搜档网
当前位置:搜档网 › ——matlab——二分法求解非线性方程的近似解

——matlab——二分法求解非线性方程的近似解

——matlab——二分法求解非线性方程的近似解
——matlab——二分法求解非线性方程的近似解

二分法求解非线性方程的近似解:M-文件funn1+fun 程序:

function [x0 fval]=funn1(fun,a,b,D)

if nargin<3

error('a and b should redefinated');

else if nargin==3

D=1e-6;

end

end

fa=feval(fun,a);

fb=feval(fun,b);

if fa*fb>0

error('this equation has no answer');

else if fa==0

m=a;

fm=fa;

else if fb==0

m=b;

fm=fb;

else

while abs(b-a)>D

m=(a+b)/2;

fm=feval(fun,m);

if fa*fm>0

a=m; fa=fm;

else if fb*fm>0

b=m; fb=fm;

else if fm==0

break;

end

end

end

end

end

end

end

x0=m;%用x0来表示非线性方程的最终近似解,如果没有准确解,则取最终区间的中点作为近似解。

fval=fm;%fval来表示近似解处的函数值。

if nargout==2

fval=fm;

end

M-文件定义函数fun:function f=fun(x)

f=x^3*cos(x)+2*x^2-2*sin(x);

结果

x0 =

2.3978

fval =

-4.1724e-006

推荐-Broyden方法求解非线性方程组的Matlab实现 精品

Broyden方法求解非线性方程组的Matlab实现 注:matlab代码来自网络,仅供学习参考。 1.把以下代码复制在一个.m文件上 function [sol, it_hist, ierr] = brsola(x,f,tol, parms) % Broyden's Method solver, globally convergent % solver for f(x) = 0, Armijo rule, one vector storage % % This code es with no guarantee or warranty of any kind. % % function [sol, it_hist, ierr] = brsola(x,f,tol,parms) % % inputs: % initial iterate = x % function = f % tol = [atol, rtol] relative/absolute % error tolerances for the nonlinear iteration % parms = [maxit, maxdim] % maxit = maxmium number of nonlinear iterations % default = 40 % maxdim = maximum number of Broyden iterations % before restart, so maxdim-1 vectors are % stored % default = 40 % % output: % sol = solution % it_hist(maxit,3) = scaled l2 norms of nonlinear residuals % for the iteration, number function evaluations, % and number of steplength reductions % ierr = 0 upon successful termination % ierr = 1 if after maxit iterations % the termination criterion is not satsified. % ierr = 2 failure in the line search. The iteration % is terminated if too many steplength reductions % are taken. % % % internal parameter: % debug = turns on/off iteration statistics display as % the iteration progresses

高中数学教材必修一《用二分法求方程的近似解》教学设计

用二分法求方程的近似解 一、教学内容分析 本节课选自《普通高中课程标准实验教科书数学1必修本》的第三章3.1.2用二分法求方程的近似解.本节课要求学生根据具体的函数图象能够借助计算机或信息技术工具计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法,从中体会函数与方程之间的联系;它既是本册书中的重点内容,又是对函数知识的拓展,既体现了函数在解方程中的重要应用,同时又为高中数学中函数与方程思想、数形结合思想、二分法的算法思想打下了基础,因此决定了它的重要地位. 二、学生学习情况分析 学生已经学习了函数,理解函数零点和方程根的关系, 初步掌握函数与方程的转化思想.但是对于求函数零点所在区间,只是比较熟悉求二次函数的零点,对于高次方程和超越方程对应函数零点的寻求会有困难.另外算法程序的模式化和求近似解对他们是一个全新的问题. 三、设计思想 倡导积极主动、勇于探索的学习精神和合作探究式的学习方式;注重提高学生的数学思维能力,发展学生的数学应用意识;与时俱进地认识“双基”,强调数学的内在本质,注意适度形式化;在教与学的和谐统一中体现数学的文化价值;注重信息技术与数学课程的合理整合. 四、教学目标 通过具体实例理解二分法的概念,掌握运用二分法求简单方程近似解的方法,从中体会函数的零点与方程根之间的联系及其在实际问题中的应用;能借助计算器用二分法求方程的近似解,让学生能够初步了解逼近思想;体会数学逼近过程,感受精确与近似的相对统一;通过具体实例的探究,归纳概括所发现的结论或规律,体会从具体到一般的认知过程. 五、教学重点和难点 1.教学重点:用“二分法”求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.2.教学难点:方程近似解所在初始区间的确定,恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解. 六、教学过程设计 (一)创设情境,提出问题 问题1:在一个风雨交加的夜里,从某水库闸房到防洪指挥部的电话线路发

MATLAB代码 解线性方程组的迭代法

解线性方程组的迭代法 1.rs里查森迭代法求线性方程组Ax=b的解 function[x,n]=rs(A,b,x0,eps,M) if(nargin==3) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值elseif(nargin==4) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-A)*x0+b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 2.crs里查森参数迭代法求线性方程组Ax=b的解 function[x,n]=crs(A,b,x0,w,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-w*A)*x0+w*b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;

if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 3.grs里查森迭代法求线性方程组Ax=b的解 function[x,n]=grs(A,b,x0,W,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1;%前后两次迭代结果误差 %迭代过程 while(tol>eps) x=(I-W*A)*x0+W*b;%迭代公式 n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 4.jacobi雅可比迭代法求线性方程组Ax=b的解 function[x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200; elseif nargin<3 error return elseif nargin==5 M=varargin{1}; end D=diag(diag(A));%求A的对角矩阵 L=-tril(A,-1);%求A的下三角阵

2.4.2求函数零点近似解的一种计算方法----二分法教案学生版

2.4.2求函数零点近似解的一种计算方法——二分法 【学习要求】 1.理解变号零点的概念,掌握二分法求函数零点的步骤及原理; 2.了解二分法的产生过程,会用二分法求方程近似解. 【学法指导】 通过借助计算器用二分法求方程的近似解,了解数学中逼近的思想和程序化地处理问题的思想;通过具体问题体会逼近过程,感受精确与近似的相对统一,体会“近似是普遍的,精确则是特殊的”辩证唯物主义观点. 填一填:知识要点、记下疑难点 如果函数y=f(x)在一个区间[a,b]上的图象不间断,并且在它的两个端点处的函数值,即,则这个函数在这个区间上,至少有,即存在一点x0∈(a,b),使f(x0)=0.如果函数图象通过零点时穿过x 轴,则称这样的零点为零点,如果没有穿过x轴,则称这样的零点为零点. 研一研:问题探究、课堂更高效 [问题情境]一元二次方程可用判别式判定根的存在性,可用求根公式求方程的根.但对于一般的方程,虽然可用零点存在性定理判定根的存在性,但是没有公式求根,如何求得方程的根呢? 探究点一变号零点与不变号零点 问题函数y=3x+2,y=x2,y=x2-2x-3的图象,如下图所示,在图象上零点左右的函数值怎样变化? 小结:如果函数f(x)在一个区间[a,b]上的图象不间断,并且在它的两个端点处的函数值异号,即f(a)f(b)<0,则这个函数在这个区间上至少有一个零点,即存在一点x0∈(a,b),使f(x0)=0.如果函数图象通过零点时穿过x轴,则称这样的零点为变号零点,如果没有穿过x轴,则称这样的零点为不变号零点. 探究点二二分法的概念 问题1由变号零点的概念我们知道,函数y=f(x)在一个区间[a,b]上的图象不间断,并且在它的两个端点处的函数值异号,即f(a)f(b)<0,则这个函数在这个区间上至少有一个零点,那么如何求出这个零点的近似值? 例1利用计算器,求方程x2-2x-1=0的一个正实数零点的近似解(精确到0.1). 问题2例1中求方程近似解的方法就是二分法,根据解题过程,你能归纳出什么是二分法吗? 问题3给定精确度,用二分法求函数f(x)的零点近似值的步骤是怎样的? 跟踪训练1借助计算器或计算机,用二分法求函数f(x)=x3+1.1x2+0.9x-1.4在区间(0,1)内的零点(精确到0.1).

MatLab求解线性方程组

MatLab解线性方程组一文通 当齐次线性方程AX=0,rank(A)=r

用二分法求方程的近似解-经典例题及答案

例1:利用计算器,求方程0122=--x x 的一个近似解(精确到0.1). 【解】设2()21f x x x =--, 先画出函数图象的简图. (如右图所示) 因为 (2)10,(3)20f f =-<=>, 所以在区间(2,3)内,方程2210x x --=有一解,记为1x .取2与3的平均数2.5,因为 (2.5)0.250f =>, 所以 12 2.5x <<. 再取2与2.5的平均数2.25,因为(2.25)0.43750f =-<, 所以 12.25 2.5x <<. 如此继续下去,得 1(2)0,(3)0(2,3) f f x <>?∈1(2)0,(2.5)0(2,2.5) f f x <>?∈1(2.25)0,(2.5)0(2.25,2.5) f f x <>?∈1(2.375)0,(2.5)0(2.375,2.5) f f x <>?∈1(2.375)0,(2.4375)0(2.375,f f x <>?∈ 2.4375),因为2.375与2.4375精确到0.1的 近似值都为2.4,所以此方程的近似解为 1 2.4x ≈. 利用同样的方法,还可以求出方程的另一个近似解. 点评:①第一步确定零点所在的大致区间),(b a ,可利用函数性质,也可借助计算机或计算器,但尽量取端点为整数的区间,尽量缩短区间长度,通常可确定一个长度为1的区间; 如此列表的优势:计算步数明确,区间长度小于精度时,即为计算的最后一步. 例2:利用计算器,求方程x x -=3lg 的近似解(精确到0.1). 分析:分别画函数lg y x =和3y x =- 的图象,在两个函数图象的交点处,函数值相等.因此,这个程x x -=3lg 的解.由函数lg y x =与 点的横坐标就是方

MATLAB解线性方程组的直接方法

在这章中我们要学习线性方程组的直接法,特别是适合用数学软件在计算机上求解的方法. 3.1 方程组的逆矩阵解法及其MATLAB 程序 3.1.3 线性方程组有解的判定条件及其MATLAB 程序 判定线性方程组A n m ?b X =是否有解的MATLAB 程序 function [RA,RB,n]=jiepb(A,b) B=[A b];n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0, disp('请注意:因为RA~=RB ,所以此方程组无解.') return end if RA==RB if RA==n disp('请注意:因为RA=RB=n ,所以此方程组有唯一解.') else disp('请注意:因为RA=RB> A=[2 3 -1 5;3 1 2 -7;4 1 -3 6;1 -2 4 -7]; b=[ 0; 0; 0; 0]; [RA,RB,n]=jiepb(A,b) 运行后输出结果为 请注意:因为RA=RB=n ,所以此方程组有唯一解. RA = 4,RB =4,n =4 在MATLAB 工作窗口输入 >>X=A\b, 运行后输出结果为 X =(0 0 0 0)’. (2) 在MATLAB 工作窗口输入程序 >> A=[3 4 -5 7;2 -3 3 -2;4 11 -13 16;7 -2 1 3];b=[ 0; 0; 0; 0]; [RA,RB,n]=jiepb(A,b)

matlab程序设计实践-牛顿法解非线性方程

中南大学MATLAB程序设计实践学长有爱奉献,下载填上信息即可上交,没有下载券的自行百度。所需m文件照本文档做即可,即新建(FILE)→脚本(NEW-Sscript)→复制本文档代码→运行(会跳出保存界面,文件名默认不要修改,保存)→结果。第一题需要把数据文本文档和m文件放在一起。全部测试无误,放心使用。本文档针对做牛顿法求非线性函数题目的同学,当然第一题都一样,所有人都可以用。←记得删掉这段话 班级: ? 学号: 姓名:

一、《MATLAB程序设计实践》Matlab基础 表示多晶体材料织构的三维取向分布函数(f=f(φ1,φ,φ2))是一个非常复杂的函数,难以精确的用解析函数表达,通常采用离散 空间函数值来表示取向分布函数,是三维取向分布函数的一个实例。 由于数据量非常大,不便于分析,需要借助图形来分析。请你编写一 个matlab程序画出如下的几种图形来分析其取向分布特征: (1)用Slice函数给出其整体分布特征; " ~ (2)用pcolor或contour函数分别给出(φ2=0, 5, 10, 15, 20, 25, 30, 35 … 90)切面上f分布情况(需要用到subplot函数);

(3) 用plot函数给出沿α取向线(φ1=0~90,φ=45,φ2=0)的f分布情况。 (

备注:数据格式说明 解: (1)( (2)将文件内的数据按照要求读取到矩阵f(phi1,phi,phi2)中,代码如 下: fid=fopen(''); for i=1:18 tline=fgetl(fid); end phi1=1;phi=1;phi2=1;line=0; f=zeros(19,19,19); [ while ~feof(fid) tline=fgetl(fid); data=str2num(tline); line=line+1;数据说明部分,与 作图无关此方向表示f随着 φ1从0,5,10,15, 20 …到90的变化而 变化 此方向表示f随着φ 从0,5,10,15, 20 … 到90的变化而变化 表示以下数据为φ2=0的数据,即f(φ1,φ,0)

高一数学《用二分法求方程的近似解》教案

高一数学《用二分法求方程的近似解》教案 教学目标 知识与技能通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用. 过程与方法能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算法做准备. 情感、态度、价值观体会数学逼近过程,感受精确与近似的相对统一. 教学重点 通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识. 教学难点 恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解. 教材分析 本节课注重从学生已有的基础(一元二次方程及其根的求法,一元二次函数及其图象与性质)出发,从具体(一元二次方程的根与对应的一元二次函数的图象与轴的交点的横坐标之间的关系)到一般,揭示方程的根与对应函数零点之间的关系.在此基础上,再介绍求函数零点的近似值的二分法,并在总结用二分法求函数零点的步骤中渗透算法的思想,为学生后续学习算法内容埋下伏笔.教科书不仅希望学生在数学知识与运用信息技术的能力上有所收获,而且希望学生感受到数学文化方面的熏陶,所以在阅读与思考中,介绍古今中外数学家在方程求解中所取得的成就,特别是我国古代数学家对数学发展与人类文明的贡献. 学情分析 通过本节课的学习,使学生在知识上学会用二分法求方程的近似解,从中体会函数与方程之间的联系;在求解的过程中,由于数值计算较为复杂,因此对获得给定精确度的近似解增加了困难,所以希望学生具备恰当地使用信息技术工具解决这一问题的能力.这就要求学生除了能熟练地运用计算器演算以外,还要能借助几何画板4.06中文版中的绘制新函数功能画出基本初等函数的图象,掌握Microsoft Excel软件一些基本的操作. 教学媒体分析 多媒体微机室、Authorware7.02中文版、几何画板4.06中文版、Microsoft Excel、QBASIC 语言应用程序 教学方法

Matlab求解线性方程组非线性方程组

求解线性方程组 solve,linsolve 例: A=[5 0 4 2;1 -1 2 1;4 1 2 0;1 1 1 1]; %矩阵的行之间用分号隔开,元素之间用逗号或空格 B=[3;1;1;0] X=zeros(4,1);%建立一个4元列向量 X=linsolve(A,B) diff(fun,var,n):对表达式fun中的变量var求n阶导数。 例如:F=sym('u(x,y)*v(x,y)'); %sym()用来定义一个符号表达式 diff(F); %matlab区分大小写 pretty(ans) %pretty():用习惯书写方式显示变量;ans是答案表达式 非线性方程求解 fsolve(fun,x0,options) 为待解方程或方程组的文件名;fun其中 x0位求解方程的初始向量或矩阵; option为设置命令参数 建立文件fun.m: function y=fun(x) y=[x(1)-0.5*sin(x(1))-0.3*cos(x(2)), ... x(2) - 0.5*cos(x(1))+0.3*sin(x(2))]; >>clear;x0=[0.1,0.1];fsolve(@fun,x0,optimset('fsolve')) 注: ...为续行符 m文件必须以function为文件头,调用符为@;文件名必须与定义的函数名相同;fsolve()主要求解复杂非线性方程和方程组,求解过程是一个逼近过程。Matlab求解线性方程组 AX=B或XA=B 在MATLAB中,求解线性方程组时,主要采用前面章节介绍的除法运算符“/”和“\”。如: X=A\B表示求矩阵方程AX=B的解; 的解。XA=B表示矩阵方程B/A=X. 对方程组X=A\B,要求A和B用相同的行数,X和B有相同的列数,它的行数等于矩阵A的列数,方程X=B/A同理。 如果矩阵A不是方阵,其维数是m×n,则有: m=n 恰定方程,求解精确解; m>n 超定方程,寻求最小二乘解; m

线性方程组求解matlab实现

3.1 方程组的逆矩阵解法及其MATLAB 程序 3.1.3 线性方程组有解的判定条件及其MATLAB 程序 判定线性方程组A n m ?b X =是否有解的MATLAB 程序 function [RA,RB,n]=jiepb(A,b) B=[A b];n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0, disp('请注意:因为RA~=RB ,所以此方程组无解.') return end if RA==RB if RA==n disp('请注意:因为RA=RB=n ,所以此方程组有唯一解.') else disp('请注意:因为RA=RB> A=[2 3 -1 5;3 1 2 -7;4 1 -3 6;1 -2 4 -7]; b=[ 0; 0; 0; 0]; [RA,RB,n]=jiepb(A,b) 运行后输出结果为 请注意:因为RA=RB=n ,所以此方程组有唯一解. RA = 4,RB =4,n =4 在MATLAB 工作窗口输入 >>X=A\b, 运行后输出结果为 X =(0 0 0 0)’. (2) 在MATLAB 工作窗口输入程序 >> A=[3 4 -5 7;2 -3 3 -2;4 11 -13 16;7 -2 1 3];b=[ 0; 0; 0; 0]; [RA,RB,n]=jiepb(A,b) 运行后输出结果 请注意:因为RA=RB> A=[4 2 -1;3 -1 2;11 3 0]; b=[2;10;8]; [RA,RB,n]=jiepb(A,B) 运行后输出结果 请注意:因为RA~=RB ,所以此方程组无解. RA =2,RB =3,n =3 (4)在MATLAB 工作窗口输入程序

用二分法求方程的近似解-经典例题及答案上课讲义

用二分法求方程的近似解-经典例题及答案

例1:利用计算器,求方程X 2 2x 1 0的一个近似解(精确到0.1) 【解】设f (x) x 2 2x 1, 先画出函数图象的简图.'i (如右 图所示) 丨 因为 ; f(2) 1 0, f (3) 2 0, 所以在区间(2,3)内,方程x 2.5,因为 f (2.5) 0.25 0, 所以 2人 2.5. 再取2与2.5的平均数2.25,因为f(2.25) 0.4375 0, 所以2.25 治 2.5. 如此继续下去,得 f(2) 0, f(3) 人(2,3) f(2) 0, f(2.5) 0 捲(2,2.5) f(2.25) 0, f (2.5) 0 x 1 (2.25, 2.5) f (2.375) 0, f (2.5) 0 x 1 (2.375,2.5) f (2.375) 0, f (2.4375) 0 为(2.375, 2.4375),因为 2.375与 2.4375精确到 0.1的近似值都为2.4,所以此方程的近似解为 洛 2.4 . 利用同样的方法,还可以求出方程的另一个近似解 . 点评:①第一步确定零点所在的大致区间(a,b),可利用函数性质,也可借助计算 机或计算器,但尽量取端点为整数的区间,尽量缩短区间长度,通常可确定一 个长度为1的区间; ②建议列表样式如下: 零点所在 区 间 区间中点函数 值 区间长 度 [2,3] f(2.5) 0 1 [2,2.5] f (2.25) 0 0.5 [2.25,2.5] f (2.375) 0 0.25 [2.375,2.5] f (2.4375) 0.125 如此列表的优势:计算步数明确,区间长度小于精度时,即为计算的最后一 步. 1 0有一解,记为x 1.取2与3的平均数 例 2:利用计算器,求方程lgx 3 x 的近似解(精确到0.1) 1-- 3 4 I I 斗- 3-' 分析:分别画函数y lg x 和y 3 x

遗传算法解非线性方程组的Matlab程序

遗传算法解非线性方程组的Matlab程序 程序用MATLAB语言编写。之所以选择MATLB,是因为它简单,但又功能强大。写1行MATLAB程序,相当于写10行C++程序。在编写算法阶段,最好用MATLAB语言,算法验证以后,要进入工程阶段,再把它翻译成C++语言。 本程序的算法很简单,只具有示意性,不能用于实战。 非线性方程组的实例在函数(2)nonLinearSumError1(x)中,你可以用这个实例做样子构造你自己待解的非线性方程组。 %注意:标准遗传算法的一个重要概念是,染色体是可能解的2进制顺序号,由这个序号在可能解的集合(解空间)中找到可能解 %程序的流程如下: %程序初始化,随机生成一组可能解(第一批染色体) %1: 由可能解的序号寻找解本身(关键步骤) %2:把解代入非线性方程计算误差,如果误差符合要求,停止计算 %3:选择最好解对应的最优染色体 %4:保留每次迭代产生的最好的染色体,以防最好染色体丢失 %5: 把保留的最好的染色体holdBestChromosome加入到染色体群中 %6: 为每一条染色体(即可能解的序号)定义一个概率(关键步骤) %7:按照概率筛选染色体(关键步骤) %8:染色体杂交(关键步骤) %9:变异 %10:到1 %这是遗传算法的主程序,它需要调用的函数如下。 %由染色体(可能解的2进制)顺序号找到可能解: %(1)x=chromosome_x(fatherChromosomeGroup,oneDimensionSet,solutionSum); %把解代入非线性方程组计算误差函数:(2)functionError=nonLinearSumError1(x); %判定程是否得解函数:(3)[solution,isTrue]=isSolution(x,funtionError,solutionSumError); %选择最优染色体函数: %(4)[bestChromosome,leastFunctionError]=best_worstChromosome(fatherChromosomeGroup,functionError); %误差比较函数:从两个染色体中,选出误差较小的染色体 %(5)[holdBestChromosome,holdLeastFunctionError]... % =compareBestChromosome(holdBestChromosome,holdLeastFunctionError,... % bestChromosome,leastFuntionError) %为染色体定义概率函数,好的染色体概率高,坏染色体概率低 %(6)p=chromosomeProbability(functionError); %按概率选择染色体函数: %(7)slecteChromosomeGroup=selecteChromome(fatherChromosomeGroup,p); %父代染色体杂交产生子代染色体函数 %(8)sonChrmosomeGroup=crossChromosome(slecteChromosomeGroup,2); %防止染色体超出解空间的函数 %(9)chromosomeGroup=checkSequence(chromosomeGroup,solutionSum) %变异函数 %(10)fatherChromosomeGroup=varianceCh(sonChromosomeGroup,0.8,solutionN); %通过实验有如下结果: %1。染色体应当多一些

实验一用matlab求解线性方程组

实验1.1 用matlab 求解线性方程组 第一节 线性方程组的求解 一、齐次方程组的求解 rref (A ) %将矩阵A 化为阶梯形的最简式 null (A ) %求满足AX =0的解空间的一组基,即齐次线性方程组的基 础解系 【例1】 求下列齐次线性方程组的一个基础解系,并写出通解: 我们可以通过两种方法来解: 解法1: >> A=[1 -1 1 -1;1 -1 -1 1;1 -1 -2 2]; >> rref(A) 执行后可得结果: ans= 1 -1 0 0 0 0 -1 1 0 0 0 0 由最简行阶梯型矩阵,得化简后的方程 ??? ??=+--=+--=-+-0 22004321 43214321x x x x x x x x x x x x

取x2,x4为自由未知量,扩充方程组为 即 提取自由未知量系数形成的列向量为基础解系,记 所以齐次方程组的通解为 解法2: clear A=[1 -1 1 -1;1 -1 -1 1;1 -1 -2 2]; B=null(A, 'r') % help null 看看加个‘r’是什么作用, 若去掉r ,是什么结果? 执行后可得结果: B= 1 0 1 0 0 1 0 1 ?? ?=-=-0 04321x x x x ?????? ?====4 4432221x x x x x x x x ??? ??? ??????+????????????=????? ???????1100001142 4321x x x x x x , 00111????? ? ??????=ε, 11002????? ???????=ε2 211εεk k x +=

Matlab线性方程组求解(Gauss消去法)

Matlab线性方程组求解 1. Gauss消元法: function x=DelGauss(a,b) % Gauss消去法 [n,m]=size(a); nb=length(b); det=1; %存储行列式值 x=zeros(n,1); for k=1:n-1 for i=k+1:n if a(k,k)==0 return end m=a(i,k)/a(k,k); for j=k+1:n a(i,j)=a(i,j)-m*a(k,j); end b(i)=b(i)-m*b(k); end det=det*a(k,k); %计算行列式 end det=det*a(n,n); for k=n:-1:1 %回代求解 for j=k+1:n b(k)=b(k)-a(k,j)*x(j); end x(k)=b(k)/a(k,k);

end Example: >> A=[1.0170 -0.0092 0.0095;-0.0092 0.9903 0.0136;0.0095 0.0136 0.9898]; >> b=[1 0 1]'; >> x=DelGauss(A,b) x = 0.9739 -0.0047 1.0010 2. 列主元Gauss消去法: function x=detGauss(a,b) % Gauss列主元消去法 [n,m]=size(a); nb=length(b); det=1; %存储行列式值 x=zeros(n,1); for k=1:n-1 amax=0; %选主元 for i=k:n if abs(a(i,k))>amax amax=abs(a(i,k));r=i; end end if amax<1e-10 return; end if r>k %交换两行 for j=k:n

MATLAB应用 求解非线性方程

第7章 求解非线性方程 7.1 多项式运算在MATLAB 中的实现 一、多项式的表达 n 次多项式表达为:n a +??++=x a x a x a p(x )1-n 1-n 1n 0,是n+1项之和 在MATLAB 中,n 次多项式可以用n 次多项式系数构成的长度为n+1的行向量表示 [a0, a1,……an-1,an] 二、多项式的加减运算 设 有 两 个 多 项 式 n a +??++=x a x a x a p1(x )1-n 1-n 1n 0和 m b +??++=x b x b x b p2(x )1-m 1-m 1m 0。它们的加减运算实际上就是它们的对应系 数的加减运算。当它们的次数相同时,可以直接对多项式的系数向量进行加减运算。当它们的次数不同时,应该把次数低的多项式无高次项部分用0系数表示。 例2 计算()()1635223-+++-x x x x a=[1, -2, 5, 3]; b=[0, 0, 6, -1]; c=a+b 例3 设()6572532345++-+-=x x x x x x f ,()3532-+=x x x g ,求f(x)+g(x) f=[3, -5, 2, -7, 5, 6]; g=[3, 5, -3]; g1=[0, 0, 0, g];%为了和f 的次数找齐 f+g1, f-g1 三、多项式的乘法运算 conv(p1,p2) 例4 在上例中,求f(x)*g(x) f=[3, -5, 2, -7, 5, 6]; g=[3, 5, -3]; conv(f, g) 四、多项式的除法运算 [Q, r]=deconv(p1, p2) 表示p1除以p2,给出商式Q(x),余式r(x)。Q,和r 仍为多项式系数向量 例4 在上例中,求f(x)/g(x) f=[3, -5, 2, -7, 5, 6]; g=[3, 5, -3]; [Q, r]=deconv(f, g) 五、多项式的导函数 p=polyder(P):求多项式P 的导函数 p=polyder(P,Q):求P·Q 的导函数

matlab程序设计实践-牛顿法解非线性方程

中南大学 MATLAB程序设计实践学长有爱奉献,下载填上信息即可上交,没有下载券 的自行百度。所需m文件照本文档做即可,即新建(FILE)→脚本(NEW-Sscript)→复制本文档代码→运行(会跳出 保存界面,文件名默认不要修改,保存)→结果。第 一题需要把数据文本文档和m文件放在一起。全部测 试无误,放心使用。本文档针对做牛顿法求非线性函 数题目的同学,当然第一题都一样,所有人都可以用。 ←记得删掉这段话 班级: 学号: 姓名: 一、《MATLAB程序设计实践》Matlab基础

表示多晶体材料织构的三维取向分布函数(f=f(φ1,φ,φ2))是一个非常复杂的函数,难以精确的用解析函数表达,通常采用离散空间函数值来表示取向分布函数,是三维取向分布函数的一个实例。由于数据量非常大,不便于分析,需要借助图形来分析。请你编写一个matlab程序画出如下的几种图形来分析其取向分布特征:(1)用Slice函数给出其整体分布特征; (2)用pcolor或contour函数分别给出(φ2=0, 5, 10, 15, 20, 25, 30, 35 … 90)切面上f分布情况(需要用到subplot函数);

(3) 用plot函数给出沿α取向线(φ1=0~90,φ=45,φ2=0)的f分布情况。

备注:数据格式说明 解: (1)将文件内的数据按照要求读取到矩阵f(phi1,phi,phi2)中,代码如下: fid=fopen(''); for i=1:18 tline=fgetl(fid); end phi1=1;phi=1;phi2=1;line=0; f=zeros(19,19,19); while ~feof(fid) tline=fgetl(fid); data=str2num(tline); line=line+1; if mod(line,20)==1 phi2=(data/5)+1; phi=1; 数据说明部分,与作图无关 此方向表示f 随着φ1从0,5,10,15, 20 …到90的变化而变化 此方向表示f 随着φ从0,5,10,15, 20 …到90的变化而变化 表示以下数据为φ2=0的数据,即f (φ1,φ,0)

《用二分法求方程的近似解-》导学案.doc

《§3.1.2用二分法求方程的近似解》导学案 高一数学组编写人:刘慧影审核人:房淑萍使用日期: 【学习目标】: 1.根据具体函数图象,能够借助计算器用二分法求相应方程的近似解; 2.通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识. 【学习重、难点】 学习重点::用二分法求解函数f(x)的零点近似值的步骤。 学习难点:为何由I a — b丨<£便可判断零点的近似值为3(或b)? 【学法指导及要求】: 1、认真研读教材P89-P9I页,认真思考、独立规范作答,认真完成每一个问题,每一道 习题,不会的先绕过,做好记号; 2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理到解错 题本上,多复习记忆。 【知识链接】 1:什么叫零点?零点的等价性?零点存在性定理? (1)对于函数y = /(x),我们把使__________ 的实数兀叫做函数y = /(x)的零点. (2)方程/(x) = 0有实数根o函数y = /(x)的图象与x轴________________________ o函数 y = /⑴ ___________ ? (3)如果函数)u /(x)在区间[a,b]上的图彖是连续不断的一条曲线,并且 有______________ ,那么,函数y = /O)在区间(“)内有零点. 【学习过程】 %1.自主学习 探究任务:二分法的思想及步骤 问题:有12个小球,质量均匀,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好. 解法: 第一次,两端各放______ 个球,低的那一端一定有重球; 第二次,两端各放________个球,低的那一端一定有重球; 第三次,两端各放______ 个球,如果平衡,剩下的就是重球,否则,低的就是重球. %1.合作探讨 思考:以上的方法其实这就是一种二分法的思想,采用类似的方法,如何求)=lnx + 2x-6的零点所在区间?如何找出这个零点? 一个直观的想法是:如果能够将零点所在的范围尽量的缩小,那么在一定的精确度的要求下,我们可以得到零点的近似值;为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围。

用二分法求方程的近似解

用二分法求方程的近似解(1) 【教学目标】1.使学生理解利用二分法求方程的近似解的思想方法,会用二分法求某些方程的近似解 2.通过本节内容的学习,让学生体会到在现实世界中,等是相对的,而不等是绝对的,这样可以加深对数学的理解. 【学习指导】我们已经学过一元一次方程、一元二次方程等方程的解法,并掌握了一些方程的求根公式.实际上,大部分方程没有求根公式,那么,这些方程怎么解?学完这一课,你就会知道利用方程的根与函数的零点的关系求方程的实数解(近似解)了. 本节的重点就是利用二分法求方程的近似解,所谓二分法就是:对于在区间[a,b]上连续不断、且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而和到零点近似值的方法. 【例题精析】 例1.借助计算机或计算器,用二分法求函数f(x)= x3-5x2-4x+2的一个零点,精确到0.05. 【分析】先用大范围法寻找零点所在的区间,然后不断使用二分法,逐步缩小区间,直至达到精度的要求. 【解法】先作出x与f(x)的对应值表,并试图找出一个根所在的区间: 通过举值,发现函数在(0,1)与(5,6)内都至少有一个零点,现不妨求(0,1)内的一个零点.

令x1=0.5,f(0.5)= -1.125.因为f(0)·f(0.5)<0,所以零点x0∈(0,0.5).令x2=0.25,f(0.25)≈0.7.因为f(0.25)·f(0.5)<0,所以零点x0∈(0.25,0.5). 令x3=0.375,f(0.375)≈-0.15.因为f(0.375)·f(0.25)<0,所以零点x0∈(0.25,0.375). 令x4=0.3125,f(0.3125)≈0.29.因为f(0.375)·f(0. 3125)<0,所以零点x0∈(0.3125,0.375). 令x5=0.359375,f(0.359375)≈-0.04.因为f(0.359375)·f(0.3125)<0,所以零点x0∈(0.3125,0.359375). 由于|0.359375-0.3125|=0.047<0.05, 此时区间(0.3125,0.359375)的两个端点精确到0.05的近似值都是0.336,所以函数的一个零点为0.336. 【评注】①选好初定区间是使用二分法求近似解的关键.选取初定区间的方法有多种,常用方法有试验估计法,数形结合法,函数单调性法,函数增长速度差异法等等.②本题还有两个零点,你能把它独立求解出来吗?(答案为-1,5.646.) 例2.(师生共同探究)概括用二分法求方程的近似解的基本程序. 【分析】通过对例1的研究,希望能够对解决问题的方法进行提炼,而这一点切不可以由老师包办代替,要通过师生的合作探究解决问题.【解法】(1)在同一坐标系中分别作出两个简单函数的图象,注意两个图象与x轴的交点坐标; (2)估算出第一个解的区间(x1,x2),(x1<x2);

相关主题