搜档网
当前位置:搜档网 › 电力电子降压斩波电路实验报告

电力电子降压斩波电路实验报告

电力电子降压斩波电路

实验报告

姓名:

学号:

班级:

实验一 降压斩波电路

一、实验目的

(1)熟悉降压斩波电路的工作原理及波形。

(2)了解PWM 控制与驱动电路的原理及其常用的集成芯片。 二、实验主电路图(降压斩波电路)

三、实验箱图

V

D L C Uo

-

+-

+U E G

C R i

1

1

U D +-

四、实验步骤

1、熟悉控制和驱动电路。

打开DJK20上控制和驱动电路的电源,用示波器观察驱动信号,通过调整S1、S2、S3、RP1、RP2来调整驱动信号的频率和占空比,实现驱动信号频率从2KHz到5KHz连续可调、占空比从30%至70%连续可调。之后将频率调整为2KHz,占空比调整为30%。

2、连接主电路。

a.停止主电路电源输出(DJK01上的停止开关),将调压器(DJK09)输出调整至零,将负载电阻(D42)调整到最大。

b.任选主电路电源输出中的一相,接至调压器输入端,将调压器输出接至DJK20上的整流模块,并整流模块的输出接至直流电压表上。

c.按照DJK20面板上的降压斩波电路电路图连接电路,其输入与整流电路的输出相连,其输出首先串接DJK01上的直流电流表再接至D42上任意一可调电阻上。

d.等待指导教师检查电路。

3、开始实验。

a.经指导教师同意后启动电源,调整调压器使直流电压升至40V;打开控制电路电源;调整负载电阻使负载电流升至0.03A。测量并记录输入电压、输出电压幅值及UL,UD,UO的波形。

b.改变占空比至50%和70%,测量并记录不同占空比下输入电压、输出电压幅值及UL,UD,UO的波形。

c.改变驱动信号频率至5KHz,测量并记录占空比为30%、50%和70%下输入电压、输出电压幅值及UL,UD,UO的波形。

d.实验完毕后,经指导教师检查后,确认无故障后将调压器电压降为零,关闭电源,并将电路连线拆下。

五、实验结果图

f=2KHZ

1、占空比=30%

UL的波形:

UD的波形:

UO波形:

2、占空比=50% UL波形:

UD波形:

UO波形:

3、占空比=70% UL波形:

UD波形:

UO波形:

实验2 直流斩波电路的性能研究(六种典型线路)

实验二 直流斩波电路的性能研究 一、实验目的 (1)熟悉直流斩波电路的工作原理。 (2)熟悉各种直流斩波电路的组成及其工作特点。 (3)了解PWM 控制与驱动电路的原理及其常用的集成芯片。 三、实验线路及原理 1、主电路 ①、降压斩波电路(Buck Chopper) 降压斩波电路(Buck Chopper)的原理图及工作波形如图6-1所示。图中V 为全控型器件,选用IGBT 。D 为续流二极管。由图6-1b 中V 的栅极电压波形U GE 可知,当V 处于通态时,电源U i 向负载供电,U D =U i 。当V 处于断态时,负载电流经二极管D 续流,电压U D 近似为零,至一个周期T 结束,再驱动V 导通,重复上一周期的过程。负载电压的平均值为: 式中t on 为V 处于通态的时间,t off 为V 处于断态的时间,T 为开关周期,α为导通占空 比,简称占空比或导通比(α=t on /T)。由此可知,输出到负载的电压平均值U O 最大为U i ,若减小占空比α,则U O 随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。 (a)电路图 (b)波形图 图6-1 降压斩波电路的原理图及波形 ②、升压斩波电路(Boost Chopper) 升压斩波电路(Boost Chopper)的原理图及工作波形如图6-2所示。电路也使用一个全控型器件V 。由图6-2b 中V 的栅极电压波形U GE 可知,当V 处于通态时,电源U i 向电感L 1充电,充电电流基本恒定为I 1,同时电容C 1上的电压向负载供电,因C 1值很大,基本保持输出电压U O 为恒值。设V 处于通态的时间为t on ,此阶段电感L 1上积蓄的能量为U i I 1t on 。当V 处于断态时U i 和L 1共同向电容C 1充电,并向负载提供能量。设V 处于断态的时间为t off ,则在此期间电感L 1释放的能量为(U O -U i ) I 1t on 。当电路工作于稳态时,一个周期T 内电感L 1积蓄的能量与释放的能量相等,即: i i on i off on on o aU U T t U t t t U ==+= U GE U D t t t U O t on t off T U i - +- + U

IGBT降压斩波电路设计解读

目录 摘要 (1) 1前言 (1) 2方案确定 (2) 3主电路设计 (2) 3.1 主电路方案 (2) 3.2 工作原理 (3) 3.3参数分析 (4) 4控制电路设计 (5) 4.1 控制电路方案选择 (5) 4.2 工作原理 (6) 4.3 控制芯片介绍 (7) 5驱动电路设计 (9) 5.1 驱动电路方案选择 (9) 5.2工作原理 (10) 6保护电路设计 (11) 6.1 过压保护电路 (11) 6.1.1主电路器件保护 (11) 6.1.2负载过压保护 (12) 6.2 过流保护电路 (13) 7系统仿真及结论 (14) 7.1 仿真软件的介绍 (14) 7.2仿真电路及其仿真结果 (14) 心得体会 (16) 参考文献 (17) 致谢 (18)

IGBT降压斩波电路设计 摘要:直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流电变流电路和间接直流电变流电路。直接直流电变流电路也称斩波电路,它的功能是将直流电变为另一固定电压或可调电压的直流电,一般是指直接将直流电变为另一直流电,这种情况下输入与输出之间不隔离。间接直流变流电路是在直流变流电路中增加了交流环节,在交流环节中通常采用变压器实现输入输出间的隔离,因此也称带隔离的直流-直流变流电路或直-交-直电路。直流斩波电路的种类有很多,包括六种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路。Cuk斩波电路,Sepic斩波电路和Zeta斩波电路,利用不同的斩波电路的组合可以构成符合斩波电路,如电流可逆斩波电路,桥式可逆斩波电路等。利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路。 关键字:IGBT 直流斩波降压斩波 1前言 随着电力电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多。伴随着人们对开关电源的进一步升级,低电压,大电流和高效率的开关电源成为研究趋势。 开关电源分为AC/DC和DC/DC,其中DC/DC变换已实现模块化,其设计技术和生产工艺已相对成熟和标准化。DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等。 IGBT降压斩波电路就是直流斩波中最基本的一种电路,是用IGBT作为全控型器件的降压斩波电路,用于直流到直流的降压变换。IGBT是MOSFET与双极晶体管的复合器件。它既有MOSFET易驱动的特点,又具有功率晶体管电压、电流容量大等优点。其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十千赫兹频率范围内,故在较高频率的大、中功率应用中占据了主导地位。

降压直流斩波电路

电力电子技术课程设计题目:降压直流斩波电路 院(系): 专业班级: 学号: 学生: 指导教师: 起止时间:

摘要 直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流电变流电路和间接直流电变流电路。直接直流电变流电路也称斩波电路,它的功能是将直流电变为另一固定电压或可调电压的直流电,一般是指直接将直流电变为另一直流电,这种情况下输入与输出之间不隔离。间接直流变流电路是在直流变流电路中增加了交流环节,在交流环节常采用变压器实现输入输出间的隔离,因此也称带隔离的直流-直流变流电路或直-交-直电路。 直流斩波电路的种类有很多,包括六种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路和Zeta斩波电路,利用不同的斩波电路的组合可以构成符合斩波电路,如电流可逆斩波电路,桥式可逆斩波电路等。利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路。 关键字:直流斩波,降压斩波 第1章电路总体设计方案 1.1 设计课题任务 设计一个直流降压斩波电路。 1.2 功能要求说明 将24V直流电压降压输出并且平均电压可调,围为0-24V。 1.3 设计总体方案和设计原理 降压斩波电路的原理图以及工作波形如图1.1所示。该电路使用一个全控型器件V,图中为IGBT。为在V关断时给负载中电感电流提供通道,设置了续流二极管VD。斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等。

图1.1 降压斩波电路原理图 如图1.2中V 的栅极电压u GE 波形所示,在t=0时刻驱动V 导通,电源E 向负载供电,负载电压u o =E ,负载电流i o 按指数上升。 当t=t 1时刻,控制V 关断,负载电流经二极管VD 续流,负载电压u o 近似为零负载电流呈指数曲线下降。为了使负载电流连续且脉动小,通常是串联的电感L 值较大。 至一个周期T 结束,在驱动V 导通,重复上一周期的过程。当工作处于稳态时,负载电流在一个周期的初值和终值相等,如图1.2所示。负载电压平均值为 E E T E U α==+=on off on on t t t t o 式1.1 式中,t on 为V 处于通态的时间;t off 为V 处于断态的时间;T 为开关周期;α为导通占空比。 由式1.1可知,输出到负载的电压平均值U o 最大为E ,减小占空比α,U o 随之减小。因此将该电路称为降压斩波电路。也称buck 变换器。 负载电流平均值为 R E U I m o o -=

直流降压斩波电路的设计

直流降压斩波电路的设计 摘要: 本实验设计的是Buck降压斩波电路,采用全控型器件IGBT。根据降压斩波电路设计任务要求设计主电路、控制电路、驱动及保护电路。 关键词:降压斩波,主电路、控制电路、驱动及保护电路。 引言:直流传动是斩波电路应用的传统领域,而开关电源则是斩波电路应用的新领域,是电力电子领域的一大热点。DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。直流变换电路的用途非常广泛,包括直流电动机传动、开关电源、单相功率因数校正,以及用于其他领域的交直流电源。斩波器的工作方式有:脉宽调制方式,频率调制方式和混合型。脉宽调制方式较为通用。当今世界软开关技术使得DC/DC变换器发生了质得变化和飞跃。美国VICOR公司设计制造得多种ECI 软开关DC/DC变换器,最大输出功率有300W、600W、800W等,相应得功率密度为(6.2、10、17)W/cm3,效率为(80—90)%。日本NemicLambda公司最新推出得一种采用软开关技术得高频开关电源模块RM系列,其开关频率为200—300KHz,功率密度已达 27W/cm3,采用同步整流器(MOS-FET代替肖特基二极管),使整个电路效率提高到90%。 1设计目的 直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流—直流变换器(DC/DC Converter)。直流斩波电路一般是指直接将直流电变为另一直流电的情况,不包括直流—交流—直流的情况,其中IGBT 降压斩波电路就是直流斩波中最基本的一种电路,是用IGBT作为全控型器件的降压斩波电路,用于直流到直流的降压变换。IGBT是MOSFET与GTR的复合器件。它既有MOSFET易驱动的特点,输入阻抗高,又具有功率晶体管电压、电流容量大等优点。

电力电子技术I-实验1-直流斩波电路

课程名称:电力电子技术指导老师:马皓成绩:__________________实验名称:直流斩波电路的研究实验类型:_________________同组学生姓名:___________一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 * 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1、熟悉六种直流斩波电路(Buck、Boost、Buck-Boost、Cuk、Sepic、Zeta)的工作原理与 特点; 2、掌握六种直流斩波电路在负载电流连续工作时的工作状态以及负载波形。 二、实验内容 1、分别按照六种直流斩波电路的结构分别连接对应的试验电路; 2、分别观察六种不同直流斩波电路在电路不同占空比的PWN波时的工作情况,并记录负载 电压,与理论值进行比较,分析实验结果。 、 三、主要实验设备与仪器 1、MPE-I电力电子探究性实验平台 2、NMCL-22H直流斩波电路 3、NMCL-22H-CK直流斩波电路插卡

4、NMCL-50数字直流表 5、示波器 四、实验线路 1、Buck chopper降压斩波电路 (1)将PWN波形发生器的占空比调节电位器左旋到底(使占空比最小),输出端“VG-T”端接到斩波电路中IGBT管VT的”G“端,将PWN的”地“接到斩波电路中IGBT的”E“端,按照下图接成Buck chopper斩波器; (2)检查电路无误后,闭合电源开关,用示波器观察PWN输出波形,调节PWN触发器的电位器RP1,即改变触发脉冲的占空比记录占空比10%~80%实际负载电压,观察PWN占空比分别为10%、50%、80%下的负载电压波形。 ` 2、Boost chopper升压斩波电路 (1)按照下图接成Boost chopper电路,电感电容任选,负载电阻为R; (2)参照Buck chopper斩波电路,改变触发脉冲的占空比记录占空比10%~80%实际负载电压; (3)观察PWN占空比分别为10%、50%、80%下的负载电压波形。 3、Buck-Boost chopper升压斩波电路

实验四·直流斩波电路BUCK电路

实验四 直流降压斩波电路 一实验目的 1.理解降压斩波电路的工作原理及波形情况,掌握该电路的工作状态及结果。 2.研究直流降压斩波电路的全过程 3.掌握降压斩波电路MATLAB 的仿真方法,会设置各模块的参数。 二预习内容要点 1. 降压斩波电路工作的原理及波形 2. 输入值输出值之间的关系 三 实验内容及步骤 1.降压斩波电路(Buck Chopper)的原理图如图 2.1所示。 图中V 为全控型器件,选用IGBT 。D 为续流二极管。由图4-12b 中V 的栅极电压波形UGE 可知,当V 处于通态时,电源Ui 向负载供电,UD=Ui 。当V 处于断态时,负载电流经二极管D 续流,电压UD 近似为零,至一个周期T 结束,再驱动V 导通,重复上一周期的过程。负载电压的平均值为: 式中ton 为V 处于通态的时间,toff 为V 处于断态的时间,T 为开关周期,α为导通占空比,简称占空比或导通比(α=ton/T)。由此可知,输出到负载的电压平均值UO 最大为Ui ,若减小占空比α,则UO 随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。 2.(1)器件的查找 以下器件均是在MATLAB R2017b 环境下查找的,其他版本类似。有些常用的器件比如示波器、脉冲信号等可以在库下的Sinks 、Sources 中查找;其他一些器件可以搜索查找 (2)连接说明 有时查找出来的器件属性并不是我们想要的例如:示波器可以双击示波器进入属性后进行设置。 图2.1

(3)参数设置 1.双击直流电源把电压设置为200V。负载电动势20V。’ 2.双击脉冲把周期设为0.001s,占空比设为30%,40%,80%,(可多设几组)延迟角设为30度,由于属性里的单位为秒,故把其转换为秒即,30×0.02/360; 3.双击负载把电阻设为10Ω,电感设为0.1H; 4.双击示波器把Number of axes设为3,同时把History选项卡下的Limit data points to last前面的对勾去掉; 5.晶闸管和二极管参数保持默认即可 四仿真及其结果 降压斩波仿真电路图 仿真波形及分析 占空比为40%

降压斩波电路课程设计

目录 一、引言 (2) 二、设计要求与方案 (2) 2.1设计要求 (2) 2.2 方案确定 (3) 三、主电路设计 (3) 3.1 主电路方案 (3) 3.2 工作原理 (4) 3.3 参数分析 (5) 四、控制电路设计 (5) 4.1 控制电路方案选择 (5) 4.2 工作原理 (6) 4.3 控制芯片介绍 (7) 五、驱动电路设计 (9) 5.1 驱动电路方案选择 (9) 5.2 工作原理 (10) 六、保护电路设计 (11) 6.1 过压保护电路 (11) 6.2 过流保护电路 (12) 七、系统仿真及结论 (13) 八、结论 (16) 九、参考文献 (16) 十、致谢 (17)

一、引言 随着电力电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多。电子设备的小型化和低成本化使电源向轻,薄,小和高效率方向发展。开关电源因其体积小,重量轻和效率高的优点而在各种电子信息设备中得到广泛的应用。伴随着人们对开关电源的进一步升级,低电压,大电流和高效率的开关电源成为研究趋势。 开关电源分为AC/DC和DC/DC,其中DC/DC 变换已实现模块化,其设计技术和生产工艺已相对成熟和标准化。DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等。IGBT降压斩波电路就是直流斩波中最基本的一种电路,是用IGBT作为全控型器件的降压斩波电路,用于直流到直流的降压变换。IGBT是MOSFET与双极晶体管的复合器件。它既有MOSFET易驱动的特点,又具有功率晶体管电压、电流容量大等优点。其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十千赫兹频率范围内,故在较高频率的大、中功率应用中占据了主导地位。所以用IGBT作为全控型器件的降压斩波电路就有了IGBT易驱动,电压、电流容量大的优点。 IGBT降压斩波电路由于易驱动,电压、电流容量大在电力电子技术应用领域中有广阔的发展前景,也由于开关电源向低电压,大电流和高效率发展的趋势,促进了IGBT降压斩波电路的发展。 二、设计要求与方案 2.1 设计要求 2.1.1 课程设计目的 1、培养文献检索的能力,特别是如何利用Internet检索需要的文献资料。 2、培养综合分析问题、发现问题和解决问题的能力。 3、培养运用知识的能力和工程设计的能力。 4、提高课程设计报告撰写水平。 2.1.2 课程设计要求 降压斩波电路设计要求: 1、输入直流电压:U d=100V 2、开关频率5KHz 3、输出电压20V 4、最大输出电流:20A 5.L=100mH

直流斩波电路实验三

实验四 直流斩波电路的性能研究(六种典型线路) 一、实验目的 (1)熟悉直流斩波电路的工作原理。 (2)熟悉各种直流斩波电路的组成及其工作特点。 (3)了解PWM 控制与驱动电路的原理及其专用PWM 控制芯片SG3525。 二、预习内容 (1)什么是斩波电路?其应用范围有哪些? (2)了解IGBT 的特性。 (3)了解直流斩波电路的工作原理。 三、实验设备及挂件 1)设备列表

四、实验电路原理示意图及流程图 1)实验线路原理示意图图X-1 图X-1实验线路原理示意图 2) 实验电路流程框图X-2 图X-2 实验电路流程图 五、实验内容 1、控制与驱动电路测试 2、六种典型电路测试 1)降压斩波电路(Buck Chopper) ; 2)升压斩波电路(Boost Chopper); 3)升降压斩波电路(Boost-Buck Chopper); 4)Cuk斩波电路; 5)Sepic斩波电路; 6) Zeta斩波电路;

六、注意事项 1)示波器测量时的共地问题。当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,各探头接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。(建议测量主电路各点信号及U GE 时用一个探头) 2)每当做完一个电路时,必须关掉所有电源,方可拆掉线路和接新的实验电路。 3)注意电解电容的正负极性。 4)整流输出电压<45伏。 七、实验步骤与方法 1、控制与驱动电路的测试 1)不接主电路,把万用表放在电压档。用正极插在Ur 孔,负极插在地,示波器的地线和 万用表的地线夹在一起。 2)将DJKO1电源的钥匙打在开(不按启动开关),开启DJK20 控制电路电源开关。 3)调节PWM 脉宽调节电位器改变Ur ,用双踪示波器分别观测SG3525 的第11 脚与第14 脚的波形,观测输出PWM 信号的变化情况,记录占空比并填入表1中。PWM 与11 脚、14脚不共地。 4)用示波器分别观测A 、B 和PWM 信号的波形,记录其波形、频率和幅值,并填入。 5)用双踪示波器的两个探头同时观测11 脚和14 脚的输出波形,调节PWM 脉宽调节电位器,观测两路输出的PWM 信号有什麽不同?

降压斩波电路__课程设计

辽宁工业大学 电力电子技术课程设计(论文)题目:降压直流斩波电路实验装置 院(系):新能源学院 专业班级:电气131班 学号: 学生姓名: 指导教师:(签字) 起止时间:2011-12-26至2011-01-6

课程设计(论文)任务及评语 院(系):新能源学院教研室:电气 目录 第1章绪论 (4)

1.1 降压直流斩波电路的基本概念 (5) 1.2 降压直流斩波电路的发展 (5) 第2章降压直流斩波斩波电路设计 2.1 降压斩波电路工作原理 (7) 2.1.1降压斩波电路(Buck Chopper) (7) 2.1.2 IGBT驱动电路选择 (8) 2.2 整流电路 (8) 2.3 斩波信号产生电路 (9) 2.3.1由分立元件组成的驱动电路 (9) 2.3.2集成驱动电路 (10) (2)电路原理图及工作原理简介 (11) 2.4 最优参数选择 (13) 2.4.1 整流电路部分 (13) 2.4.2 斩波主电路部分 (13) 2.5 生成总的电路图 (15) 2.5.1 总原理图 (15) 2.5.2 此电路的主要功能 (16) 2.6 保护电路 (16) 2.6.1 整流桥电路部分 (16) 2.6.2 驱动电路部分 (17) 第3章课程设计总结 (18) 参考文献 (18)

摘要 直流斩波电路作为将直流电变成另一种固定电压或可调电压的 DC-DC 变换器 ,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路 . 直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。 TDC-1型学习机是为了配合高等工科院校及高等专科技术学校的“电力电子”或“半导体变流技术”等课程中的直流斩波电路实验并根据当今电力电子技术的发展方向及应用而设计的新型实验装置。该学习机面板上画有原理图。各测试点均装有测试探头可以钩住的端子。测试电压及波形十分方便。使学生在实验课中安全、方便、直观地观察到各种电压、电流的波形及数据。学生实验可以更加深入了解直流斩波电路的工作原理及其典型的应用电 . 关键词:直流;电力电子;变换电路;

(完整word版)湖南工程学院2014直流降压斩波电路课程设计..

湖南工程学院应用技术学院课程设计 课程名称电力电子技术 课题名称DC-DC变换电路分析 专业电气工程 班级 学号 姓名 指导教师李祥来 2014 年月日

湖南工程学院 课程设计任务书 课程名称:电力电子技术 题目:DC-DC变换电路分析 专业班级:电气1184 学生姓名: 学号: 指导老师: 审批: 任务书下达日期2014年月日 设计完成日期2014年月日

前言 直流-直流变流电路(DC-DC Converter)的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路,直接直流变流电路也称斩波电路(DC Chopper),它的功能是将直流电变为另一固定电压或者可调电压的直流电,一般是指直接将直流电变为另一直流电,这种情况下输入与输出之间不隔离。间接直流变流电路是在直流变流电路中增加了交流环节,在交流环节中通常采用变压器实现输入输出间的隔离,因此,也称为带隔离的直流-直流变流电路或直-交-直电路。习惯上,DC-DC变换器包括以上两种情况,且甚至更多地指后一种情况。 直流斩波电路的种类较多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路和Zeta斩波电路,其中前两种是最基本的电路。一方面,这两种电路应用最为广泛,另一方面,理解了这两种电路可为理解其他的电路打下基础。 降压斩波电路(Buck Chopper)的设计与分析是接下来课程设计的主要任务。。

目录 一.降压斩波电路 (7) 1.1 降压斩波原理: (7) 1.2 工作原理 (8) 1.3 IGBT结构及原理 (8) 二.直流斩波电路的建模与仿真 (11) 2.1IGBT驱动电路的设计.................................... 错误!未定义书签。 2.2电路各元件的参数设定................................ 错误!未定义书签。 2.3元件型号选择 ............................................... 错误!未定义书签。 2.4仿真软件介绍 ............................................... 错误!未定义书签。 2.5仿真电路及其仿真结果................................ 错误!未定义书签。 2.6仿真结果分析 ............................................... 错误!未定义书签。三.课设体会与总结. (19) 四.附录(完整电路图) (19) 五.参考文献 (19) 六.课程设计成绩表 (19)

实验四 直流斩波电路实验

实验四直流斩波电路实验 一.实验目的 1.加深理解斩波器电路的工作原理 2.掌握斩波器的主电路,触发电路的调试步骤和方法。 3.熟悉斩波器各点的波形。 二.实验内容 1.触发电路调试 2.斩波器接电阻性负载。 3.斩波器接电阻—电感性负载。 三.实验线路与原理 本实验采用脉宽可调逆阻型斩波器。其中VT1为主晶闸管,当它导通后,电源电压就加在负载上。VT2为辅助晶闸管,由它控制输出电压的脉宽。C和L1为振荡电路,它们与VT2、VD1、L2组成VT1的换流关断电路。斩波器主电路如图4-14所示。接通电源时,C经VD1,负载充电至+Udo,VT1导通,电源加到负载上,过一段时间后VT2导通,C和L1产生振荡,C上电压由+Vdo变为-Vdo,C经VD1和VT1反向放电,使VT1、VT2关断。 从以上斩波器工作过程可知,控制VT2脉冲出现的时刻即可调节输出电压的脉宽,从而达到调压的目的,VT1、VT2的脉冲间隔由触发电路决定。 四.实验设备及仪器 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。 3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)。 4.MCL—06组件或MCL—37 5.MEL—03三相可调电阻器(或自配滑线变阻器450 ,1A) 6.双踪示波器 7.万用表

五.注意事项 1.斩波电路的直流电源由三相不控整流桥提供,整流桥的极性为下正上负,接至斩波电路时,极性不可接错。 2.实验时,每次合上主电源前,须把调压器退至零位,再缓慢提高电压。 3.实验时,若负载电流过大,容易造成逆变失败,所以调节负载电阻,电感时,需注意电流不可超过0.5A。 4.若逆变失败,需关断主电源,把调压器退至零位,再合上主电源。 5.实验时,先把MCL-18的给定调到0V,再根据需要调节。 六.实验方法 1.触发电路调试 打开MCL—06面板右下角的电源开关(或接人MCL—37低压电源)。 调节电位器RP,观察“2”端的锯齿波波形,锯齿波频率为100Hz左右。 调节“3”端比较电压(由MCL-18给定提供),观察“4”端方波能否由0.1T连续调至0.9T(T为斩波器触发电路的周期)。 用示波器观察“5”、“6”端脉冲波形,是否符合相位关系。 用示波器观察输出脉冲波形,测量触发电路输出脉冲的幅度和宽度。 2.斩波器带电阻性负载 按图2-14实验线路连好斩波器主电路,接上电阻负载(可采用两只900Ω电阻并联),并调节电阻负载至最大,并将触发电路的输出G1、K1、G2、K2分别接至VT1、VT2的门极和阴极。 三相调压器逆时针调到底,合上主电源,调节主控制屏U、V、W输出电压至线电压为110V。用示波器观察并记录触发电路“1”、“2”、“4”、“5”、“6”端及U G1K1、U G2K2的波形,同时观察并记录输出电压u d=f(t),输出电流id=f(t),电容电压u c=f (t)及晶闸管两端电压u VT1=f(t)的波形,并注意各波形间的相位关系。 调节“3”端电压,观察在不同τ(即U G1K1和U G2K2脉冲的间隔时间)时u d的波形,并记录U d和τ数值,从而画出U d=f(τ/T)的关系曲线。其中τ/T为占空比。 注意负载电阻不可以太小,否则电流太大容易造成斩波失败。 3.斩波器带电阻,电感性负载 断开电源,将负载改接成电阻电感。然后重复电阻性负载时同样的实验步骤。 六.实验报告 1.整理记录下的各波形,画出各种负载下U=f(τ/T)的关系曲线。 2.讨论分析实验中再现的各种现象。

降压斩波电路课程设计

电力电子技术课程设计 目录 一、引言 (2) 二、设计要求与方案 (2) 2.1设计要求.................................................. ..2 2.2方案确定.................................................. .3 三、主电路设计....................................... .3 3.1主电路方案................................................ ..3 3.2工作原理.................................................. ..4 3.3参数分析.................................................. ..5 四、控制电路设计..................................... .5 4.1控制电路方案选择.......................................... ..5 4.2工作原理.................................................. ..6 4.3控制芯片介绍............................................. ..7 五、驱动电路设计..................................... .9 5.1驱动电路方案选择.......................................... (9) 5.2工作原理..................................................... 10. 六、保护电路设计........................................ .11 6.1过压保护电路................................................ ..11 6.2过流保护电路................................................. ..12 七、系统仿真及结论....................................... .13 八、结论.......................................... .16 九、参考文献........................................... .16

直流斩波电路设计与仿真.

电力电子技术课程设计报告 姓名: 学号: 班级: 指导老师: 专业: 设计时间:

目录 1.降压斩波电路 (6) 一.直流斩波电路工作原理及输出输入关系 (12) 二.D c/D C变换器的设计 (18) 三.测试结果 (19) 四.直流斩波电路的建模与仿真 (29) 五.课设体会与总结 (30) 六.参考文献 (31)

摘要 介绍了一种新颖的具有升降压功能的DC /DC 变换器的设计与实现,具体地分析了该DC /DC 变换器的设计(拓扑结构、工作模式和储能电感参数设计),详细地阐述了该DC /DC 变换器控制系统的原理和实现,最后给出了测试结果 关键词:DC /DC 变换器,降压斩波,升压斩波,储能电感,直流开关电源,PWM ;直流脉宽调速 一.降压斩波电路 1.1 降压斩波原理: R E U I E E T t t t E t U M on off on on -= ==+=000α 式中on t 为V 处于通态的时间;off t 为V 处于断态的时间;T 为开关周期;α为导通占空比,简称占空比火导通比。 根据对输出电压平均值进行调制的方式不同,斩波电路有三种控制方式: 1) 保持开关周期T 不变,调节开关导通时间on t 不变,称为PWM 。 2) 3) on t i E M

1.2 工作原理 1)t=0时刻驱动V导通,电源E向负载供电,负载电压u o=E,负载电流i o 按指数曲线上升 2)t=t1时刻控制V关断,负载电流经二极管VD续流,负载电压u o近似为零,负载电流呈指数曲线下降。为了使负载电流连续且脉动小通常使串接的电感L值较大 ●基于“分段线性”的思想,对降压斩波电路进行解析 ●从能量传递关系出发进行的推导 ●由于L为无穷大,故负载电流维持为I o不变

电力电子降压斩波电路课程设计

电力电子降压斩波电路课程设计

《电力电子技术》课程设计说明书 直流降压斩波电路的设计与仿真 院、部:电气与信息工程学院 学生姓名:刘贝贝 指导教师:胡小娣职称助教 专业:电气工程及其自动化 班级:电气本1305 学号: 完成时间: 6月

湖南工学院《电力电子技术》课程设计课题任务书 学院:电气与信息工程学院专业:电气工程及其自动化

摘要 直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC 变换器,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路. 直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。 关键字:直流斩波,降压斩波

ABSTRACT DC chopper as DC into another fixed voltage DC voltage or adjustable in DC converter, and DC - regenerative power transmission system, charging circuit, switch power, power electronics device and all sorts of electrical equipment transformation in ordinary application. Then appeared such as step-down chopper, booster chopper, lift pressure chopper composite chopper, etc.. the commutation circuit DC chopper technology has been widely used in switching power supply and DC driver, make its smooth acceleration control, and obtain the fast response, managing electric energy effect. All-controlling power electronics device IGBT in traction power transmission and transformation of power transmission and active filter etc widely application. Keywords: DC chopping; Buck chopper

实验五-直流斩波电路的性能研究实验报告-第五组

实验五-直流斩波电路的性能研究实验报告-第五组

XXX学院实验报告 学院:专业:班级:成绩: 姓名:学号:组别:组员: 实验地点:实验日期:指导教师签名: 验(序号)项目名称:直流斩波电路的性能研究(六种典型线路) 实验五直流斩波电路的性能研究(六种典型线路) 一、实验目的 (1)熟悉直流斩波电路的工作原理。 (2)熟悉各种直流斩波电路的组成及其工作特点。 (3)了解PWM 控制与驱动电路的原理及其常用的集成芯片。 二、实验所需挂件及附件 序号型号备注 1 DJK01 电源控 制屏该控制屏包含“三相电源输出”等几个模块。 2 DJK09单相调 压与可调负载 3 DJK20 直流斩 波电路 4 D42 三相可调 电阻 预习情况正常操作情况正常考勤情况正常数据处理情况正常

5 慢扫描示波器自备 6 万用表自备 三、实验线路及原理1、主电路 ①、降压斩波电路(Buck Chopper) 降压斩波电路(Buck Chopper)的原理图及工作波形如图 4-12 所示。图中V 为全控型器件,选 用IGBT。D 为续流二极管。由图4-12b 中V 的栅极电压波形U GE 可知,当V 处于通态时,电源 U i 向负载供电,U D=U i。当V 处于断态时,负载电流经二极管D 续流,电压U D 近似为零,至一 个周期T 结束,再驱动V 导通,重复上一周期的过程。负 载电压的平均值为: 式中t on 为V 处于通态的时间,t off 为V 处于断态的时间,T 为开关周期,α为导通占空比, 简称占空比或导通比(α=t on/T)。由此可知,输出到负载的电压平均值U O 最大为U i,若减小占空 比α,则U O 随之减小,由于输出电压低于输入电压,故称 该电路为降压斩波电路。

《降压斩波电路》word版

电力电子技术课程设计报告课题:降压斩波电路的设计

目录 一.引言 二.课程设计 1 降压斩波电路的设计目的 2. 降压斩波电路的设计内容及要求 3. 降压斩波电路主电路基本原理 4. IGBT驱动电路 4.1 IGBT简介 4.2驱动电路设计方案比较 5. 保护电路的设计 6. MATLAB仿真 6.1 MATLAB简介 6.2 MATLAB发展历程 6.3主电路仿真 7.PROTEL原理图及PCB图的绘制 8. 心得体会 9. 元件清单 三.参考文献

一.引言 高频开关稳压电源已广泛运用于基础直流电源、交流电源、各种工业电源,通信电源、通信电源、逆变电源、计算机电源等。它能把电网提供的强电和粗电,它是现代电子设备重要的“心脏供血系统”。BUCK变换器是开关电源基本拓扑结构中的一种,BUCK变换器又称降压变换器,是一种对输入输出电压进行降压变换的直流斩波器,即输出电压低于输入电压,由于其具有优越的变压功能,因此可以直接用于需要直接降压的地方。 二.课程设计 1.降压斩波电路的设计目的 (1). 通过对降压斩波电路(buck chopper)的设计,掌握buck chopper电路的工作原理,综合运用所学知识,进行buck chopper电路和系统设计的能力。 (2). 了解与熟悉buck chopper电路拓扑、控制方法。 (3). 理解和掌握buck chopper电路及系统的主电路、控制电路和保护电路的设计方法,掌握元器件的选择计算方法。 (4). 具有一定的电力电子电路及系统实验和调试的能力 2. 降压斩波电路的设计内容及要求 (1). 设计内容: 对Buck Chopper电路的主电路和控制电路进行设计,参数如下:直流电压E=200V,负载中R=10 ,L值极大,反电动式E1=30V。 (2).设计要求 (a)理论设计: 了解掌握Buck Chopper电路的工作原理,设计Buck Chopper电路的主电路和控制电路。包括:IGBT电流,电压额定的选择,画出完整的主电路原理图和控制电路原理图列出主电路所用元器件的明细表 (b).仿真实验: 利用MATLAB仿真软件对Buck Chopper 电路主电路和控制电路进行仿真建模,并进行仿真实验 (c).实际制作: 利用PROTEL软件绘出原理图,结合具体所用元器件管脚数,外型尺寸,考虑散热和抗

PWM直流斩波电路分析及测试

实验四 PWM直流斩波电路分析及测试 一.实验目的 1.掌握Buck—Boost变换器的工作原理、特点与电路组成。 2.熟悉Buck—Boost变换器连续与不连续工作模式的工作波形图。 3.掌握Buck—Boost变换器的调试方法。 二.实验内容 1.连接实验线路,构成一个实用的Buck—Boost变换器。 2.调节占空比,测出电感电流i L处于连续与不连续临界状态时的占空比D,并与理论值相比较。3.将电感L增大一倍,测出i L处于连续与不连续临界状态时的占空比D,并与理论值相比较。4.测出连续与不连续工作状态时的V be、V ce、V D、V L、i L、i C、i D等波形。 5.测出直流电压增益M=V O/V S与占空比D的函数关系。 6.测试输入、输出滤波环节分别对输入电流i S与输出电流i O影响。 三.实验线路 四.实验设备和仪器 1.MCL-08直流斩波及开关电源实验挂箱 2.万用表

3. 双踪示波器 五.实验方法 1.检查PWM 信号发生器与驱动电路工作是否正常 连接有关线路,观察信号发生器输出与驱动电路的输出波形是否正常,如有异常现象,则先设法排除故障。 2.电感L=1.48mH ,电感电流i L 处于连续与不连续临界状态时的占空比D 测试 将“16”与“18”、“21”与“4”、“22”与“5”、“19”与“6”、“1”与“4”、“9”与“12”相连,即按照以下表格连线。 16 18 21 4 22 5 19 6 1 4 9 12 合上开关S1与S2、S3、S4,用示波器观察“7”与“13”(即i L )之间波形,然后调节RP1使i L 处于连续与 不连续的临界状态,记录这时候的占空比D 与工作周期T 。 3.L=1.48mH ,测出处于连续与不连续临界工作状态时的V be (“5”~“6”)、V ce (“4”~“6”)、V D (“9”~“8”)、i L (“7”~“13”)、i C (“6”~“7”)、i D (“8”~“7”)等波形 调节RP1,使i L 处于连续与不连续临界工作状态,用示波器测出GTR 基-射极电压V be 与集-射极电压V ce ;二极管VD 阴极与阳极之间电压V D ;电感L 3两端电压V L ;电感电流i L ;三极管集电极电流i C 以及二极管电流i D 等波形。 4.L=1.48mH,测出连续工作状态时的V be 、V ce 、V D 、i L 、i C 、i D 等波形 调节RP1左旋到底,使i L 处于连续工作状态,用双踪示波器观察上述波形。 5.L=1.48mH,测出不连续工作状态时的V be 、V ce 、V D 、i L 、i C 、i D 等波形 调节RP1右旋到底,使i L 处于不连续工作状态,用双踪示波器观察上述波形。 6.L=3.07mH ,i L 处于连续与不连续临界状态时的占空比D 测试 将开关S2断开,观察i L 波形,调节RP1,使i L 处于连续与不连续的临界状态,记录这时候的占空比D 与工作周期T 。 7.L=3.07mH ,测出连续工作状态时的V be 、V ce 、V D 、i L 、i C 、i D 等波形 调节RP1,使i L 处于连续工作状态,测试方法同前。 8.L=3.07mH ,测出不连续工作状态时的V be 、V ce 、V D 、i L 、i C 、i D 等波形 9.测出M=V O /V S 与占空比D 的函数关系 (1)L=1.48mH ,占空比D 从最小到最大范围内,测试5~6个D 数据,以及与此对应的输出电压V O 。(占空比D 用示波器观察, V O 、V S 用万用表测量,V s (V cc ~“14”)、V o (“12”~“15”)【红色为临界时的数值】 (2)L=3.07mH ,测试方法同上。 10.输入滤波器功能测试(断开电源S 1 开关再接线) 有与没有输入滤波器时,电源电流(即15~14两端)波形测试(用示波器AC 档观察)。 D 0.18 0.34 0.41 0.53 0.60 0.68 0.71 0.75 0.83 Vo (V ) -8.32 -15.43 -18.82 -22.26 -25.24 -29.06 -29.91 -33.45 -33.50 M=Vo/Vs -0.555 -1.029 -1.255 -1.484 -1.683 -1.937 -1.994 -2.230 -2.300 D 0.16 0.23 0.37 0.45 0.50 0.60 0.68 0.75 0.83 Vo (V ) -6.15 -9.18 -12.58 -14.83 -16.84 -19.19 -26.96 -31.16 -33.84 M=Vo/Vs -0.410 -0.612 -0.839 -0.989 -1.123 -1.279 -1.797 -2.077 -2.256

相关主题