC =6,∴“抛物菱形OABC ”的面积=1

2OB·AC =63;②存在;当三角板的两边分别垂直与AB 和BC 时三角形OEF 的

面积最小,∵OE ⊥AB ,∴∠EOB =1

2∠AOB =30°,同理∠BOF =30°,∵∠EOF =60°,∴

OB 垂直EF 且平分EF ,∴三角形OEF 是等边三角形,∵OB =23,∴OE =3,∴OE =OF =EF =3,∴△OEF 的面积=93

4

.

002如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.

(1)求A、B两点的坐标;

(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;

(3)当△BDM为直角三角形时,求m的值.

【分析】(1)将y=mx2﹣2mx﹣3m化为交点式,即可得到A、B两点的坐标;

(2)先用待定系数法得到抛物线C1的解析式,过点P作PQ∥y轴,交BC于Q,用待定系数法得到直线BC的解析式,再根据三角形的面积公式和配方法得到△PBC面积的最大值;

(3)先表示出DM2,BD2,MB2,再分两种情况:①DM2+BD2=MB2时;②DM2+MB2=BD2时,讨论即可求得m的值.

【解答】解:(1)y=mx2﹣2mx﹣3m=m(x﹣3)(x+1),

∵m≠0,

∴当y=0时,x1=﹣1,x2=3,

∴A(﹣1,0),B(3,0);

(2)设C1:y=ax2+bx+c,将A、B、C三点的坐标代入得:

解得,

故C 1:y =x 2﹣x ﹣.

如图:过点P 作PQ ∥y 轴,交BC 于Q ,

由B 、C 的坐标可得直线BC 的解析式为:y =x ﹣, 设P (x , x 2﹣x ﹣),则Q (x , x ﹣), PQ =x ﹣﹣(x 2﹣x ﹣)=﹣x 2+x , S △PBC =S △PCQ +S △PBQ =

PQ ?OB =×(﹣x 2+x )×3=﹣(x ﹣)2+

当x =时,S △PBC 有最大值,Smax =,

×()2﹣﹣=﹣,

P (,﹣);

(3)y =mx 2﹣2mx ﹣3m =m (x ﹣1)2﹣4m , 顶点M 坐标(1,﹣4m ), 当x =0时,y =﹣3m , ∴D (0,﹣3m ),B (3,0),

∴DM 2=(0﹣1)2+(﹣3m +4m )2=m 2+1, MB 2=(3﹣1)2+(0+4m )2=16m 2+4, BD 2=(3﹣0)2+(0+3m )2=9m 2+9,

当△BDM 为Rt △时有:DM 2+BD 2=MB 2或DM 2+MB 2=BD 2. ①DM 2+BD 2=MB 2时有:m 2+1+9m 2+9=16m 2+4, 解得m =﹣1(∵m <0,∴m =1舍去); ②DM 2+MB 2=BD 2时有:m 2+1+16m 2+4=9m 2+9, 解得m =﹣

(m =

舍去).

综上,m =﹣1或﹣

时,△BDM 为直角三角形.

【点评】考查了二次函数综合题,涉及的知识点有:抛物线的交点式,待定系数法求抛物线的解析式,待定系数法求直线的解析式,三角形的面积公式,配方法的应用,勾股定理,分类思想的运用,综合性较强,有一定的难度.

003在平面直角坐标系中,对于点P(m,n)和点Q(x,y).给出如下定义:若,则称点Q为点P的“伴随点”.例如:点(1,2)的“伴随点”为点(5,0).

(1)若点Q(﹣2,﹣4)是一次函数y=kx+2图象上点P的“伴随点”,求k的值.

(2)已知点P(m,n)在抛物线C1:y=﹣x上,设点P的“伴随点”Q(x,y)的运动轨迹为C2.

①直接写出C2对应的函数关系式.

②抛物线C1的顶点为A,与x轴的交点为B(非原点),试判断在x轴上是否存在点M,使得以A、B、Q、M为顶点的四边形是平行四边形?若存在,求点M的坐标;若不存在,说明理由.

③若点P的横坐标满足﹣2≤m≤a时,点Q的纵坐标y满足﹣3≤y≤1,直接写出a的取值范围.

【分析】(1)根据伴随点定义可求k的值

(2)①根据伴随点的定义可求C2的解析式

②先求A,B坐标,以A、B、Q、M为顶点的四边形是平行四边形,则分三类讨论,根据平行四边形的性质可求M点坐标

③由x=m+4可得2≤x≤a+4,且抛物线顶点坐标为(6,﹣3),﹣3≤y≤1可得6≤a+4≤10,可求a的取值范围.

【解答】解(1)设P(x,kx+2)

根据题意得:

解得:k=

(2)根据题意可得

∴y=x2﹣3x+6

∴C2的解析式:y=x2﹣3x+6

②∵抛物线C1:y=﹣x

∴B(4,0),A(2,﹣1)

∵以A、B、Q、M为顶点的四边形是平行四边形∴若BA为边,BM为边,则AB∥MQ,AQ∥BM ∴Q与A的纵坐标相同

∴y Q=y A=﹣1

∴﹣1=x2﹣3x+6

解得:x1=6+2,x2=6﹣2

∴AQ=4+2或=4﹣2

∵AQ=BM,A(4,0)

∴M(8+2,0)或(8﹣2,0)

若AB为边,BM为对角线,

∴对角线AQ与BM互相平分且交点在x轴上

∴Q点纵坐标为1

∴1=x2﹣3x+6

解得x1=2,x2=10

∴AQ中点横坐标为6或2,且AQ与BM互相平分∴M(8,0)或(0,0)

若BM为边,AB为对角线,

∴AB的中点(3,﹣)且AB与MQ互相平分

∴Q(6+2,﹣1)或(6﹣2,﹣1)

∵MQ的中点为(3,﹣)

∴M(2,0)或(﹣2,0)

∴综上所述M(,0),,0),(0,0),(8,0)

(,0)(,0)

③∵x=m+4,﹣2≤m≤a

∴2≤x≤4+a

∵C2的解析式:y=x2﹣3x+6

∴顶点坐标为(6,﹣3)

∵﹣3≤y≤1

∴当y=1时,x=2或10

∴6≤4+a≤10

∴2≤a≤6

【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和平行四边形的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,会运用分类讨论的思想解决数学问题

004如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶.

(1)由定义知,取AB中点N,连结MN,MN与AB的关系是MN⊥AB,MN=AB.(2)抛物线y=对应的准蝶形必经过B(m,m),则m=2,对应的碟宽AB是4.

(3)抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x轴上,且AB=6.

①求抛物线的解析式;

②在此抛物线的对称轴上是否有这样的点P(x p,y p),使得∠APB为锐角,若有,请求出y p的取值范围.若没有,请说明理由.

【分析】(1)直接利用等腰直角三角形的性质分析得出答案;

(2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;(3)①根据题意得出抛物线必过(3,0),进而代入求出答案;

②根据y=x2﹣3的对称轴上P(0,3),P(0,﹣3)时,∠APB为直角,进而得出答案.

【解答】解:(1)MN与AB的关系是:MN⊥AB,MN=AB,

如图1,∵△AMB是等腰直角三角形,且N为AB的中点,

∴MN⊥AB,MN=AB,

故答案为:MN⊥AB,MN=AB;

(2)∵抛物线y=对应的准蝶形必经过B(m,m),

∴m=m2,

解得:m=2或m=0(不合题意舍去),

当m=2则,2=x2,

解得:x=±2,

则AB=2+2=4;

故答案为:2,4;

(3)①由已知,抛物线对称轴为:y轴,

∵抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x轴上,且AB=6.

∴抛物线必过(3,0),代入y=ax2﹣4a﹣(a>0),

得,9a﹣4a﹣=0,

解得:a=,

∴抛物线的解析式是:y=x2﹣3;

②由①知,如图2,y=x2﹣3的对称轴上P(0,3),P(0,﹣3)时,∠APB为直角,∴在此抛物线的对称轴上有这样的点P,使得∠APB为锐角,y p的取值范围是y p<﹣3或y p >3.

【点评】此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键.

005定义:如图1,在平面直角坐标系中,点M是二次函数C1图象上一点,过点M作l⊥x 轴,如果二次函数C2的图象与C1关于l成轴对称,则称C2是C1关于点M的伴随函数.如图2,在平面直角坐标系中,二次函数C1的函数表达式是y=﹣2x2+2,点M是二次函数C1图象上一点,且点M的横坐标为m,二次函数C2是C1关于点M的伴随函数.

(1)若m=1,

①求C2的函数表达式.

②点P(a,b1),Q(a+1,b2)在二次函数C2的图象上,若b1≥b2,a的取值范围为.(2)过点M作MN∥x轴,

①如果MN=4,线段MN与C2的图象交于点P,且MP:PN=1:3,求m的值.

②如图3,二次函数C2的图象在MN上方的部分记为G1,剩余的部分沿MN翻折得到G2,由G1和G2所组成的图象记为G.以A(1,0)、B(3,0)为顶点在x轴上方作正方形ABCD.直接写出正方形ABCD与G有三个公共点时m的取值范围.

【解答】解:(1)①当m=1时,抛物线C2与抛物线C1关于直线x=1对称

∴抛物线C2的顶点时(2,2)

∴抛物线C2的解析式为y=﹣2(x﹣2)2+2=﹣2x2+8x﹣6

②∵点P(a,b1),Q(a+1,b2)在二次函数C2的图象上

∴b2﹣b1=﹣2(a+1)2+8(a+1)﹣6﹣(﹣2a2+8a﹣6)=﹣4a+6

当b1≥b2时

﹣4a+6≤0

∴a≥

故答案为:a≥

(2)①∵MN∥x轴,MP:PN=1:3

∴MP=1

当m>0时,2m=1

m=

当m<0时,﹣2m=1

m=﹣

②分析图象可知:当m=时,可知C1和G的对称轴关于直线x=对称,C2的顶点恰在AD上,此时G与正方形恰由2个交点.

当m=1时,直线MN与x轴重合,G与正方形恰由三个顶点.

当m=2时,G过点B(3,0)且G对称轴左侧部分与正方形有两个交点

当m=2或<m≤1时,G与正方形ABCD有三个公共点.

006在平面直角坐标系中xOy中,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图的方式放置.点A1,A2,A3…、A n和点C1,C2,C3…、?n分别落在直线y=x+1和x轴上.抛物线L1过点A1、B1,且顶点在直线y=x+1上,抛物线L2过点A2、B2,且顶点在直线y=x+1上,…,按此规律,抛物线L n过点A n、B n,且顶点也在直线y=x+1上,其中抛物线L1交正方形A1B1C1O的边A1B1于点D1,抛物线L2交正方形A2B2C2C1的边A2B2于点D2…,抛物线L n交正方形A n B n?n C n

的边A n B n于点D n(其中n≥2且n为正整数).

﹣1

(1)直接写出下列点的坐标:B1(1,1),B2(3,2),B3(7,4);(2)写出抛物线L2,、L3的解析式,并写出其中一个解析式的求解过程,再猜想抛物线L n 的顶点坐标(3×2n﹣2﹣1,3×2n﹣2);

(3)①设A1D1=k?D1B1,A2D2=k2?D2B2,试判断k1与k2的数量关系并说明理由;

②点D1、D2、…,D n是否在一条直线上?若是,直接写出这条直线与直线y=x+1的交点坐标;若不是,请说明理由.

【分析】(1)先求出直线y=x+1与y轴的交点坐标即可得出A1的坐标,故可得出OA1的长,根据四边形A1B1C1O是正方形即可得出B1的坐标,再把B1的横坐标代入直线y=x+1即可得出A1的坐标,同理可得出B2,B3的坐标;

(2)根据四边形A1B1C1O是正方形得出C1的坐标,再由点A2在直线y=x+1上可知A2(1,2),B2的坐标为(3,2),由抛物线L2的对称轴为直线x=2可知抛物线L2的顶点为(2,3),再用待定系数法求出直线L2的解析式;根据B3的坐标为(7,3),同上可求得点A3的坐标为(3,4),抛物线L3的对称轴为直线x=5,同理可得出直线L2的解析式;

(3)①同(2)可求得L2的解析式为y=(x﹣2)2+3,当y=1时,求出x的值,由A1D1=﹣D1B1,可得出k1的值,同理可得出k2的值,由此可得出结论;

②由①中的结论可知点D1、D2、…,D n是否在一条直线上,再用待定系数法求出直线D1D2的解析式,求出与直线y=x+1的交点坐标即可.

【解答】解:(1)∵令x=0,则y=1,

∴A1(0,1),

∴OA1=1.

∵四边形A1B1C1O是正方形,

∴A1B1=1,

∴B1(1,1).

∵当x=1时,y=1+1=2,

∴B2(3,2);

同理可得,B3(7,4).

故答案为:(1,1),(3,2),(7,4);

(2)抛物线L2、L3的解析式分别为:y=﹣(x﹣2)2+3;,y=﹣(x﹣5)2+6;

抛物线L2的解析式的求解过程:

对于直线y=x+1,设x=0,可得y=1,A1(0,1),

∵四边形A1B1C1O是正方形,

∴C1(1,0),

又∵点A2在直线y=x+1上,

∴点A2(1,2),

又∵B2的坐标为(3,2),

∴抛物线L2的对称轴为直线x=2,

∴抛物线L2的顶点为(2,3),

设抛物线L2的解析式为:y=a(x﹣2)2+3,

∵L2过点B2(3,2),

∴当x=3时,y=2,

∴2=a(3﹣2)2+3,解得:a=﹣1,

∴抛物线L2的解析式为:y=﹣(x﹣2)2+3;

抛物线L3的解析式的求解过程:

又∵B3的坐标为(7,3),同上可求得点A3的坐标为(3,4),

∴抛物线L3的对称轴为直线x=5,

∴抛物线L3的顶点为(5,6),

设抛物线L3的解析式为:y=a(x﹣5)2+6,

∵L3过点B3(7,4),

∴当x=7时,y=﹣4,

∴4=a×(7﹣5)2+6,解得:a=﹣,

∴抛物线L3的解析式为:y=﹣(x﹣5)2+6;

猜想抛物线L n的顶点坐标为(3×2n﹣2﹣1,3×2n﹣2);

(猜想过程:方法1:可由抛物线L1、L2、L3…的解析式:

∵y=﹣2(x﹣)2+,y=﹣(x﹣2)2+3,y=﹣(x﹣5)2+6…,归纳总结;

顶点A n、B n的坐标规律A n(2n﹣1﹣1,2n﹣1)与

方法2:可由正方形A n B n?n C n

﹣1

B n(2n,2n﹣1),再利用对称性可得抛物线L n的对称轴为直线x=,即x=

=3×2n﹣2﹣1,又顶点在直线y=x+1上,

所以可得抛物线L n的顶点坐标为(3×2n﹣2﹣1,3×2n﹣2).

故答案为:(3×2n﹣2﹣1,3×2n﹣2);

(3)①、k1与k1的数量关系为:k1=k2,

理由如下:同(2)可求得L2的解析式为y=(x﹣2)2+3,

当y=1时,1=﹣(x﹣2)2+3解得:x1=2﹣,x2=2+,

∴x=2﹣,

∴A1D1=2﹣=(﹣1),

∴D1B1=1﹣(2﹣)=﹣1,

∴A1D1=﹣D1B1,即k1=;

同理可求得A2D2=4﹣2=2(﹣1),

D2B2=2﹣(4﹣2)=2﹣2=2(﹣1),

A2D2=﹣D2B2,即k2=,

∴k1=k2;

②∵由①知,k1=k2,

∴点D1、D2、…,D n在一条直线上;

∵抛物线L2的解析式为y=﹣(x﹣2)2+3,

∴当y=1时,x=2﹣,

∴D1(2﹣,1);

同理,D2(5﹣2,2),

∴设直线D1D2的解析式为y=kx+b(k≠0),则,解得,

∴直线D1D2的解析式为y=(3+)x+﹣3,

∴,解得,

∴这条直线与直线y=x+1的交点坐标为(﹣1,0).

【点评】本题考查的是二次函数综合题,涉及到二次函数图象上点的坐标特点,正方形的性质等知识,熟练掌握正方形的四条边相等且四个角都是直角的知识是解答此题的关键.

001(12.00分)小资与小杰在探究某类二次函数问题时,经历了如下过程:

求解体验:

(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b=﹣4,顶点坐标为(﹣2,1),该抛物线关于点(0,1)成中心对称的抛物线表达式是y=x2﹣4x+5.

抽象感悟:

我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.

(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.

问题解决:

(1)已知抛物线y=ax2+2ax﹣b(a≠0)

①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两个抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;

②若抛物线y关于点(0,k+12)的衍生抛物线为y1;其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n;其顶点为A n…(n为正整数)求A n A n+1的长(用含n的式子表示).

【分析】求解体验:(1)利用待定系数法求出b的值,进而求出顶点坐标,在抛物线上取一点(0,﹣3),求出点(﹣2,1)和(0,﹣3)关于(0,1)的对称点坐标,利用待定系数法即可得出结论;

抽象感悟:(2)求出抛物线的顶点坐标(﹣1,6),再在抛物线上取一点(0,5),求出此两点关于(0,m)的对称点(1,2m﹣6)和(0,2m﹣5),利用待定系数法求出衍生函数解析式,联立即可得出结论;

问题解决:(1)①求出抛物线的顶点坐标和衍生抛物线的顶点坐标,分别代入抛物线解析式中,即可求出a,b的值,即可得出结论;

②求出抛物线顶点关于(0,k+n2)和(0,k+(n+1)2)坐标,即可得出结论.【解答】解:求解体验:(1)∵抛物线y=﹣x2+bx﹣3经过点(﹣1,0),

∴﹣1﹣b﹣3=0,

∴b=﹣4,

∴抛物线解析式为y=﹣x2﹣4x﹣3=﹣(x+2)2+1,

∴抛物线的顶点坐标为(﹣2,1),

∴抛物线的顶点坐标(﹣2,1)关于(0,1)的对称点为(2,1),

即:新抛物线的顶点坐标为(2,1),

令原抛物线的x=0,

∴y=﹣3,

∴(0,﹣3)关于点(0,1)的对称点坐标为(0,5),

设新抛物线的解析式为y=a(x﹣2)2+1,

∵点(0,5)在新抛物线上,

∴5=a(0﹣2)2+1,

∴a=1,

∴新抛物线解析式为y=(x﹣2)2+1=x2﹣4x+5,

故答案为﹣4,(﹣2,1),y=x2﹣4x+5;

抽象感悟:(2)∵抛物线y=﹣x2﹣2x+5=﹣(x+1)2+6①,

∴抛物线的顶点坐标为(﹣1,6),

抛物线上取点(0,5),

∴点(﹣1,6)和(0,5)关于点(0,m)的对称点为(1,2m﹣6)和(0,2m ﹣5),

设衍生抛物线为y′=a(x﹣1)2+2m﹣6,∴2m﹣5=a+2m﹣6,

∴a=1,

∴衍生抛物线为y′=(x﹣1)2+2m﹣6=x2﹣2x+2m﹣5②,

联立①②得,x2﹣2x+2m﹣5=﹣x2﹣2x+5,

整理得,2x2=10﹣2m,

∵这两条抛物线有交点,

∴10﹣2m≥0,

∴m≤5;

问题解决:

(1)①抛物线y=ax2+2ax﹣b=a(x+1)2﹣a﹣b,

∴此抛物线的顶点坐标为(﹣1,﹣a﹣b),

∵抛物线y的衍生抛物线为y′=bx2﹣2bx+a2=b(x﹣1)2+a2﹣b,

∴此函数的顶点坐标为(1,a2﹣b),

∵两个抛物线有两个交点,且恰好是它们的顶点,

∴,

∴a=0(舍)或a=3,

∴b=﹣3,

∴抛物线y的顶点坐标为(﹣1,0),抛物线y的衍生抛物线的顶点坐标为(1,12),

∴衍生中心的坐标为(0,6);

②抛物线y=ax2+2ax﹣b的顶点坐标为(﹣1,﹣a﹣b),

∵点(﹣1,﹣a﹣b)关于点(0,k+n2)的对称点为(1,a+b+k+n2),

∴抛物线y n的顶点坐标A n为(1,a+b+k+n2),

(1,a+b+k+(n+1)2)

同理:A n

+1

∴A n A n+1=a+b+k+(n+1)2﹣(a+b+k+n2)=2n+1.

【点评】此题是二次函数综合题,主要考查了待定系数法,抛物线顶点坐标的求法,新定义的理解和掌握,点的对称点坐标的求法,理解新定义是解本题的关键.002(2018湖北天潜沔)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.

(1)点A,B,D的坐标分别为(,0),(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;

(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.

【分析】(1)利用二次函数图象上点的坐标特征可求出点A、B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;

(2)由点D的坐标结合对称找出点E的坐标,根据点B、C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;

(3)假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m<或m>3及≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.

【解答】解:(1)当y=0时,有﹣x2+x﹣1=0,

解得:x1=,x2=3,

∴点A的坐标为(,0),点B的坐标为(3,0).

∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,

∴点D的坐标为(,).

故答案为:(,0);(3,0);(,).

(2)∵点E、点D关于直线y=t对称,

∴点E的坐标为(,2t﹣).

当x=0时,y=﹣x2+x﹣1=﹣1,

∴点C的坐标为(0,﹣1).

设线段BC所在直线的解析式为y=kx+b,

将B(3,0)、C(0,﹣1)代入y=kx+b,

,解得:,

∴线段BC所在直线的解析式为y=x﹣1.

∵点E在△ABC内(含边界),

∴,

解得:≤t≤.

(3)当x<或x>3时,y=﹣x2+x﹣1;

当≤x≤3时,y=x2﹣x+1.

假设存在,设点P的坐标为(m,0),则点Q的横坐标为m.

①当m<或m>3时,点Q的坐标为(m,﹣x2+x﹣1)(如图1),

∵以CQ为直径的圆与x轴相切于点P,

∴CP⊥PQ,

∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,整理,得:m1=,m2=,

∴点P的坐标为(,0)或(,0);

②当≤m≤3时,点Q的坐标为(m,x2﹣x+1)(如图2),

∵以CQ为直径的圆与x轴相切于点P,

∴CP⊥PQ,

∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,整理,得:11m2﹣28m+12=0,

解得:m3=,m4=2,

∴点P的坐标为(,0)或(1,0).

综上所述:存在以CQ为直径的圆与x轴相切于点P,点P的坐标为(,0)、(,0)、(1,0)或(,0).

【点评】本题考查了一次(二次)函数图象上点的坐标特征、待定系数法求一次函数解析式、勾股定理以及解一元二次方程,解题的关键是:(1)利用二次函数图象上点的坐标特征求出点A、B的坐标;(2)利用一次函数图象上点的坐标特征结合点E在△ABC内,找出关于t的一元一次不等式组;(3)分m<或m>3及≤m≤3两种情况,找出关于m的一元二次方程.

003(2018湖北荆州)阅读理解:在平面直角坐标系中,若两点P、Q的坐标分别是P(x1,y1)、

Q(x2,y2),则P、Q这两点间的距离为|PQ|=.如P(1,2),Q(3,4),则|PQ|==2.

对于某种几何图形给出如下定义:符合一定条件的动点形成的图形,叫做符合这个条件的点的轨迹.如平面内到线段两个端点距离相等的点的轨迹是这条线段的垂直平分线.

解决问题:如图,已知在平面直角坐标系xOy中,直线y=kx+交y轴于点A,点A关于x轴的对称点为点B,过点B作直线l平行于x轴.

(1)到点A的距离等于线段AB长度的点的轨迹是x2+(y﹣)2=1;

(2)若动点C(x,y)满足到直线l的距离等于线段CA的长度,求动点C轨迹的函数表达式;

问题拓展:(3)若(2)中的动点C的轨迹与直线y=kx+交于E、F两点,分别过E、F作直线l的垂线,垂足分别是M、N,求证:①EF是△AMN外接圆的切线;②+为定值.

【考点】MR:圆的综合题.

【专题】15:综合题.

【分析】(1)利用两点间的距离公式即可得出结论;

(2)利用两点间的距离公式即可得出结论;

(3)①先确定出m+n=2k,mn=﹣1,再确定出M(m,﹣),N(n,﹣),进而判断出△AMN是直角三角形,再求出直线AQ的解析式为y=﹣x+,即可得出结论;

②先确定出a=mk+,b=nk+,再求出AE=ME=a+=mk+1,AF=NF=b+=nk+1,即可得出结论.

【解答】解:(1)设到点A的距离等于线段AB长度的点D坐标为(x,y),

∴AD2=x2+(y﹣)2,

∵直线y=kx+交y轴于点A,

∴A(0,),

中考数学新定义题型专题复习

新定义型专题 (一)专题诠释 所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力 (二)解题策略和解法精讲 “新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移. 的差倒数是 111(1)2 =--. 已知a 1=-1 3,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2009= . 考点二:运算题型中的新定义 例2.对于两个不相等的实数a 、b ,定义一种新的运算如下,*0a b a b a b = +(>)﹣,如: 3*2= =6*(5*4)= . 例3.我们定义ab ad bc cd =-,例如23 45 =2×5﹣3×4=10﹣12=﹣2,若x ,y 均为整数,且满足1< 14x y <3,则x+y 的值是 . 考点三:探索题型中的新定义 例4.定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内点.如图 1,PH=PJ ,PI=PG ,则点P 就是四边形ABCD 的准内点. (1)如图2,∠AFD 与∠DEC 的角平分线FP ,EP 相交于点P .求证:点P 是四边形ABCD 的准内点. (2)分别画出图3平行四边形和图4梯形的准内点.(作图工具不限,不写作法,但要有必要的说明) (3)判断下列命题的真假,在括号内填“真”或“假”. ①任意凸四边形一定存在准内点.( ) ②任意凸四边形一定只有一个准内点.( ) ③若P 是任意凸四边形ABCD 的准内点,则PA+PB=PC+PD 或PA+PC=PB+PD .( ) 考点四:阅读材料题型中的新定义 阅读材料 我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物; 比如我们通过学习两类特殊的四边形,即平行四边形和梯形(继续学习它们的特殊类型如矩形、等腰梯形等)来逐步认识四边形;

(完整版)2017中考数学压轴题解题技巧

中考数学压轴题解题技巧 解中考数学压轴题秘诀(一) 数学综合题关键是第22题和23题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第22题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y =f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第23题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。 1、以坐标系为桥梁,运用数形结合思想: 纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。 2、以直线或抛物线知识为载体,运用函数与方程思想: 直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。 3、利用条件或结论的多变性,运用分类讨论的思想: 分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。 4、综合多个知识点,运用等价转换思想: 任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几

中考数学专题复习 新定义题(含答案)

最新的2019中考新定义题 1.在平面直角坐标系xOy 中的某圆上,有弦MN ,取MN 的中点P ,我们规定:点P 到某点(直线)的距离叫 做“弦中距”,用符号“d 中”表示. 以(3,0)W -为圆心,半径为2的圆上. (1)已知弦MN 长度为2. ①如图1:当MN ∥x 轴时,直接写出到原点O 的d 中的长度; ②如果MN 在圆上运动时,在图2中画出示意图,并直接写出到点O 的d 中的取值范围. (2)已知点(5,0)M -,点N 为⊙W 上的一动点,有直线2y x =-,求到直线2y x =-的d 中 的最大值. 2.1所示,若点P 是 抛物线14 y =PH PF =M 的距离之和的最小 值为d ,称d 4y x = 的关联距离;当24d ≤≤时,称点M 为抛物线21 4 y x =的关联点. (1)在点1(20)M , ,2(12)M ,,3(45)M ,,4(04)M -,中,抛物线21 4 y x =的关联点是______ ; (2)如图2,在矩形ABCD 中,点(1)A t , ,点(13)A t +,C ( t . ①若t =4,点M 在矩形ABCD 上,求点M 关于抛物线2 14 y x =的关联距离d 的取值范围; ②若矩形ABCD 上的所有点都是抛物线2 14 y x = 的关联点,则t 的取值范围是__________. 3.对于平面直角坐标系xOy 中的点(,)Q x y (x ≠0),将它的纵坐标y 与横坐标x 的比 y x 称为点Q 的“理想值”,记作Q L .如(1,2)Q -的“理想值”2 21 Q L = =--. (1)①若点(1,)Q a 在直线4y x =-上,则点Q 的“理想值”Q L 等于_________; ②如图,C ,⊙C 的半径为1. 若点Q 在⊙C 上,则点Q 的“理想值” Q L 的取值范围是 . (2)点D 在直线+3y x =上,⊙D 的半径为1,点Q 在⊙D 上运动时都有 0≤L Q ,求点D 的横坐标D x 的取值范围; (3)(2,)M m (m >0),Q 是以r 为半径的⊙M 上任意一点,当0≤L Q ≤

初三数学历年中考抛物线压轴题

已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D. 求该抛物线的解析式; 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积; △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由. (注:抛物线y=ax2+bx+c(a ≠0)的顶点坐标为 ???? ??--a b ac a b 44,22) 如图,抛物线 21:23L y x x =--+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点. (1)求抛物线 2L 对应的函数表达式; (2)抛物线1L 或2L 在轴上x 方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在, 求出点N 的坐标;若不存在,请说明理由; (3)若点P 是抛物线 1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.

如图16,在平面直角坐标系中,直 线 y=与x轴交于点A,与y轴交于点C,抛物 线2(0) y ax x c a =+≠ 经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F的坐标; (2)在抛物线上是否存在点P,使ABP △为直角三角形,若存在,直接写出P点坐标;若不存在,请说明理由;(3)试探究在直线AC上是否存在一点M,使得MBF △的周长最小,若存在,求出M点的坐标;若不存在,请说明理由. 如图所示,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y轴的正半轴上,且1 AB= ,OB=ABOC绕点O按顺时针方向旋转60 后得到矩形EFOD.点A的对应点为点E,点B的对应点为点F,点C的对应点为点D,抛物线 2 y ax bx c =++过点A E D ,,. (1)判断点E是否在y轴上,并说明理由; (2)求抛物线的函数表达式; (3)在x轴的上方是否存在点P,点Q,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P在抛物线上,若存在,请求出点P,点 Q的坐标;若不存在,请说明理由.

[全]中考数学创新型与新定义型压轴题解析

中考数学创新型与新定义型压轴题解析 近年来,各地中考数学试题不断呈现出新颖、灵活的特征,特别是在压轴题中,更富有挑战性和创新理念。 本节例举两例,分析在解决此类问题过程中的思路与方法。 一、几何综合探究类阅读理解问题 【例题1】如图1,对角线互相垂直的四边形叫做垂美四边形。 (1)概念理解:如图2,在四边形ABCD 中,AB = AD , CB = CD , 问四边形ABCD 是垂美四边形吗?请说明理由; (2)性质探究:如图1,四边形ABCD 的对角线AC、BD 交于点O,AC⊥BD。 试证明:AB2 + CD2 = AD2 + BC2; (3)解决问题:如图3,分别以Rt△ACB 的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE,连接CE、BG、GE。 已知AC = 4 , AB = 5 , 求GE 的长。

【解析】 (1)四边形ABCD 是垂美四边形。 理由如下: ∵AB = AD , ∴点A 在线段BD 的垂直平分线上, ∵CB = CD , ∴点C 在线段BD 的垂直平分线上, ∴直线AC 是线段BD 的垂直平分线, ∴AC⊥BD,即四边形ABCD 是垂美四边形;(2)如图1, ∵AC⊥BD,

∴∠AOD = ∠AOB = ∠BOC = ∠COD = 90°, 由勾股定理得: AB2 + CD2 = AO2 + BO2 + DO2 + CO2 = AD2 + BC2,(3)如图3,连接CG、BE, ∵∠CAG = ∠BAE = 90°, ∴∠CAG + ∠BAC = ∠BAE + ∠BAC,即∠GAB = ∠CAE,在△GAB 和△CAE 中, AG = AC , ∠GAB = ∠CAE,AB = AE, ∴△GAB ≌△CAE(SAS), ∴∠ABG = ∠AEC,又∠AEC + ∠AME = 90°, ∴∠ABG + ∠AME = 90°,即CE⊥BG, ∴四边形CGEB 是垂美四边形, 由(2)得,CG2 + BE2 = CB2 + GE2,

2019-2020年中考数学专题复习新定义问题

2019-2020年中考数学专题复习新定义问题【专题点拨】 新定义运算、新概念问题一般是介绍新定义、新概念,然后利用新定义、新概念解题,其解题步骤一般都可分为以下几步:1.阅读定义或概念,并理解;2.总结信息,建立数模; 3.解决数模,回顾检查.“新概念”试题,其设计新颖,构思独特,思维容量大,既能考查学生的阅读、分析、推理、概括等能力,又能考查学生知识迁移的能力和数学素养,同时还兼具了区分选拔的功能 . 【解题策略】 具体分析新颖问题→弄清问题题意→向已知知识点转化→利用相关联知识查验→转化问题思路解决 【典例解析】 类型一:规律题型中的新定义 例题1:(2015?永州,第10题3分)定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x,下列式子中错误的是() A.[x]=x(x为整数) B.0≤x﹣[x]<1 C.[x+y]≤[x]+[y]D.[n+x]=n+[x](n为整数) 【解析】:根据“定义[x]为不超过x的最大整数”进行计算 【解答】:解:A、∵[x]为不超过x的最大整数, ∴当x是整数时,[x]=x,成立; B、∵[x]为不超过x的最大整数,∴0≤x﹣[x]<1,成立; C、例如,[﹣5.4﹣3.2]=[﹣8.6]=﹣9,[﹣5.4]+[﹣3.2]=﹣6+(﹣4)=﹣10,∵﹣9>﹣10, ∴[﹣5.4﹣3.2]>[﹣5.4]+[﹣3.2], ∴[x+y]≤[x]+[y]不成立, D、[n+x]=n+[x](n为整数),成立; 故选:C. 【点评】本题考查了一元一次不等式组的应用,解决本题的关键是理解新定义.新定义解题是近几年中考常考的题型.

2019-2020年中考数学 抛物线-压轴题

2019-2020年中考数学 抛物线-压轴题 1、在平面直角坐标系中,已知抛物线经过A (-4,0),B (0,-4),C (1)求抛物线的解析式; (2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m , △AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值. (3)若点P 是抛物线上的动点,点Q 是直线y =-x 上的动点, 判断有几个位置能够使得点P 、Q 、B 、O 直接写出相应的点Q 的坐标. 2、已知抛物线y =-x 2 +bx +c 经过点A (0,4),且抛物线的对称轴为直 线x =2. (1)求该抛物线的解析式; (2)若该抛物线的顶点为B ,在抛物线上是否存在点C ,使得A 、B 、O 、C 点构成的四边形为梯形?若存在,请求出点C (3)试问在抛物线上是否存在着点P ,使得以3为半径的⊙P 既与x 又与对称轴相交?若存在,请求出点P 的坐标,并求出对称轴被⊙P 的弦EF 的长度;若不存在,请说明理由. 3、如图,已知抛物线y =ax 2 +bx +c (a ≠0)的顶点坐标为Q (2,-1),且与y 轴交于点C (0,3),与x 轴交于A 、B 两点(点A 在点B 的右侧),点P 是该抛物线上一动点, 从点C 沿抛物线向点A 运动(点P 与A 不重合),过点P 作PD ∥y 轴, 交AC 于点D . (1)求该抛物线的函数关系式; (2)当△ADP 是直角三角形时,求点P 的坐标; (3)在题(2)的结论下,若点E 在x 轴上,点F 在抛物线上,问是否存在以A 、P 、E 、F 为顶点的平行四边形?若存在,求点F 的坐标;若 不存在,请说明理由. . 4、如图,平面直角坐标系中,点A 、B 、C 在x 轴上,点D 、E 在y 轴上,OA =OD =2,OC =OE =4,DB ⊥DC ,直线AD 与经过B 、E 、C 三点的抛物线交于F 、G 两点,与其 对称轴交于M .点,P 为线段FG 上一个动点(与F 、G 不重合),PQ ∥y 轴与抛物线交于点Q . (1)求经过B 、E 、C 三点的抛物线的解析式; (2)是否存在点P ,使得以P 、Q 、M 为顶点的三角形与△AOD 相似? 若存在,求出满足条件的点P 的坐标;若不存在,请说明理由; (3)若抛物线的顶点为N ,连接QN ,探究四边形PMNQ 的形状:①能 否成为菱形;②能否成为等腰梯形?若能,请直接写出点P 的坐标; 若不能,请说明理由.

中考数学压轴题(最新整理)百度文库

一、中考数学压轴题 1.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作⊙P . (1)当BP = 时,△MBP ~△DCP ; (2)当⊙P 与正方形ABCD 的边相切时,求BP 的长; (3)设⊙P 的半径为x ,请直接写出正方形ABCD 中恰好有两个顶点在圆内的x 的取值范围. 2.如图,已知抛物线()2 y ax bx 2a 0=+-≠与x 轴交于A 、B 两点,与y 轴交于C 点, 直线BD 交抛物线于点D ,并且()D 2,3,()B 4,0-. (1)求抛物线的解析式; (2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C ,求BMC 面积的最大值; (3)在(2)中BMC 面积最大的条件下,过点M 作直线平行于y 轴,在这条直线上是否存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由. 3.已知抛物线217 22 2 y x mx m 的顶点为点C . (1)求证:不论m 为何实数,该抛物线与x 轴总有两个不同的交点; (2)若抛物线的对称轴为直线3x =,求m 的值和C 点坐标; (3)如图,直线1y x =-与(2)中的抛物线并于A B 、两点,并与它的对称轴交于点D ,

直线x k =交直线AB 于点M ,交抛物线于点N .求当k 为何值时,以C D M N 、、、为顶点的四边形为平行四边形. 4.如图,在四边形ABCD 中,∠B=90°,AD//BC ,AD=16,BC=21,CD=13. (1)求直线AD 和BC 之间的距离; (2)动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 从点A 出发,在线段AD 上以每秒1个单位长度的速度运动,点P 、Q 同时出发,当点Q 运动到点D 时,两点同时停止运动,设运动时间为t 秒.试求当t 为何值时,以P 、Q 、D 、C 为顶点的四边形为平行四边形? (3)在(2)的条件下,是否存在点P ,使△PQD 为等腰三角形?若存在,请直接写出相应的t 值,若不存在,请说明理由. 5.如图,在菱形ABCD 中,AB a ,60ABC ∠=?,过点A 作AE BC ⊥,垂足为E , AF CD ⊥,垂足为F . (1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由; (2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示); (3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由; ②若1 2,(33)2 ADH a S == +,求sin GAB ∠的值. 6.问题提出 (1)如图①,在ABC 中,2,6,135AB AC BAC ==∠=,求ABC 的面积. 问题探究

中考压轴题---抛物线.doc

A B 中考压轴题一一抛物线 1. 如图,抛物线y=a^+bx+c 经过A (—1,0)、3(3,0)、C (0 ,3)三点,直线/是抛物线的对称轴. (1) 求抛物线的函数关系式; (2) 设点P 是直线/上的一个动点,当△B4C 的周长最小时,求点F 的坐标; (3) 在直线/上是否存在点使为等腰三角形,若存在,直接写出所有符合条件的点M 的 坐标;若不存在,请说明理由. 2. 如图1,点A 在x 轴上,OA=4,将线段OA 绕点。顺时针旋转120°至。8的位置. (1) 求点B 的坐标; (2) 求经过A 、0、B 的抛物线的解析式; (3) 在此抛物线的对称轴上,是否存在点P,使得以点P 、。、B 为顶点的三角形是等腰三角形?若 存在,求点P 的坐标;若不存在,请说明理由. 3. 如图1,已知抛物线y=-^+bx+c 经过A (0, 1)、顷4,3)两点. 1) 求抛物线的解析式; 2) 求 tanZABO 的值; 3) 过点8作BCLx 轴,垂足为C,在对称轴的左侧旦平行于y 轴的直线交线段AB 于点N,交抛物线 于点若四边形MVCB 为平行四边形,求点M 的坐标. 4. 如图1,抛物线 > =-定+2尤+ 3与尤轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C, 顶点为D. (1) 直接写出A 、B 、C 三点的坐标和抛物线的对称轴;

(2)连结8C,与抛物线的对称轴交于点E,点F为线段BC上的一个动点,过点F作PF//DE交抛物线于点F,设点P的横坐标为m. %1用含〃2的代数式表示线段户尸的长,并求出当,〃为何值时,四边形PEDF为平行四边形? %1设的面积为S,求S与〃?的函数关系. 5.如图1,已知抛物线+ +女(。是实数旦人>2)与X轴的正半轴分别交于点A、B (点A 4 4 4 位于点B是左侧),与),轴的正半轴交于点C. (1)点B的坐标为,点C的坐标为 (用含人的代数式表示); (2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于M, HAPBC是以点P为直角顶点的等腰宜角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由; 3)请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点。的坐标;如果不存在,请说明理由. 6.如图1,已知抛物线的方程Cl:),=__L Q +2)(X-梢(m>0)与工轴交于点8、C,与y轴交于点E, m 旦点B在点C的左侧. (1)若抛物线C1过点M(2, 2),求实数m的值; 2)在(1)的条件下,求2\8京的面积; (3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标; (4)在第四象限内,抛物线C1上是否存在点F,使得以点8、C、F为顶点的三角形与相似? 若存在,求〃2的值;若不存在,请说明理由.

中考数学新定义型专题

第一部分 讲解部分 (一)专题诠释 所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力 (二)解题策略和解法精讲 “新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法; 2的差倒数是 1112=--,-1的差倒数是111(1)2 =--.已知a 1=-13,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2009= . 【分析】:理解差倒数的概念,要根据定义去做.通过计算,寻找差倒数出现的规律,依据规律解答即可. 【解】:解:根据差倒数定义可得:21113 114 13 a a = ==-+, 3211 43 114 a a = ==-- 43111 1143 a a = ==---. 显然每三个循环一次,又2009÷3=669余2,故a 2009和a 2的值相等. 【评注】:此类题型要严格根据定义做,这也是近几年出现的新类型题之一,同时注意分析循环的规律. 考点二:运算题型中的新定义 例2.(2011毕节地区,18,3分)对于两个不相等的实数a 、b , 定义一种新的运算如下, *0 a b a b a b = +(>)﹣,如:3*2== 那么6*(5*4)= . 【分析】:本题需先根据已知条件求出5*4的值,再求出6*(5*4)的值即可求出结果. 【解】:∵ *0a b a b a b = +(>)﹣, ∴=3, ∴6*(5*4)=6*3,

中考数学专题复习新定义题型(学生版)

小康老师中考数学专题复习--新定义型问题 一、中考专题诠释 所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力。近几年日照命题情况来看,该类题型为必考型,一般一道选择或填空再加一道答题,占12到18分。 二、解题策略和解法精讲 “新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移. 三、中考典例剖析 考点一:规律题型中的新定义 例1 (2013?湛江)阅读下面的材料,先完成阅读填空,再按要求答题: sin30°=1 2 ,cos30°= 3 2 ,则sin230°+cos230°= ;① sin45°= 2 2 ,cos45°= 2 2 ,则sin245°+cos245°= ;② sin60°= 3 2 ,cos60°= 1 2 ,则sin260°+cos260°=.③ … 观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A=.④ (1)如图,在锐角三角形ABC中,利用三角函数的定义及勾股定理对∠A证明你的猜想; (2)已知:∠A为锐角(cosA>0)且sinA=3 5 ,求cosA.

1.(2013?绵阳)我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题: (1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明: 2 3 AO AD =;(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足 2 3 AO AD =,试判断O 是△ABC的重心吗?如果是,请证明;如果不是,请说明理由; (3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC 的顶点重合)(如图3),S四边形BCHG,S△AGH分别表示四边形BCHG和△AGH的面积,试探究BCHG AGH S S 四边形的最大值. 考点二:运算题型中的新定义 例2 (2013?河北)定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1==-5。(1)求(-2)⊕3的值; (2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.

双抛物线型中考压轴题解法赏析

佳题赏析双抛物线型中考压轴题解法 近几年各地中考试题中出现了一类以双抛物线为背景立意的综合性压轴题,它集知识、方法、能力于一体,重在考查考生综合应用数学知识解决问题的能力,具有较强的探索性。这类试题是中考数学试题的精华部分,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及要求考生具有一定的创新意识和创造能力等特点。本文选取三道比较典型的中考压轴题予以解析。 一、以横轴为对称轴的双抛物线型压轴题 例1、(2006烟台市)如图,已知抛物线L1: y=x2-4的图像与x有交于A、C两点, (1)若抛物线l2与l1关于x轴对称,求l2的解析式; (2)若点B是抛物线l1上的一动点(B不与A、C重合),以AC为对角线,A、B、C三点为顶点的平行四边形的第四个顶点定为D,求证:点D在l2上; (3)探索:当点B分别位于l1在x轴上、下两部分的图像上时,平行四边形ABCD的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,并求出它的面积;若不存在,请说明理由。 解:设l2的解析式为y=a(x-h)2+k ∵l2与x轴的交点A(-2,0),C(2,0),顶点坐标是(0,-4),l1与l2关于x轴对称, ∴l2过A(-2,0),C(2,0),顶点坐标是(0,4) ∴y=ax2+4 ∴0=4a+4 得 a=-1 ∴l2的解析式为y=-x2+4 (2)设B(x1 ,y1) ∵点B在l1上 ∴B(x1 ,x12-4) ∵四边形ABCD是平行四边形,A、C关于O对称 ∴B、D关于O对称 ∴D(-x1 ,-x12+4). 将D(-x1 ,-x12+4)的坐标代入l2:y=-x2+4 ∴左边=右边 ∴点D在l2上.

压轴题——新定义

压轴题——新定义 1.在平面直角坐标系xOy中,对于两点A,B,给出如下定义:以线段AB为边的正方形称为点A,B的“确 定正方形”. 如右图为点A,B 的“确定正方形”的示意图.(1)如果点M的坐标为(0,1),点N的坐标为(3,1) 的“确定正方形”的面积为_____________; (2)已知点O的坐标为(0,0),点C为直线y x b =+ C的“确定正方形”的面积最小,且最小面积为2时,求 (3)已知点E在以边长为2 标轴平行,对角线交点为P(m,0),点F在直线y x =- 所有点E,F的“确定正方形”的面积都不小于2 范围. 2.在平面直角坐标系中,过一点分别作x轴,y轴的垂线,如果由这点、原点及两个垂足为顶点的矩形的周 长与面积相等,那么称这个点是平面直角坐标系中的“巧点”.例如,图1中过点P(4,4)分別作x 轴,y轴的垂线,垂足为A,B,矩形OAPB的周长为16,面积也为16,周长与面积相等,所以点P是巧点.请根据以上材料回答下列问题: 图1 (1)已知点C(1,3),D(-4,-4),E(5, 10 3 -),其中是平面直角坐标系中的巧点的是________; (2)已知巧点M(m,10)(m>0)在双曲线=k y x (k为常数)上,求m,k的值;(3)已知点N为巧点,且在直线y=x+3上,求所有满足条件的N点坐标.

3.在平面直角坐标系xOy 中,点P 和图形W 的“中点形”的定义如下:对于图形W 上的任意一点Q ,连结PQ ,取PQ 的中点,由所以这些中点所组成的图形,叫做点P 和图形W 的“中点形”. 已知C (-2,2),D (1,2),E (1,0),F (-2,0). (1)若点O 和线段CD 的“中点形”为图形G ,则在点1(1,1)H -,2(0,1)H ,3(2,1)H 中,在图形G 上的 点是; (2)已知点A (2,0),请通过画图说明点A 和四边形CDEF 的“中点形”是否为四边形?若是, 写出四边形各顶点的坐标,若不是,说明理由; (3)点B 为直线y =2x 上一点,记点B 和四边形CDEF 的中点形为图形M ,若图形M 与四边形 CDEF 有公共点,直接写出点B 的横坐标b 的取值范围. 4.对于一次函数b kx y +=)(0≠k ,我们称函数[]=m y ???>--≤+) () (m x b kx m x b kx 为它的m 分函数(其中m 为 常数). 例如,23+=x y 的4分函数为:当4≤x 时,[]234+=x y ;当4>x 时,[]234--=x y . (1)如果1+=x y 的-1分函数为[]1-y , ①当4=x 时,[]=-1y —————— ;当[]31-=-y 时,=x ——————. ②求双曲线x y 2 = 与[]1-y 的图象的交点坐标; (2)如果2+-=x y 的0分函数为[] 0y , 正比例函数)(0≠=k kx y 与2+-=x y 的0分函数[]0y 的图象无交点时,直接写出k 的取值范围.

中考数学新定义题型解析专题

新定义型专题 第一部分 讲解部分 (一)专题诠释 所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力 (二)解题策略和解法精讲 “新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移. (三)考点精讲 考点一:规律题型中的新定义 例1.(2009山东枣庄,18,4分)定义:a 是不为1的有理数,我们把 1 1a -称为a 的差倒数.如:2的差倒数是 1 112 =--,-1的差倒数是 111(1)2=--.已知a 1=-13,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2009= . 【分析】:理解差倒数的概念,要根据定义去做.通过计算,寻找差倒数出现的规律,依据规律解答即可. 【解】:解:根据差倒数定义可得:21113 114 13 a a = ==-+, 3211 43 114a a = ==-- 43111 1143 a a = ==---. 显然每三个循环一次,又2009÷3=669余2,故a 2009和a 2的值相等. 【评注】:此类题型要严格根据定义做,这也是近几年出现的新类型题之一,同时注意分析循环的规律. 考点二:运算题型中的新定义 例2.(2011毕节地区,18,3分)对于两个不相等的实数a 、b ,定义一种新的运算如下, *0a b a b a b a b += +(>) ﹣,如:323*2532+==﹣, 那么6*(5*4)= . 【分析】:本题需先根据已知条件求出5*4的值,再求出6*(5*4)的值即可求出结果. 【解】:∵*0a b a b a b a b += +(>) ﹣,

2019年北京中考数学习题精选:新定义型问题

一、选择题 1、(2018北京昌平区初一第一学期期末) 用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b = ab 2 + a .如:1☆3=1×32 +1=10. 则(-2)☆3的值为 A .10 B .-15 C. -16 D .-20 答案:D 二、填空题 3、(2018北京西城区七年级第一学期期末附加题)1.用“△”定义新运算:对于任意有理数a ,b ,当 a ≤ b 时,都有2a b a b ?=;当a >b 时,都有2a b ab ?=.那么, 2△6 = , 2 ()3 -△(3)-= . 答案:24,-6 4.(2018北京海淀区第二学期练习)定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦. 阿基米德折弦定理:如图1, AB 和BC 组成圆的折弦,AB BC >,M 是弧ABC 的中点, MF AB ⊥于F ,则AF FB BC =+. 如图2,△ABC 中,60ABC ∠=?,8AB =,6BC =,D 是AB 上一点,1BD =,作D E A B ⊥交△ABC 的外接圆于E ,连接EA ,则EAC ∠=________°. 答案60 5、(2018北京交大附中初一第一学期期末)如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p 、q 分别是点M 到直线l 1,l 2的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有______个. 三、解答题 图2 图1 E A

6、(2018北京平谷区初一第一学期期末)阅读材料:规定一种新的运算:a c =b ad bc d -.例 如: 1214-23=-2.34 ××= (1)按照这个规定,请你计算 562 4 的值. (2)按照这个规定,当 52 12 2 4 2=-+-x x 时求x 的值. 答案(1)5 62 4 =20-12=8 (2) (2)由 5 2 122 4 2=-+-x x 得 522422 1 =++-)()(x x ...............................................................4 解得,x = 1 (5) 7、(2018北京海淀区七年级第一学期期末)对于任意四个有理数a ,b ,c ,d ,可以组成两个有理数对(a ,b )与(c ,d ).我们规定: (a ,b )★(c ,d )=bc -ad . 例如:(1,2)★(3,4)=2×3-1×4=2. 根据上述规定解决下列问题: (1)有理数对(2,-3)★(3,-2)= ; (2)若有理数对(-3,2x -1)★(1,x +1)=7,则x = ; (3)当满足等式(-3,2x -1)★(k ,x +k )=5+2k 的x 是整数时,求整数k 的值. 答案. 解:(1)﹣5……………………..2分 (2)1 ……………………..4分 (3)∵等式(-3,2x -1)★(k ,x +k )=5+2k 的x 是整数 ∴(2x ﹣1)k ﹣(﹣3)(x ﹢k )=5﹢2k ∴(2k ﹢3)x =5

中考压轴题分类专题六《抛物线中的圆》

中考压轴题分类专题六——抛物线中的圆 例1、已知如图,过O 且半径为5的⊙P 交x 的正半轴于点M (2m ,0)、交y 轴的负半轴于点D ,弧OBM 与弧OAM 关于x 轴对称,其中A 、B 、C 是过点P 且垂直于x 轴的直线与两弧及圆的交点. (1)当m =4时, ①填空:B 的坐标为 ,C 的坐标为 ,D 的坐标为 ; ②若以B 为顶点且过D 的抛物线交⊙P 与点E ,求此抛物线的函数关系式和写出点E 的坐标; ③除D 点外,直线AD 与②中的抛物线有无其它公共点?并说明理由. (2)是否存在实数m ,使得以B 、C 、D 、E 为顶点的四边形组成菱形?若存在,求m 的值;若不存在,请说明理由. D C B A P M O y x

例2、在ABC ?中,90A ? ∠=,4,3AB AC ==,M 是AB 上的动点(不与A ,B 重合),过M 点作 //MN BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM x =. (1)用含x 的代数式表示MNP ?的面积S ;(2)当x 为何值时,⊙O 与直线BC 相切? (3)在动点M 的运动过程中,记MNP ?与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少? A B C M N D 图 2 O A B C M N P 图 1 O A B C M N P 图 3 O

C O D E A B O 例3、如图,在RT ?ABC 中,∠C=90 (∠A>∠B)。它的两个锐角正弦值恰为方程 0)1(242=++-m x m x 的两根。他的内切圆半径为13-,抛物线c bx ax y ++=2过A 、B 、C 三点 (1).求m 的值 (2).求抛物线的解析式 (3).在抛物线上是否存在点P,使APB S ?=83,若存在,求出P 的坐标,若不存在说明理由 如图,直线y =- 3 3 x +1与两轴分别交于A 、B 两点,以AB 为边长在第一象限内作正三角形ABC.圆O '为?ABC 的外接圆与x 轴交于另一点E (1).求C 点坐标 (2).求过C 点与AB 中点的直线的解析式 (3).求过点E 、O '、A 三点的二次函数的解析式

【精品专题训练】2021年中考数学抛物线压轴题二次函数最值问题专题训练 含答案与试题解析

2021年中考数学抛物线压轴题二次函数最值问题专题训练一.解答题(共10小题) 1.(2020?青白江区模拟)如图,抛物线y=ax2+bx+c与x轴相交于A(3,0)、B两点,与y轴交于点C(0,3),点B在x轴的负半轴上,且OA=3OB. (1)求抛物线的函数关系式; (2)若P是抛物线上且位于直线AC上方的一动点,求△ACP的面积的最大值及此时点P的坐标; (3)在线段OC上是否存在一点M,使BM+√2 2CM的值最小?若存在,请求出这个最 小值及对应的M点的坐标;若不存在,请说明理由. 2.(2020?日照三模)如图1,点A在x轴上,OA=4,将OA绕点O逆时针旋转120°至OB的位置. (1)求经过A、O、B三点的抛物线的函数解析式; (2)在此抛物线的对称轴上是否存在点P使得以P、O、B三点为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由; (3 )如图2,OC=4,⊙A的半径为2,点M是⊙A上的一个动点,求MC+1 2OM的最 小值. 3.(2019秋?开福区校级期中)如图,直线y=x+2与抛物线y=x2﹣2mx+m2+m交于A、B

两点(A在B的左侧),与y轴交于点C,抛物线的顶点为D,抛物线的对称轴与直线AB 交于点M. (1)当四边形CODM是菱形时,求点D的坐标; (2)若点P为直线OD上一动点,求△APB的面积;′ (3)作点B关于直线MD的对称点B',以点M为圆心,MD为半径作⊙M,点Q是⊙M 上一动点,求QB'+√2 2QB的最小值. 4.(2019秋?金安区校级月考)已知抛物线y=ax2+bx﹣4经过点M(﹣4,6)和点N(2,﹣6). (1)试确定该抛物线的函数表达式; (2)若该抛物线与x轴交于点A,B(点A在点B的左侧),与y轴交于点C ①试判断△ABC的形状,并说明理由; ②在该抛物线的对称轴上是否存在点P,使PM+PC的值最小?若存在,求出它的最小 值;若不存在,请说明理由. 5.(2019?中原区校级四模)在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).

中考数学压轴题归类复习(十大类型附详细解答)

中考数学压轴题辅导(十大类型) 目录 动点型问题 (3) 几何图形的变换(平秱、旋转、翻折) (6) 相似不三角函数问题9 三角形问题(等腰直角三角形、等边三角形、全等三角形等) (13) 不四边形有关的二次函数问题 (16) 刜中数学中的最值问题 (19) 定值的问题 (22) 存在性问题(如:平行、垂直,动点,面积等) (25) 不圆有关的二次函数综合题... .. (29) 其它(如新定义型题、面积问题等) (33) 参考答案 (36)

中考数学压轴题辅导(十大类型) 数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方 法的综合性,多数为函数型综合题和几何型综合题。 函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再迚行图形的研究,求点的坐标戒研究图形的某些性质。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。 几何型综合题:是先给定几何图形,根据已知条件迚行计算,然后有动点(戒动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系迚行探索研究。一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,戒探索两个三角形满足什么条件相似等,戒探究线段乊间的数量、位置关系等,戒探索面积乊间满足一定关系时求 x 的值等,戒直线(圆) 不圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量乊间的 等量关系(即列出含有 x、y 的方程),变形写成 y=f(x)的形式。找等量关系的途径在刜中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求函数的自变量 的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。而最后的探索问题千 变万化,但少丌了对图形的分析和研究,用几何和代数的方法求出 x 的值。 解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点不数即坐标乊间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。关键是掌握几种常用的数学思想方法。 一是运用函数不方程思想。以直线戒抛物线知识为载体,列(解)方程戒方程组求其解 析式、研究其性质。 二是运用分类讨论的思想。对问题的条件戒结论的多变性迚行考察和探究。 三是运用转化的数学的思想。由已知向未知,由复杂向简单的转换。中考压轴题它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此,可把压轴题分离为相对独立而又单一的知识戒方法组块去思考和探究。 解中考压轴题技能技巡: 一是对自身数学学习状况做一个完整的全面的认识。根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”。所以,在心中一定要给压轴题戒几个“难点”一个时间上 的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空 万无一失,前面的解答题尽可能的检查一遍。 二是解数学压轴题做一问是一问。第一问对绝大多数同学来说,丌是问题;如果第一小问丌会解,切忌丌可轻易放弃第二小问。过程会多少写多少,因为数学解答题是按步骤给分的,写上去的东西必须要规范,字迹要巟整,布局要合理;过程会写多少写多少,但是丌要说废话,计算中尽量回避非必求成分;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。 三是解数学压轴题一般可以分为三个步骤。认真审题,理解题意、探究解题思路、正确 解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重

相关主题