搜档网
当前位置:搜档网 › VW_2_8_1_2011-02 EN

VW_2_8_1_2011-02 EN

VW_2_8_1_2011-02 EN
VW_2_8_1_2011-02 EN

Elastomers

Material Requirements and Testing

Previous issues

VW 2.8.1: 1960-08, 1965-08, 1970-04, 1973-07, 1974-11, 1976-03, 1978-10, 1980-09, 1989-09,1989-11, 1997-06, 2003-11, 2007-03, 2007-07, 2007-12, 2009-08, 2009-12, 2010-12Changes

The following changes have been made compared with VW 2.8.1: 2010-12:–Previous issues corrected Scope

This standard contains material requirements and tests for elastomer materials used for components and technical molded parts in motor vehicles (does not apply to vehicle tires).Requirements General requirements

Approval of first supply and changes acc. to Volkswagen standard VW 01155.Avoidance of hazardous substances according to VW 91101.

Free from DOTG (di-o-tolylguanidine) and free from its cleavage product o-toluidine.

Elastomer qualities are tested on components, component sections or, in exceptional cases, on test plates (see Section 3.1).

On principle, samples must be delivered with an indication of the manufacturer’s quality designation.

1

2 2.1

Group Standard

VW 2.8.1

Issue 2011-02

Class. No.:55152

Descriptors:

elastomer, rubber, elastomer material, DOTG

Verify that you have the latest issue of the Standard before relying on it.

This electronically generated Standard is authentic and valid without signature.

The English translation is believed to be accurate. In case of discrepancies, the German version is alone authoritative and controlling.

Page 1 of 17

Confidential. All rights reserved. No part of this document may be provided to third parties or reproduced without the prior consent of the Standards Department of a Volkswagen Group member.

This Standard is available to contracting parties solely via the B2B supplier platform https://www.sodocs.net/doc/ed6370113.html,.

? Volkswagen Aktiengesellschaft

VWNORM-2010-08e

The number of parts required for laboratory evaluation must be agreed upon with the responsible material laboratory.

Deviations from this standard must be specified in drawings and test reports.

Parts whose grades cannot be classified on the basis of this standard require a separate Technical Supply Specification.Evaluation of measurement results

The required numerical values apply to each individual measurement.Specifications in technical documentation

Description example for a black, fuel-resistant acrylonitrile butadiene elastomer with a preferred hardness of 75 Shore A:

NBR, VW 2.8.1 – A, black

Description example for a black, transmission-oil resistant acrylate elastomer with an operational temperature of max. +100 °C and a hardness of 60 Shore A:

ACM, VW 2.8.1 – E60, black, temperature +100 °C

Description example for a black ethylene-propylene terpolymer resistant to daylight, weather, ozone,and hot air up to a temperature of +100 °C, featuring a rebound resilience between (35 and 55)%and a hardness of 50 Shore A:

EPDM, VW 2.8.1 – G50, black, ozone resistant, rebound resilient > 50%, resistant to hot air up to +100 °C Marking according to VDA 260

For the recycling of vehicles and powertrains, the components are marked as specified in VDA 260.The codes acc. to DIN ISO 1629 must be used for this purpose.Examples for codes

The codes listed below represent only an incomplete selection. In principle, raw polymer materials for components must be designated as specified in DIN ISO 1629.ACM

Copolymers consisting of ethyl acrylate (or other acrylates with a small frac‐tion of a monomer that facilitates vulcanization (normally referred to as acry‐late rubber)).

AEM Copolymer consisting of ethyl acrylate (or other acrylates) and ethylene BR Butadiene rubber

CM Chlorinated polyethylene

CO Polychloromethane oxirane (normally referred to as epichlorohydrin rubber)CR Chlorophrene rubber

CSM Chlorosulphonated polyethylene rubber

ECO Copolymer consisting of ethylene oxide (oxirane) and chloromethyl oxirane (also referred to as epichlorohydrin copolymer or epichlorohydrin rubber)EPDM Terpolymer consisting of ethylene, propylene and a diene with an unsaturated part of the diene in a side chain EPM

Ethylene propylene copolymer

2.2

2.3

2.4

2.4.1

Page 2

VW 2.8.1: 2011-02

FKM Fluorocarbon rubber with fluorine, perfluorine alkyl or perfluorine alkoxy groups on the polymer chain

FVMQ Silicone rubber with methyl, vinyl and fluorine groups on the polymer chain IIR Isobutene isoprene rubber (normally referred to as butyl rubber)NBR Acrylonitrile butadiene elastomer NR Natural rubber

SBR Styrene butadiene rubber

VMQ Silicone rubber with methyl and vinyl groups on the polymer chain

Appearance

On delivery, components must display a flawless surface texture. Tackiness, inclusions, cavities,cracks, damage, etc. are not https://www.sodocs.net/doc/ed6370113.html,ponent color: see drawing.Properties, grade

See Table 1 and Table 2.

2.5

2.6

Page 3

VW 2.8.1: 2011-02

T a b l e 1

Page 4

VW 2.8.1: 2011-02

Page 5 VW 2.8.1: 2011-02

Page 6

VW 2.8.1: 2011-02

Page 7 VW 2.8.1: 2011-02

a )

D e v i a t i n g l i m i t s m a y b e s p e c i f i e d i n j u s t i f i e d c a s e s .

Page 8

VW 2.8.1: 2011-02

T a b l e 2

Page 9

VW 2.8.1: 2011-02

Page 10

VW 2.8.1: 2011-02

Page 11 VW 2.8.1: 2011-02

a )

D e v i a t i n g l i m i t s m a y b e s p e c i f i e d i n j u s t i f i e d c a s e s .

Page 12

VW 2.8.1: 2011-02

Notes on testing

When aging in fuels, oils, and/or greases, the volume must be equal to (80 ± 5) times the volume of the test specimen. Test vessels (and also specimen holders when aging in fluids) in acc. with PV 3323 must be used.

The tolerances specified in VDA 674 002 apply to the specified aging times.

Unless otherwise specified, measurements must be carried out 30 minutes after removal of the specimen from the test medium. The specimens must be cleaned immediately after removal with a lint-free cloth.

Test conditions deviating from this standard must be specified in drawings and test reports.Specimens

Tests are performed on S3A dumb-bell specimens acc. to DIN 53505. These specimens must be taken from the finished parts. For certain finished part dimensions (e.g. radial shaft seal), S3 standard test specimens may be used as an alternative. In exceptional cases, if standard test specimens cannot be extracted from the finished parts by means of, for example, a bandknife splitting machine,test plates (thickness 2 mm) may be used.Preferred hardness

In those cases where a hardness other than the preferred hardness must be used, the selected hardness must be specified following the grade designation, e.g. E60. The tolerance in such cases is always ± 5 Shore A.Aging at elevated temperature

Aging for 94 h in a forced air oven acc. to DIN 53508. In justified cases, other aging times may be agreed upon. Measurements are carried out after cooling to room temperature, (23 ± 2) °C.Aging in contact medium

The conditions specified in Section 3.4.1 to Section 3.4.5 apply to aging in contact media.Gasoline

The following test fluids are used:–

Test fluid according to DIN 51604-2 (FAM B)Composition:

84,5 volume % FAM test fluid acc. to DIN 51604-1 (FAM A)15,0 volume % methanol 0,5 volume % water –

E 85 fuel Composition:

84 volume % highest grade ethanol acc. to DAB 7

16 volume % FAM test fluid acc. to DIN 51604-1 (FAM A)

Other test fluids may be used if required (deviations acc. to drawing).

3 3.1

3.2

3.3

3.4

3.4.1

Page 13

VW 2.8.1: 2011-02

Aging for 168 h (other aging times, e.g., 48 h, acc. to drawing specification) at room temperature (23± 2) °C. The specimens are dabbed off with filter paper (e.g., black band) after aging. The evaluations are carried out 1 minute afterwards. In justified cases, which must be agreed upon, evaluation may also begin 15 minutes after removal.Diesel fuel, fatty acid methyl ester (FAME)

The following test composition must be used for aging of the specimens in diesel fuel:93 volume % standard diesel Liquid F (formerly A20 NPII, made by Haltermann) acc. to DIN ISO 1817;

7 volume % fatty acid methyl ester (FAME) according to DIN EN 14214.

For aging in biodiesel, fatty acid methyl ester (FAME) acc. to DIN EN 14214 must be used.Aging time: Aging for 48 h at room temperature (23 ± 2) °C. After aging is complete, the specimens must be cleaned with a lint-free cloth. Evaluation must begin 1 minute after removal of the specimen from the medium. In justified cases, other aging times and test temperatures can be agreed upon.Oil

Aging time: 48 h and 96 h. For quality grade U, aging in oil is performed for 24 h at (23 ± 2) °C.For aging in engine oil, Reference Engine Oil OS 206 304 acc. to TL 52185 must be used as the test fluid. Other test oils may be used upon agreement.Grease

Aging time: 48 h.Coolant additive

S3A dumb-bell specimens acc. to DIN 53504 are aged in test fluid consisting of 50 parts deionized water and 50 parts coolant additive by volume acc. to the valid version of TL 774 at +135 °C in an autoclave. The fluid volume must be 150 to 180 times the specimen volume. Subsequently, the specimens are cooled down to (23 ± 2) °C in the test fluid within 2 hours and are measured.Aging time: 94 h. In justified cases, other aging times may also be agreed upon.Drying

The specimens are pre-dried (2 to 4) h at room temperature and are then dried for 22 h at +85 °C in a natural convection oven acc. to DIN 53508. The specimens must be aged such that there is com‐plete circulation of air around them.Tensile strength

The tensile strength of the aged dumb-bell specimen must be based on its cross-section prior to aging. For tests performed on o-rings, the ring thickness is determined using a reference ring taken from the sample batch (cf. PV 3973).

3.4.2

3.4.3

3.4.4

3.4.5

3.5

3.6

Page 14

VW 2.8.1: 2011-02

Elongation at tear

Elongation at tear of the aged dumb-bell specimen must be based on its condition after aging. De‐viating therefrom, the inner diameter of o-rings is determined when determining the elongation at tear following aging in media (cf. PV 3973).Low-temperature resistance

Test specimens must still be elastic after 24 h of low-temperature aging. There must be no break or formation of cracks during the bending test. The specimens' dimensions must be approx.

(100 × 2) mm; deviating specimens must be agreed upon. Gloves and/or vice-grip pliers must be used during the test. Where the shape of the specimen does not permit bending by hand, hardness of the specimens must be less than 90 Shore A (measured after aging in a cold chamber). Deviations must be indicated in the drawing. The hardness is determined by means of a test device conditioned at low temperature.Ozone resistance

The test is conducted for 46 h in the ozone climate chamber with a 2 ppm (- 15%) ozone concentration,at (25 + 3) °C and (60 ± 5)% relative humidity. For this purpose, the parts must be mounted as installed in the vehicle or in a similar manner. Specific load conditions have been specified for certain parts,e.g., profiles are aged on a mandrel with a 30 mm radius; profiles with a thickness ≤ 5 mm are

elongated by 20% to 25% in a clamping device (see PV 3305), and/or are tested on a mandrel with a radius five times the thickness of the specimen.

The specimen parts are exposed to the ozone atmosphere 15 min after mounting.Determination of ozone concentration acc. to DIN 53509-2.Evaluation of cracking acc. to PV 3316.Lightfastness

Parts used in the vehicle interior must be tested as specified in PV 1303 (the number of periods must be agreed upon); parts used on the vehicle exterior must be tested according to PV 3929 and PV 3930 (test cycle: one year each).Weather resistance

Open-air weathering for 1 year in damp heat acc. to PV 3930 (Florida) and in dry heat acc. to PV 3929 (Kalahari, Arizona).Paint indifference

Testing is carried out after aging at elevated temperature (24 h at +70 °C) and after rain simulation (24 h acc. to PV 3930).Greasing

Parts must exhibit a clearly discernible wax film in as-received condition. After this wax film is removed by cleaning (by moving the specimen for 5 seconds in FAM test fluid acc. to DIN 51604-1 = FAM 2at room temperature with tweezers), the specimens are aged for 94 h at +70 °C in a forced air oven acc. to DIN 53508. After the aging period, a new, clearly discernible wax film must have formed on the surface of the specimens (produced by exudation).

3.7 3.8

3.9

3.10

3.11

3.12

3.13

Page 15

VW 2.8.1: 2011-02

Abrasion behavior

The abrasion behavior must be tested under 10 N load. Deviations must be indicated in the drawing.Other applicable documents

The following documents cited in this Standard are necessary to its application.

Some of the cited documents are translations from the German original. The translations of German terms in such documents may differ from those used in this Standard, resulting in terminological inconsistency.

Standards whose titles are given in German may be available only in German. Editions in other languages may be available from the institution issuing the standard.PV 1303Non-Metallic Materials; Exposure Test of Passenger Compartment Com‐ponents

PV 3305Vulcanized Rubber Products; Test of Ozone Resistance and Permanent Deformation

PV 3307Elastomer Components; Plastic and Elastic Deformability

PV 3316Rubber Products; Reference Photographs after Exposure to Ozone PV 3323Test Vessels and Specimen Holders for Aging Standard Specimens PV 3927Thermogravimetric Analysis for Plastics and Elastomers; Determination:Plasticizers, Carbon Black

PV 3929Non-Metallic Materials; Weathering in Dry, Hot Climate PV 3930Non-Metallic Materials; Weathering in Moist, Hot Climate

PV 3973Elastomer O-Rings; Determining Tensile Strength, Elongation at Tear and Stress Values in the Tensile Test

PV 3976Determining/Evaluating the Corrosion Effect of Elastomers on Electrolyte Copper

TL 52185Reference Engine Oil SAE 5W-30 for Testing of Compatibility with Respect to Elastomer Materials; Lubricant Requirements TL 735Multi-Purpose Grease; Lubricant Requirements

TL 745Multi-Purpose Low-Temperature Grease; Lubricant Requirements TL 774Ethylene Glycol-Based Coolant Additive; Material Requirements TL 788Diesel Fuel; Fuel Requirements

VW 01155Vehicle Supply Parts; Approval of First Supply and Changes VW 50180Components in Passenger Compartment; Emission Behavior

VW 91101Environmental Standard for Vehicles; Vehicle Parts, Materials, Operating Fluids; Avoidance of Hazardous Substances

DIN 51604-1FAM testing fluid for polymer materials; Composition and requirements DIN 51604-2

Methanolic FAM testing fluid for polymer materials; composition and re‐quirements

3.14 4

Page 16

VW 2.8.1: 2011-02

Page 17

VW 2.8.1: 2011-02 DIN 53504Testing of rubber - determination of tensile strength at break, tensile stress

at yield, elongation at break and stress values in a tensile test

DIN 53505Testing of rubber - Shore A and Shore D hardness test

DIN 53508Testing of rubber - Accelerated ageing

DIN 53509-2Testing of rubber - Determination of resistance to ozone cracking - Part 2:

Reference method for determining ozone concentration in laboratory test

chambers

DIN 53512Testing of rubber - Determination of rebound resilience (Schob pendulum) DIN EN 14214Automotive fuels - Fatty acid methyl esters (FAME) for diesel engines -

Requirements and test methods

DIN EN ISO 1183-1Plastics - Methods for determining the density of non-cellular plastics - Part

1: Immersion method, liquid pyknometer method and titration method DIN IEC 60167Methods of Test for Insulating Materials for Electrical Purposes; Insulation

Resistance of Solid Materials

DIN ISO 1629Rubber and latices - Nomenclature

DIN ISO 1817Rubber, vulcanized - Determination of the effect of liquids

DIN ISO 4649Rubber, vulcanized or thermoplastic - Determination of abrasion resis‐

tance using a rotating cylindrical drum device

DIN ISO 48Rubber, vulcanized or thermoplastic - Determination of hardness (hard‐

ness between 10 IRHD and 100 IRHD)

VDA 260Components of motor vehicles; marking of material

VDA 674 002Prüfzeiten

VDA 675 242Elastomer-Bauteile in Kraftfahrzeugen; Prüfverfahren zur Eigenschafts‐

bestimmung, Verf?rbung von organischen Werkstoffen durch Elastomere

(Lackindifferenz)

实验二填料精馏塔等板高度的测定

实验二填料精馏塔等板高度的测定 精馏是化工生产中一个很重要的操作过程。在化工厂和实验室中,精馏操作通常被用来分离均相液体混合物。无论是原料的准备或是产品的精制,往往需要应用精馏操作。精馏塔一般分两大类:填料塔和板式塔。实验室精密分馏采用填料精馏柱。评价精馏设备的分离能力,对于板式塔多采用塔板效率;对于填料塔常以单位高度填料层内所具有的理论板数(亦称理论级数)来表示,或以相当于一层理论板的填料层高度,即所谓的等板高度(亦称理论级当量高度)来表示。本实验是在玻璃精馏柱中,填以玻璃填料,以乙醇一水混合物为工作介质,测定填料的分离能力(即测定玻璃球填料的等板高度)。 一、实验目的及任务 了解填料精馏塔的结构。 掌握精密分馏的操作方法。 测定在一定汽、液相负荷条件下,全回流时的全塔效率及等板高度。 二、实验基本原理 通常采用在全回流条件下,当塔内达到传质、传热平衡时,测定其最小理论板数,进而求出等板高度HETP,来评价精馏柱和填料性能。采用全回流操作条件,达到给定分离目的所需要的理论板数最少,即设备的分离能力达到最大,测定时,免去了回流比等的影响。 精馏过程就是依据混合物中两组分挥发度不同,使未达到平衡的汽、液两相进行充分的接触,最终达到平衡状态。从而使汽相中富含易挥发组分,液相中富含难挥发组分,从而达到分离的目的。在实际操作中,由于接触时间有限且汽、液两相接触不可能十分充足,所以最终的相平衡是不易达到的,相平衡只是过程的极限状态。因此,在开发和设计分离设备时, 应使设备的分离能力尽量提高。对于二元物系可以根据相平衡数据及实验,测定设备的这种分离能力(或效率)。 对于本实验所涉及的乙醇一水二元物系,由相平衡数据在直角坐标纸上绘出相图(x-y相图)。由实验测定全回流条件下的釜液浓度xw及塔顶流出液浓度xD (均为摩尔分数),在相图上图解理论级数NT。根据等板高度的定义,便可以计算出填料的等板高度:

填料精馏塔理论塔板数的测定(精)

实验五 填料精馏塔理论塔板数的测定 精馏操作是分离、精制化工产品的重要操作。塔的理论塔板数决定混合物 的分离程度,因此,理论板数的实际测定是极其重要的。在实验室内由精馏装 置测取某些数据,通过计算得到该值。这种方法同样可以用于大型装置的理论 板数校核。目前包括实验室在内使用最多的是填料精馏塔。其理论板数与塔结 构、填料形状及尺寸有关。测定时要在固定结构的塔内以一定组成的混合物进 行。 一. 实验目的 1.了解实验室填料塔的结构,学会安装、测试的操作技术。 2.掌握精馏理论,了解精馏操作的影响因素,学会填料精馏塔理论板 数的测定方法 3.掌握高纯度物质的提纯制备方法。 二. 实验原理 精馏是基于汽液平衡理论的一种分离方法。对于双组分理想溶液,平衡时 气相中易挥发组分浓度要比液相中的高;气相冷凝后再次进行汽液平衡,则气 相中易挥发组分浓度又相对提高,此种操作即是平衡蒸馏。经过多次重复的平 衡蒸馏可以使两种组分分离。平衡蒸馏中每次平衡都被看作是一块理论板。精 馏塔就是由许多块理论板组成的,理论板越多,塔的分离效率就越高。板式塔 的理论板数即为该塔的板数,而填料塔的理论板数用当量高度表示。填料精馏 塔的理论板与实际板数未必一致,其中存在塔效率问题。实验室测定填料精馏 塔的理论板数是采用间歇操作,可在回流或非回流条件下进行测定。最常用的 测定方法是在全回流条件下操作,可免去加回流比、馏出速度及其它变量影响,而且试剂能反复使用。不过要在稳定条件下同时测出塔顶、塔釜组成,再由该 组成通过计算或图解法进行求解。具体方法如下: 1.计算法 二元组份在塔内具有n 块理论板的第一块板的汽液平衡关系符合平衡方 程式为: 1 11y y -=w w N m x x -+11α (1) y 1——第一块板的气相组成 x w ——塔釜液的组成 m α——全塔(包括再沸器)α(相对挥发度)的几何平均值m α=w p αα N ——理论板数

大气课设填料塔设计计算

课程设计说明书 题 目:S H S 20-25型锅炉低硫烟煤 烟 气袋式除尘湿式脱硫系统设计 学生姓名: 周永博 学 院: 能源与动力工程学院 班 级: 环工13-1 指导教师:曹英楠

2016年7 月 1 日 内蒙古工业大学课程设计(论文)任务书 课程名称:大气污染控制工程学院:能源与动力工程学院班级:环工13-1 学生姓名:周永博学号:201320303014 指导教师:曹英楠

技术参数: 锅炉型号:SHS20-25 即,双锅筒横置式室燃炉(煤粉炉),蒸发量20t/h,出口蒸汽压力25MPa 设计耗煤量:2.4t/h 设计煤成分:C Y=75.2% H Y=3% O Y=4% N Y=1% S Y=0.8% A Y=10% W Y=6%; V Y=18%;属于低硫烟煤 排烟温度:160℃ 空气过剩系数=1.25 飞灰率=29% 烟气在锅炉出口前阻力800Pa 污染物排放按照锅炉大气污染物排放标准中2类区新建排污项目执行。 连接锅炉、净化设备及烟囱等净化系统的管道假设长度150m,90°弯头30个。

参考文献: 《大气污染控制工程》郝吉明、马广大; 《环保设备设计与应用》罗辉..北京.高等教育出版社.1997; 《除尘技术》高香林..华北电力大学.2001.3; 《环保设备?设计?应用》郑铭..北京.化学工业出版社.2001.4; 《火电厂除尘技术》胡志光、胡满银..北京.中国水利水电出版社.2005; 《除尘设备》金国淼..北京.化学工业出版社.2002; 《火力发电厂除尘技术》原永涛..北京.化学工业出版社.2004.10; 《环境保护设备选用手册》鹿政理..北京.化学工业出版社.2002.5; 《工业通风》孙一坚主编..中国建筑工业出版社,1994; 《锅炉及锅炉房设备》奚士光等主编..中国建筑工业出版社,1994; 《除尘设备设计》金国淼主编..上海科学技术出版社,1985; 《环境与工业气体净化技术》. 朱世勇主编.化学工业出版社,2001; 《湿法烟气脱硫系统的安全性及优化》曾庭华,杨华等主编..中国电力出版社;《燃煤烟气脱硫脱硝技术及工程实例》. 钟秦主编.化学工业出版社,2004; 《环保工作者使用手册》. 杨丽芬,李友琥主编.冶金工业出版社,2001; 《工业锅炉房设计手册》航天部第七研究设计院编.中国建筑工业出版社,1986;《火电厂烟气湿法脱硫装置吸收塔的设计》王祖培编.化学工业第二设计院,1995;《大气污染控制工程》. 吴忠标编.科学出版社,2002; 《湿法烟气脱硫吸收塔系统的设计和运行分析》. 曾培华著.电力环境保护,2002。

填料塔工艺尺寸的计算

填料塔工艺尺寸的计算 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第三节 填料塔工艺尺寸的计算 填料塔工艺尺寸的计算包括塔径的计算、填料能高度的计算及分段 塔径的计算 1. 空塔气速的确定——泛点气速法 对于散装填料,其泛点率的经验值u/u f =~ 贝恩(Bain )—霍根(Hougen )关联式 ,即: 2213lg V F L L u a g ρμερ?? ?????? ? ???????=A-K 14 18 V L V L w w ρρ???? ? ??? ?? (3-1) 即:1124 8 0.23100 1.18363202.59 1.1836lg[ ()1]0.0942 1.759.810.917998.24734.4998.2F u ?????? =- ? ? ??????? 所以:2 F u /(100/3)()= UF=3.974574742m/s 其中: f u ——泛点气速,m/s; g ——重力加速度,9.81m/s 2 W L =㎏/h W V =7056.6kg/h A=; K=; 取u= F u =2.78220m/s 0.7631D = = = (3-2) 圆整塔径后 D=0.8m 1. 泛点速率校核:2 6000 3.31740.7850.83600 u = =?? m/s 则 F u u 在允许范围内 2. 根据填料规格校核:D/d=800/50=16根据表3-1符合 3. 液体喷淋密度的校核: (1) 填料塔的液体喷淋密度是指单位时间、单位塔截面上液体的喷淋量。

(2) 最小润湿速率是指在塔的截面上,单位长度的填料周边的最小液体体积流量。对于直径不超过75mm 的散装填料,可取最小润湿速率()3min 0.08m /m h w L ?为。 ()32min min 0.081008/w t U L m m h α==?=? (3-3) 22 5358.8957 10.6858min 0.75998.20.7850.8L L w U D ρ= ==>=???? (3-4) 经过以上校验,填料塔直径设计为D=800mm 合理。 填料层高度的计算及分段 *110.049850.75320.03755Y mX ==?= (3-5) *220Y mX == (3-6) 3.2.1 传质单元数的计算 用对数平均推动力法求传质单元数 12 OG M Y Y N Y -= ? (3-7) ()* *1 1 22*11*22 () ln M Y Y Y Y Y Y Y Y Y ---?= -- (3-8) = 0.063830.00063830.03755 0.02627ln 0.0006383 -- = 3.2.2 质单元高度的计算 气相总传质单元高度采用修正的恩田关联式计算: () 0.75 0.10.05 2 0.2 2 21exp 1.45/t c l L t L L V t w l t l L U U U g ασαρσαασαμρ-????????? ? =--?? ? ? ??? ????? ?? ? (3-9) 即:αw/αt =0. 液体质量通量为:L u =WL/××=10666.5918kg/(㎡?h ) 气体质量通量为: V u =60000×=14045.78025kg/(㎡?h)

化工模拟软件aspen plus第3章 物性方法

第3章物性方法作者:毕欣欣孙兰义

物性方法 3.1 Aspen Plus数据库 3.2 Aspen Plus中的主要物性模型3.3 物性方法的选择 3.4 定义物性集 3.5 物性分析 3.6 物性估算 3.7 物性数据回归 3.8 电解质组分

系统数据库?是Aspen Plus的一部分,适用于每一个程序的运行,包括PURECOMP、SOLIDS、AQUEOUS、INORGANIC、BINARY等数据库 内置数据库?与Aspen Plus的数据库无关,用户自己输入,用户需自己创建并激活 用户数据库?用户需要自己创建并激活,且数据具有针对性,不是对所有用户开放

PURECOMP 常数参数。例如绝对温度、绝对压力。 相变的性质参数。例如沸点、三相点。 参考态的性质参数。例如标准生成焓以及标准生成吉布斯自由能。 随温度变化的热力学性质参数。例如饱和蒸汽压。 传递性质的参数,例如粘度。 安全性质的参数。例如闪点、着火点。 UNIFAC模型中的集团参数。 状态方程中的参数。 与石油相关的参数。例如油品的API值、辛烷值、芳烃含量、氢含量及

?IDEAL SYSOP0 理想模型?Lee 方程、PR 方程、RK 方程 状态方程模 型 ?Pitzer 、NRTL 、UNIFAC 、UNIQUAC 、VANLAAR 、WILSON 活度系数模 型?AMINES 、BK-10、STEAM-TA 特殊模型

?Aspen Plus提供了含有常用的热力学模型的物性方法。 ?物性方法与模型选择不同,模拟结果大相径庭。如精馏 塔模拟的例子。相同的条件计算理论塔板数,用理想方法得到11块,用状态方程得到7块,用活度系数法得42块。显然物性方法和模型选择的是否合适,也直接影响模拟结果是否有意义。 ?《Aspen plus物性方法和模型》 理想模型 理想物性方法K值计算方法 IDEAL Ideal Gas/Raoult's law/Henry's law SYSOP0Release8version of Ideal Gas/Raoult's law

填料塔课程设计

目录 1.前言 (4) 2.设计任务 (6) 3.设计方案说明 (6) 4.基础物性数据 (6) 5.物料衡算 (6) 6.填料塔的工艺尺寸计算 (8) 7.附属设备的选型及设备 (14) 8.参考文献 (19) 9.后记及其他 (20)

1.前言 填料塔是以塔内的填料作为气液两相间接触构件的传质设备,它是化工类企业中最常用的气液传质设备之一。而塔填料塔内件及工艺流程又是填料塔技术发展的关键。聚丙烯材质填料作为塔填料的重要一类,在化工上应用较为广泛,与其他材质的填料相比,聚丙烯填料具有质轻、价廉、耐蚀、不易破碎及加工方便等优点,但其明显的缺点是表面润湿性能。 1.1填料塔技术 填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。因此,当填料层较高时,需要进行分段,中间设置再分布装置。液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。 填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。 1.2 填料的类型 填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料。 散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔内,又称为乱堆填料或颗粒填料。散装填料根据结构特点不同,又可分为环形填料、鞍形填料、环鞍形填料及球形填料等。

填料塔计算部分

填料塔计算部分 This manuscript was revised by the office on December 10, 2020.

二 基础物性参数的确定 1 液相物性数据 对于低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。由手册查得,2 气相物性参数 设计压力: ,温度:20C ? 氨气在水中的扩散系数:92621.7610/ 6.33610/L D cm s m h --=?=? 氨气在空气中的扩散系数: 查表得,氨气在0°C ,在空气中的扩散系数为 2/cm s , 根据关系式换算出20C ?时的空气中的扩散系数: 3 32 2 00022293.150.171273.150.189/0.06804/V P T D D P T cm s m h ?????? ==?? ? ? ??????? == 混合气体的平均摩尔质量为 m i 0.05170.982929.27V i M y M ==?+?=∑ 混合气体的平均密度为 3m 101.329.27 1.2178.314293.15 V Vm PM kg m RT ρ?===? 混合气体的粘度可近似取空气的粘度,查手册得20C ?空气粘度为 51.81100.065()V Pa s kg m h μ-=??=? 3 气液相平衡数据

由手册查得,常压下20C ?时,氨气在水中的亨利系数 76.3a E kP = 相平衡常数 76.30.7532101.3 E m P === 溶解度系数 3s 998.2 0.726076.318.02 L H kmol kPa m EM ρ= = =?? 4 物料衡算 进塔气相摩尔比 1= 110.05 0.05263110.05 y Y y ==-- 出塔气相摩尔比 321(1)0.05263(10.98) 1.05310A Y Y ?-=-=-=? 混合气体流量 330.1013(273.1520) 16.10100.1013273.15 V N Q Q m h ? ?+==?? 惰性气体摩尔流量 273.15(10.05)636.1622.4273.1520 V Q V kmol h =?-=+ 该吸收过程属低浓度吸收,平衡关系为直线,最小液气比可按下式计算: 1212 L Y Y V Y m X -??= ? -?? 对于纯溶剂吸收过程,进塔液相组成 20X = min 0.052630.0010530.73810.052630.7532L V -??== ??? 取操作液气比为 min 1.4L L V V ?? = ??? 1.40.7381 1.0333L V =?= 1.0333636.16657.34L kmol h =?= 1212()636.16(0.052630.001053) 0.0499657.34 V Y Y X X L -?-=+==

填料塔计算和设计

填料塔计算和设计

填料塔计算和设计 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

填料塔设计 2012-11-20 一、填料塔结构 填料塔是以塔内装有大量的填料为相间接触构件的气液传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。在填料的上方安装填料压板,以限制填料随上升气流的运动。液体从塔顶加入,经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设置)分布后,与液体呈逆流接触连续通过填料层空隙,在填料表面气液两相密切接触进行传质。填料塔属于连续接触式的气液传质设备,正常操作状态下,气相为连续相,液相为分散相。二、填料的类型及性能评价 填料是填料塔的核心构件,它提供了气液两相接触传质的相界面,是决定填料塔性能的主要因素。填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。散装填料根据结构特点不同,分为环形填料、鞍形填料、环鞍形填料等;规整填料按其几何结构可分为格栅填料、波纹填料、脉冲填料等,目前工业上使用最为广泛的是波纹填料,分为板波纹填料和网波纹填料; 填料的几何特性是评价填料性能的基本参数,主要包括比表面积、空隙率、填料因子等。1.比表面积:单位体积填料层的填料表面积,其值越大,所提供的气液传质面积越大,性能越优; 2.空隙率:单位体积填料层的空隙体积;空隙率越大,气体通过的能力大且压降低;

3.填料因子:填料的比表面积与空隙率三次方的比值,它表示填料的流体力学性能,其值越小,表面流体阻力越小。 三、填料塔设计基本步骤 1.根据给定的设计条件,合理地选择填料; 2.根据给定的设计任务,计算塔径、填料层高度等工艺尺寸; 3.计算填料层的压降; 4.进行填料塔的结构设计,结构设计包括塔体设计及塔内件设计两部分。 四、填料塔设计 1.填料的选择 填料应根据分离工艺要求进行选择,对填料的品种、规格和材质进行综合考虑。应尽量选用技术资料齐备,适用性能成熟的新型填料。对性能相近的填料,应根据它的特点进行技术经济评价,使所选用的填料既能满足生产要求,又能使设备的投资和操作费最低。 (1)填料种类的选择 填料的传质效率要高:传质效率即分离效率,一般以每个理论级当量填料层高度表示,即HETP值; 填料的通量要大:在同样的液体负荷下,在保证具有较高传质效率的前提下,应选择具有较高泛点气速或气相动能因子的填料; 填料层的压降要低:填料层压降越低,塔的动力消耗越低,操作费越小;对热敏性物系尤为重要;

填料塔设计

1.填料塔的一般结构 填料塔可用于吸收气体等。填料塔的主要组件是:流体分配器,填料板或床限制板,填料,填料支架,液体收集器,液体再分配器等。 2.填料塔的设计步骤 (1)确定气液负荷,气液物理参数和特性,根据工艺要求确定出气口上述参数(2)填料的正确选择对塔的经济效果有重要影响。对于给定的设计条件,有多种填充物可供选择。因此,有必要对各种填料进行综合比较,限制床层,以选择理想的填料。 (3)塔径的计算:根据填料特性数据,系统物理参数和液气比计算出驱替速度,再乘以适当的系数,得出集液器设计的空塔气速度,以计算塔径。;或者直接使用从经验中获得的气体动能因子的设计值来计算塔的直径。 (4)填充层的总高度通过传质单位高度法或等板高度法算出。

(5)计算填料层的压降。如果压降超过极限值,则应调整填料的类型和尺寸或降低工作气体的速度,然后再重复计算直至满足条件。 (6)为了确保填料塔的预期性能,填料塔的其他内部组件(分配器,填料支座,再分配器,填料限位板等)必须具有适当的设计和结构。结构设计包括两部分:塔身设计和塔内构件设计。填料塔的内部组件包括:液体分配装置,液体再分配装置,填料支撑装置,填料压板或床限制板等。这些内部构件的合理设计是确保正常运行和预期性能的重要条件。 废气处理设备 第六章小型吸收塔的设计32参考文献33设计师:武汉工程大学环境工程学院08级环境工程去除工艺气体中更多的有害成分以净化气体以进一步处理或去除工业废气中的更多有害物质,以免造成空气污染。1.2吸收塔的应用塔式设备是气液传质设备,广泛用于炼油,化工,石家庄汕头化工等生产。根部列车塔中气液接触部分的结构类型可分为板式塔和填料塔。根据气体和液体的接触方式的不同,吸收设备可分为两类:阶

填料塔计算和设计

填料塔计算和设计文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

填料塔设计 2012-11-20 一、填料塔结构 填料塔是以塔内装有大量的填料为相间接触构件的气液传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。在填料的上方安装填料压板,以限制填料随上升气流的运动。液体从塔顶加入,经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设置)分布后,与液体呈逆流接触连续通过填料层空隙,在填料表面气液两相密切接触进行传质。填料塔属于连续接触式的气液传质设备,正常操作状态下,气相为连续相,液相为分散相。 二、填料的类型及性能评价 填料是填料塔的核心构件,它提供了气液两相接触传质的相界面,是决定填料塔性能的主要因素。填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。散装填料根据结构特点不同,分为环形填料、鞍形填料、环鞍形填料等;规整填料按其几何结构可分为格栅填料、波纹填料、脉冲填料等,目前工业上使用最为广泛的是波纹填料,分为板波纹填料和网波纹填料; 填料的几何特性是评价填料性能的基本参数,主要包括比表面积、空隙率、填料因子等。

1.比表面积:单位体积填料层的填料表面积,其值越大,所提供的气液传质面积越大,性能越优; 2.空隙率:单位体积填料层的空隙体积;空隙率越大,气体通过的能力大且压降低; 3.填料因子:填料的比表面积与空隙率三次方的比值,它表示填料的流体力学性能,其值越小,表面流体阻力越小。 三、填料塔设计基本步骤 1.根据给定的设计条件,合理地选择填料; 2.根据给定的设计任务,计算塔径、填料层高度等工艺尺寸; 3.计算填料层的压降; 4.进行填料塔的结构设计,结构设计包括塔体设计及塔内件设计两部分。? 四、填料塔设计 1.填料的选择 填料应根据分离工艺要求进行选择,对填料的品种、规格和材质进行综合考虑。应尽量选用技术资料齐备,适用性能成熟的新型填料。对性能相近的填料,应根据

利用ASPEN PLUS 软件进行物性估算

利用ASPEN PLUS 软件进行物性估算 Aspen Plus 是一款功能十分强大的工艺模拟软件, 对有机化工、无机化工、电化学、石油化工等各领域的各种单元操作均可模拟。其自带的各种物质的物性数据库较全, 可满足绝大多数的工艺过程的模拟要求。但在实际的工艺模拟计算过程中, 有时也会遇到在Aspen Plus 自带的物性数据库中查不到的物质, 使模拟过程无法正常进行下去。此时, 利用Aspen Plus 软件提供的物性估算功能, 可以很好地解决此类问题。以下以发酵液中低浓度1,3- 丙二醇分离项目中的重要的中间产物2- 甲基- 1,3- 二噁烷( 2MD) 的物性估算为例, 说明Aspen Plus 软件物性估算功能的使用。 为了成功估算2MD 的物性, 首先要向AspenPlus 软件提供必要的基本物性数据, 包括分子结构、常压沸点、分子量、各种试验测得的物性等。以上这些物性中, 仅分子结构是物性估算中所必需的, 依据分子结构, Aspen Plus 软件可计算出常压沸点和分子量, 从而进一步计算所需的其它各种物性。 1. 2MD 物性的输入 2- 甲基- 1,3- 二噁烷( 2MD) 是1,3- 丙二醇分离项目中的中间产物, 由于Aspen Plus 软件自带的物性数据库中查不到2MD, 使模拟分离、确定工艺条件的过程中遇到困难, 所以采用物性估算的功能对2MD 计算。其分子结构如下: 已知的其它物数据: 分子量102.13; 沸点(1atm):110°C; 密度(25°C):0.98kg/m3; 粘度(25°C):0.603cp; 标准生成热(25°C):- 363.02kJ/mol; 标准熵(25° C):303J/(mol〃K); 表面张力(25°C):24.93dyn/cm。 因为采用基团贡献法来估算2MD 的物性, 所以在properties 中选用UNIFCA 为计算方法, 然后输入分子结构。自定义新物质2MD 后, 在Molecular Structure Object Manager

填料塔的计算

一、 设计方案的确定 (一) 操作条件的确定 1.1吸收剂的选择 1.2装置流程的确定 1.3填料的类型与选择 1.4操作温度与压力的确定 45℃ 常压 (二)填料吸收塔的工艺尺寸的计算 2.1基础物性数据 ①液相物性数据 对于低浓度吸收过程,溶液的物性数据可近似取质量分数为30%MEA 的物性数据 7.熔 根据上式计算如下: 混合密度是:1013.865KG/M3 混合粘度0.001288 Pa ·s 暂取CO2在水中的扩散系数 表面张力б=72.6dyn/cm=940896kg/h 3 ②气相物性数据 混合气体的平均摩尔质量为 M vm = y i M i =0.133*44+0.0381*64+0.7162*14+0.00005*96+0.1125*18 =20.347 混合气体的平均密度ρvm = =??=301 314.805.333.101RT PMvm 101.6*20.347/(8.314*323)=0.769kg/m 3

混合气体粘度近似取空气粘度,手册28℃空气粘度为 μV =1.78×10-5Pa ·s=0.064kg/(m?h) 查手册得CO2在空气中的扩散系数为 D V =1.8×10-5m 2/s=0.065m 2 /h 由文献时CO 2在MEA 中的亨利常数: 在水中亨利系数E=2.6?105kPa 相平衡常数为m=1.25596 .101106.25 =?=P E 溶解度系数为H= )/(1013.218 106.22.997345kPa m kmol E M s ??=??=-ρ 2.2物料衡算 进塔气相摩尔比为Y1=0.133/(1-0.133)= 0.153403 出塔气相摩尔比为Y2= 0.153403×0.05=0.00767 进塔惰性气相流量为V=992.1mol/s=275.58kmol/h 该吸收过程为低浓度吸收,平衡关系为直线,最小液气比按下式计算,即 2121min /X m Y Y Y )V L ( --= 对于纯溶剂吸收过程,进塔液组成为X2=0 2121min /X m Y Y Y )V L ( --==(0.153403-0.00767)/(0.1534/1.78)=1.78 取操作液气比(?)为L/V=1.5L/V=1.5×1.78=2.67 L=2.67×275.58=735.7986kmol/h ∵V(Y1-Y2)=L(X1-X2) ∴X1=0.054581 ①塔径计算 采用Eckert 通用关联图计算泛点气速 气相质量流量为 W V =13.74kg/s=49464kg/h 液相质量流量计算 即W L =735.7986×(0.7*18+0.3*54)=21190.99968kg/h Eckert 通用关联图横坐标为 0.011799 查埃克特通用关联图得226.02.0=??L L V F F g u μρρ?φ(查表相差不多) 查表(散装填料泛点填料因子平均值)得1260-=m F φ Uf=3.964272m/s 取u=0.8u F =0.8×3.352=2.6816m/s

如何利用Aspen进行物性分析-纯组分,二元相图

物性分析方法(Property Analysis) 在进行一个流程模拟之前,最好先了解一下你所选物系,以及物系中物质的物性和相平衡关系,对所选体系偏离理想体系的程度有个初步的了解,对所选体系热力计算方法有个初步的认识。只有这样才能够选择合适的物性计算方法,在得出模拟结果之后,才能保证模拟结果的可信度。下面做一个CO2/Ar体系物性分析的例子,旨在抛砖引玉,有错误的地方还请读者批评指正。 1.开始设置 选择模拟类型(Simulations)为:General with Metric Units,单位制可以根据自身选择的单位体系来定。 选择运行类型(Run Type)为:Property Analysis,当然在其它运行类型中也能够进行物性,不过这个运行类型没有流程图及其它一些要素,是专门为物性分析而设立的运行类型。 图1

2. Setup参数设置 设置Setup中的一些参数,如Title,(这里可以不填写,但是最好还是设置一下,可以方便其它用户对你的模拟进行了解,增加其互通性)Unit,Run Type,其中Unit,Run Type中的设置相当于第一步中的Simulation,Run Type设置,对于前面已经选择的类型在这里可以看到设置的结果如图2。当然也可以重新设置。它好处就是,可以很方便的使用户可以在不建立新模拟的情况下,改变单位制及运行类型。在Description中可以填写对模拟的一些简单描述,可以在报告(.rep)中输出,可以增加其可读性。其它的一些选项这里就不做介绍了。 图2

3. 在Component中定义组分 在Component ID中输入CO2,AR即可,对于其它一些常用的物质直接输入其名字或分子式就行。而对于一些结构复杂的物质可以运用Find来查找。输入后结果如图3。 图3 注: Elec Wizard:电解质向导,可以帮助用户输入电解质。 User Defined:输入用户自定义的组分。 Reorder:重新调整输入物质的顺序。 Review:查看输入组分的纯组分标量参数。

大气课设填料塔设计计算

学校代码: 10128 学号: 201320303014 课程设计说明书 题目:S H S20-25型锅炉低硫烟煤烟 气袋式除尘湿式脱硫系统设计学生:周永博 学院:能源与动力工程学院 班级:环工13-1 指导教师:英楠

2016年 7 月 1 日 工业大学课程设计(论文)任务书 课程名称:大气污染控制工程学院:能源与动力工程学院班级:环工13-1 学生:周永博学号: 4 指导教师:英楠

技术参数: 锅炉型号:SHS20-25 即,双锅筒横置式室燃炉(煤粉炉),蒸发量20t/h,出口蒸汽压力25MPa 设计耗煤量:2.4t/h 设计煤成分:C Y=75.2% H Y=3% O Y=4% N Y=1% S Y=0.8% A Y=10% W Y=6%; V Y=18%;属于低硫烟煤 排烟温度:160℃ 空气过剩系数=1.25 飞灰率=29% 烟气在锅炉出口前阻力800Pa 污染物排放按照锅炉大气污染物排放标准中2类区新建排污项目执行。 连接锅炉、净化设备及烟囱等净化系统的管道假设长度150m,90°弯头30个。

参考文献: 《大气污染控制工程》郝吉明、马广大; 《环保设备设计与应用》罗辉...高等教育.1997; 《除尘技术》高香林..华北电力大学.2001.3; 《环保设备?设计?应用》铭...化学工业.2001.4; 《火电厂除尘技术》胡志光、胡满银...中国水利水电.2005; 《除尘设备》金国淼...化学工业.2002; 《火力发电厂除尘技术》原永涛...化学工业.2004.10; 《环境保护设备选用手册》鹿政理...化学工业.2002.5; 《工业通风》一坚主编..中国建筑工业,1994; 《锅炉及锅炉房设备》奚士光等主编..中国建筑工业,1994; 《除尘设备设计》金国淼主编..科学技术,1985; 《环境与工业气体净化技术》. 朱世勇主编.化学工业,2001; 《湿法烟气脱硫系统的安全性及优化》曾庭华,华等主编..中国电力; 《燃煤烟气脱硫脱硝技术及工程实例》. 钟主编.化学工业,2004; 《环保工作者使用手册》. 丽芬,友琥主编.冶金工业,2001; 《工业锅炉房设计手册》航天部第七研究编.中国建筑工业,1986; 《火电厂烟气湿法脱硫装置吸收塔的设计》王祖培编.化学工业第二,1995; 《大气污染控制工程》. 标编.科学,2002; 《湿法烟气脱硫吸收塔系统的设计和运行分析》. 曾培华著.电力环境保护,2002。

Aspen_Plus推荐使用的物性计算方法

做模拟的时候物性方法的选择是十分关键的,选择的十分正确关系着运行后的结果。是一个难点,高难点,而此内容与化工热力学关系十分紧密。 首先要明白什么是物性方法?比如我们做一个很简单的化工过程计算,一股100C,1atm的水-乙醇(1:1的摩尔比,1kmol/h)的物料经过一个换热器后冷却到了80C,0.9atm,问如分别下值是多少?1.入口物料的密度,汽相分率。2.换热器的负荷。3.出口物料的汽相分率,汽相密度,液相密,还可以问物料的粘度,逸度,活度,熵等等。以上的值怎么计算出来? 好,我们来假设进出口的物料全是理想气体,完全符合理想气体的行为,则其密度可以使用PV=nRT计算出来。并且汽相分率全为1,即该物料是完全气体。由于理想气体的焓与压力无关,则换热器的负荷可以根据水和乙醇的定压热熔计算出来。在此例当中,描述理想气体行为的若干方程,比如涉及至少如下2个方程:1.pv=nRT,2.dH=CpdT. 这就是一种物性方法(aspen plus中称为ideal property method)。简单的说,物性方法就是计算物流物理性质的一套方程,一种物性方法包含了若干的物理化学计算公式。当然这例子选这种物性方法显然运行结果是错误的,举这个例子主要是让大家对物性方法有个概念。对于水-乙醇体系在此两种温度压力下,如果当作理想气体来处理,其误差是比较大的,尤其对于液相。按照理想气体处理的话,冷却后仍然为气体,不应当有液相出现。那么应该如何计算呢?想要准确的计算这一过程需要很多复杂的方程,而这些方程如果需要我们用户去一个个选择出来,则是一件相当麻烦的工作,并且很容易出错。好在模拟软件已经帮我做了这一步,这就是物性方法。对于本例,我们对汽相用了状态方程,srk,液相用了活度系数方程(nrtl,wilson,等等),在aspen plus中将此种方法叫做活度系数法。如果你选择nrtl方程,就称为nrtl方法,wilson方程就成为wilson物性方法(wilson property method)。 在aspen plus中(或者化工热力学中)有两大类十分重要的物性方法,对于初学者而言,了解到此两类物性方法,基本上就可以开始着手模拟工作了。大体而言,根据液相混合物逸度的计算方法的不同,物性方法可以分为两大类:状态方程法和活度系数法。状态方程法使用状态方程来计算汽相及液相的逸度,而活度系数法使用状态方程计算汽相逸度,但是通过活度系

填料塔的设计.doc

目录 一.设计任务书 (3) 1.设计目的 (3) 2.设计任务 (3) 3.设计内容和要求 (3) 二.设计资料 (4) 1.工艺流程 (4) 2.进气参数 (4) 3.吸收液参数 (4) 4.操作条件 (5) 5.填料性能 (5) 三.设计计算书 (6) 1.填料塔主体的计算 (6) 1.1吸收剂用量的计算 (6) 1.2塔径的计算 (7) 1.3填料层高度的计算 (10) 1.4.填料塔压降的计算 (14) 2.填料塔附属结构的类型与设计 (15) 2.1支承板 (16) 2.2填料压紧装置 (16) 2.3液体分布器装置 (16) 2.4除雾装置 (17) 2.5气体分布装置 (17) 2.6排液装置 (18)

2.7防腐蚀设计 (18) 2.8气体进料管 (18) 2.9液体进料管: (19) 2.10封头的选择 (19) 2.11总塔高计算 (20) 3.填料塔设计参数汇总 (21) 四.填料塔装配图(见附录) (22) 五.总结 (22) 六.参考文献 (23) 附录 (23)

前言 世界卫生组织和联合国环境组织发表的一份报告说:“空气污染已成为全世界城市居民生活中一个无法逃避的现实。”如果人类生活在污染十分严重的空气里,那就将在几分钟内全部死亡。工业文明和城市发展,在为人类创造巨大财富的同时,也把数十亿吨计的废气和废物排入大气之中,人类赖以生存的大气圈却成了空中垃圾库和毒气库。因此,大气中的有害气体和污染物达到一定浓度时,就会对人类和环境带来巨大灾难,对有害气体的控制更必不可少。 一.设计任务书 1.设计目的 通过对气态污染物净化系统的工艺设计,初步掌握气态污染物净化系统设计的基本方法。培养学生利用所学理论知识,综合分析问题和解决实际问题的能力、绘图能力、以及正确使用设计手册和相关资料的能力。 2.设计任务 试设计一个填料塔,常压,逆流操作,操作温度为25℃,以清水为吸收剂,吸收脱除混合气体中的NH ,气体处理量为1500m3/h,其中含氨1.9%(体积分数), 3 要求吸收率达到99%,相平衡常数m=0.95。 3.设计内容和要求 1)研究分析资料。 2)净化设备的计算,包括计算吸收塔的物料衡算、吸收塔的工艺尺寸计算、填料层压降的计算及校核计算。 3)附属设备的设计等。 4)编写设计计算书。设计计算书的内容应按要求编写,即包括与设计有关的阐述、说明及计算。要求内容完整,叙述简明,层次清楚,计算过程详细、准确,书写工整,装订成册。设计计算书应包括目录、前言、正文及参考文献等,格式参照学校要求。 5)设计图纸。包括填料塔剖面结构图、工艺流程图。应按比例绘制,标出设备、

填料塔工艺尺寸的计算

第三节 填料塔工艺尺寸的计算 填料塔工艺尺寸的计算包括塔径的计算、填料能高度的计算及分段 塔径的计算 1. 空塔气速的确定——泛点气速法 对于散装填料,其泛点率的经验值u/u f =~ 贝恩(Bain )—霍根(Hougen )关联式 ,即: 221 3lg V F L L u a g ρμερ?? ?????? ? ?????? ?=A-K 14 18 V L V L w w ρρ???? ? ??? ?? (3-1) 即:1 124 8 0.23100 1.18363202.59 1.1836lg[ ()1]0.0942 1.759.810.917998.24734.4998.2F u ?????? =- ? ? ??????? 所以:2 F u /(100/3)()= UF=3.974574742m/s 其中: f u ——泛点气速,m/s; g ——重力加速度,9.81m/s 2 23t m /m α--填料总比表面积, 33m /m ε--填料层空隙率 33 V 998.2/1.1836kg /m l kg m ρρ==液相密度。气相密度 W L =㎏/h W V =7056.6kg/h A=; K=; 取u= F u =2.78220m/s 0.7631D = = = (3-2) 圆整塔径后 D=0.8m 1. 泛点速率校核:26000 3.31740.7850.83600 u = =?? m/s

3.31740.83463.9746 F u u == 则 F u u 在允许范围内 2. 根据填料规格校核:D/d=800/50=16根据表3-1符合 3. 液体喷淋密度的校核: (1) 填料塔的液体喷淋密度是指单位时间、单位塔截面上液体的喷淋量。 (2) 最小润湿速率是指在塔的截面上,单位长度的填料周边的最小液体体积流量。对于直径不超过75mm 的散装填料,可取最小润湿速率 ()3min 0.08m /m h w L ?为。 ()32min min 0.081008/w t U L m m h α==?=? (3-3) 22 5358.8957 10.6858min 0.75998.20.7850.8L L w U D ρ= ==>=???? (3-4) 经过以上校验,填料塔直径设计为D=800mm 合理。 填料层高度的计算及分段 *110.049850.75320.03755Y mX ==?= (3-5) *220Y mX == (3-6) 3.2.1 传质单元数的计算 用对数平均推动力法求传质单元数 12 OG M Y Y N Y -= ? (3-7) ()**1 1 2 2* 11* 22() ln M Y Y Y Y Y Y Y Y Y ---?= -- (3-8) = 0.063830.00063830.03755 0.02627ln 0.0006383 -- =

填料塔的设计.doc(1)

( 目录 一.设计任务书 (2) 1.设计目的 (2) 2.设计任务 (2) 3.设计内容和要求 (2) 二.设计资料 (3) 1.工艺流程 (3) 2.进气参数 (3) ) 3.吸收液参数 (3) 4.操作条件 (3) 5.填料性能 (4) 三.设计计算书 (5) 1.填料塔主体的计算 (5) 吸收剂用量的计算 (5) 塔径的计算 (6) 填料层高度的计算 (8) ' .填料塔压降的计算 (12) 2.填料塔附属结构的类型与设计 (13) 支承板 (13) 填料压紧装置 (13)

液体分布器装置 (13) 除雾装置 (14) 气体分布装置 (14) 排液装置 (15) ] 防腐蚀设计 (15) 气体进料管 (15) 液体进料管: (16) 封头的选择 (16) 总塔高计算 (16) 3.填料塔设计参数汇总 (18) 四.填料塔装配图(见附录) (19) 五.总结 (19) ! 六.参考文献 (19) 附录 (20)

前言 世界卫生组织和联合国环境组织发表的一份报告说:“空气污染已成为全世界城市居民生活中一个无法逃避的现实。”如果人类生活在污染十分严重的空气里,那就将在几分钟内全部死亡。工业文明和城市发展,在为人类创造巨大财富的同时,也把数十亿吨计的废气和废物排入大气之中,人类赖以生存的大气圈却成了空中垃圾库和毒气库。因此,大气中的有害气体和污染物达到一定浓度时,就会对人类和环境带来巨大灾难,对有害气体的控制更必不可少。 一.设计任务书 1.设计目的 ' 通过对气态污染物净化系统的工艺设计,初步掌握气态污染物净化系统设计的基本方法。培养学生利用所学理论知识,综合分析问题和解决实际问题的能力、绘图能力、以及正确使用设计手册和相关资料的能力。 2.设计任务 试设计一个填料塔,常压,逆流操作,操作温度为25℃,以清水为吸收剂,吸收脱除混合气体中的NH ,气体处理量为1500m3/h,其中含氨%(体积分数), 3 要求吸收率达到99%,相平衡常数m=。 3.设计内容和要求 1)研究分析资料。 2)净化设备的计算,包括计算吸收塔的物料衡算、吸收塔的工艺尺寸计算、填料层压降的计算及校核计算。 3)附属设备的设计等。 4)编写设计计算书。设计计算书的内容应按要求编写,即包括与设计有关的阐述、说明及计算。要求内容完整,叙述简明,层次清楚,计算过程详细、准确,书写工整,装订成册。设计计算书应包括目录、前言、正文及参考文献等,格式参照学校要求。

相关主题