搜档网
当前位置:搜档网 › 新型非隔离负电压DC-DC开关电源设计及实验研究(峰值电流控制)

新型非隔离负电压DC-DC开关电源设计及实验研究(峰值电流控制)

新型非隔离负电压DC-DC开关电源设计及实验研究(峰值电流控制)

新型非隔离负电压DC/DC开关电源设计及实验研究

(峰值电流控制)

?摘要:针对现有非隔离负电压DC/DC开关电源在带负载能力以及输出纹波上的不足,提出了一种基于峰值电流控制的新型非隔离负电压DC/DC开关电源设计方案,实现在连续电流模式(CCM)下输出电容能始终通过输出电感得到充电。进而有效抑制输出纹波的影响,确保了负电源的高效率工作和带负载能力。实验结果验证了本方案的可行性和有效性。

?

?

?0 引言

?

?随着电子技术的飞速发展,现代电子测量装置往往需要负电源为其内部的集成电路芯片与传感器供电。如集成运算放大器、电压比较器、霍尔传感器等。

?

?

?负电源的好坏很大程度上影响电子测量装置运行的性能,严重的话会使测量的数据大大偏离预期。目前,电子测量装置的负电源通常采用抗干扰能力强,效率高的开关电源供电方式。以往的隔离开关电源技术通过变压器实现负电压的输出,但这会增大负电源的体积以及电路的复杂性。而随着越来越多专用集成DC/DC控制芯片的出现,使得电路简单、体积小的非隔离负电压开关电源在电子测量装置中得到了越来越广泛的应用。因此,对非隔离负电

2019年反激式开关电源设计大全

2019年反激式开关电源设计大全

前言 对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它 的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消 副边电流的作用。另一部分是励磁电流分量,主要产生主磁通,在空载运行和负 载运行时,该励磁分量均不变化。 励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。在整个抽水过程中,水 泵中保持的水量又是不变的。这就是,励磁电流在变压器中必须存在,并且在整 个工作过程中保持恒定。 正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电 流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分 量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。而初次级负载安匝 数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很 小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。 反激式变换器和以上所述大不相同,反激式变换器工作过程分两步:第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来; 第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。

可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压 器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没 有次级安匝数去抵消它。初级的全部电流用于磁芯沿磁滞回线移动,实现电能向 磁能的转换;这种情况极易使磁芯饱和。 磁芯饱和时,很短的时间内极易使开关管损坏。因为当磁芯饱和时,磁 感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动 势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开 关管上,开关管会瞬时损坏。 由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下, 首要解决的是磁芯饱和问题。 如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源 变压器设计的思考二中讨论。 反激式开关电源设计的思考二---气隙的作用 “反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁 芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢? 由全电流定律可知:

功率电压电流公式 功率电压电流公式大全

1、欧姆定律: I=U/R U:电压,V; R:电阻,Ω; I:电流,A; 2、全电路欧姆定律: I=E/(R+r) I:电流,A; E:电源电动势,V; r:电源内阻,Ω; R:负载电阻,Ω 3、并联电路,总电流等于各个电阻上电流之和 I=I1+I2+…In 4、串联电路,总电流与各电流相等 I=I1=I2=I3=…=In 5、负载的功率 纯电阻有功功率P=UI → P=I2R(式中2为平方)U:电压,V; I:电流,A; P:有功功率,W; R:电阻 纯电感无功功率 Q=I2*Xl (式中2为平方) Q:无功功率,w; Xl:电感感抗,Ω I:电流,A 纯电容无功功率 Q=I2*Xc (式中2为平方) Q:无功功率,V; Xc:电容容抗,Ω I:电流,A 6、电功(电能) W=UIt W:电功,j; U:电压,V; I:电流,A; t:时间,s 7、交流电路瞬时值与最大 值的关系 I=Imax×sin(ωt+Φ) I:电流,A; Imax:最大电流,A; (ωt+Φ):相位,其中Φ为 初相。 8、交流电路最大值与在效 值的关系 Imax=2的开平方×I I:电流,A; Imax:最大电流,A; 9、发电机绕组三角形联接 I线=3的开平方×I相 I线:线电流,A; I相:相电流,A; 10、发电机绕组的星形联接 I线=I相 I线:线电流,A; I相:相电流,A; 11、交流电的总功率 P=3的开平方×U线×I线 ×cosΦ P:总功率,w; U线:线电压,V; I线:线电流,A; Φ:初相角 12、变压器工作原理 U1/U2=N1/N2=I2/I1 U1、U2:一次、二次电 压,V; N1、N2:一次、二次线圈 圈数; I2、I1:二次、一次电流, A; 13、电阻、电感串联电路 I=U/Z Z=(R2+XL2)和的开平方 (式中2为平方) Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω 14、电阻、电感、电容串联 电路 I=U/Z Z=[R2+(XL-Xc)2]和的开 平方(式中2为平方) Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω; Xc:容抗,Ω

反激式开关电源设计的思考(一到五)

反激式开关电源设计的思考一 对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消副边电流的作用。另一部分是励磁电流分量,主要产生主磁通,在空载运行和负载运行时,该励磁分量均不变化。 励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。在整个抽水过程中,水泵中保持的水量又是不变的。这就是,励磁电流在变压器中必须存在,并且在整个工作过程中保持恒定。 正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。而初次级负载安匝数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。 反激式变换器和以上所述大不相同,反激式变换器工作过程分两步: 第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来; 第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。 可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没有次级安匝数去抵消它。初级的全部电流用于磁芯沿磁滞回线移动,实现电能向磁能的转换;这种情况极易使磁芯饱和。 磁芯饱和时,很短的时间内极易使开关管损坏。因为当磁芯饱和时,磁感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开关管上,开关管会瞬时损坏。 由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下,首要解决的是磁芯饱和问题。 如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源变压器设计的思考二中讨论。 关键词:开关电源反激式磁芯饱和 反激式开关电源设计的思考二 “反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢?由全电流定律可知:

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解 一,先分类 开关电源的拓扑结构按照功率大小的分类如下: 10W以内常用RCC(自激振荡)拓扑方式 10W-100W以内常用反激式拓扑(75W以上电源有PF值要求) 100W-300W 正激、双管反激、准谐振 300W-500W 准谐振、双管正激、半桥等 500W-2000W 双管正激、半桥、全桥 2000W以上全桥 二,重点 在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。给大家讲解如何读懂反激开关电源电路图! 三,画框图 一般来说,总的来分按变压器初测部分和次侧部分来说明。开关电源的电路包括以下几个主要组成部分,如图1

图1,反激开关电源框图 四,原理图 图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。下面会根据这个原理图进行各个部分的设计说明。 图2 典型反激开关电源原理图

五,保险管 图3 保险管 先认识一下电源的安规元件—保险管如图3。 作用:安全防护。在电源出现异常时,为了保护核心器件不受到损坏。 技术参数:额定电压 ,额定电流 ,熔断时间。 分类:快断、慢断、常规 计算公式:其中:Po:输出功率 η效率:(设计的评估值) Vinmin :最小的输入电压 2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。 0.98: PF值 六,NTC和MOV NTC 热敏电阻的位置如图4。 图4 NTC热敏电阻 图4中的RT为NTC,电阻值随温度升高而降低,抑制开机时产生的浪涌电压形成的浪涌电流。

(整理)反激式开关电源变压器设计原理.

反激式开关电源变压器设计原理 (Flyback Transformer Design Theory) 第一节. 概述. 反激式(Flyback)转换器又称单端反激式或"Buck-Boost"转换器.因其输出端在原边绕组断开电源时获得能量故而得名.离线型反激式转换器原理图如图. 一、反激式转换器的优点有: 1. 电路简单,能高效提供多路直流输出,因此适合多组输出要求. 2. 转换效率高,损失小. 3. 变压器匝数比值较小. 4. 输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实现交流输入在 85~265V间.无需切换而达到稳定输出的要求. 二、反激式转换器的缺点有: 1. 输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W以下. 2. 转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大. 3. 变压器有直流电流成份,且同时会工作于CCM / DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂. 第二节. 工作原理 在图1所示隔离反驰式转换器(The isolated flyback converter)中, 变压器" T "有隔离与扼流之双重作用.因此" T "又称为Transformer- choke.电路的工作原理如下: 当开关晶体管 Tr ton时,变压器初级Np有电流 Ip,并将能量储存于其中(E = LpIp / 2).由于Np与Ns极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关Tr off 时,由楞次定律 : (e = -N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通.反激式转换器之稳态波形如图2. 由图可知,导通时间 ton的大小将决定Ip、Vce的幅值: Vce max = VIN / 1-Dmax VIN: 输入直流电压 ; Dmax : 最大工作周期 Dmax = ton / T 由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应用中通常取Dmax = 0.4,以限制Vcemax ≦ 2.2VIN. 开关管Tr on时的集电极工作电流Ie,也就是原边峰值电流Ip 为: Ic = Ip = IL / n. 因IL = Io,故当Io一定时,匝比 n的大小即决定了Ic 的大小,上式是按功率守恒原则,原副边安匝数相等 NpIp = NsIs而导出. Ip 亦可用下列方法表示: Ic = Ip = 2Po / (η*VIN*Dmax) η: 转换器的效率 公式导出如下: 输出功率 : Po = LIp2η / 2T

功率电压电流公式 功率电压电流公式大全

功率电压电流公式功率电压电流公式大全 1、欧姆定律: I=U/R U:电压,V; R:电阻,Ω; I:电流,A; 2、全电路欧姆定律: I=E/(R+r) I:电流,A; E:电源电动势,V; r:电源内阻,Ω; R:负载电阻,Ω 3、并联电路,总电流等于各个电阻上电流之和 I=I1+I2+…In 4、串联电路,总电流与各电流相等 I=I1=I2=I3=…=In 5、负载的功率 纯电阻有功功率P=UI → P=I2R(式中2为平方) U:电压,V; I:电流,A; P:有功功率,W; R:电阻

纯电感无功功率Q=I2*Xl(式中2为平方)Q:无功功率,w; Xl:电感感抗,Ω I:电流,A 纯电容无功功率Q=I2*Xc(式中2为平方)Q:无功功率,V; Xc:电容容抗,Ω I:电流,A 6、电功(电能) W=UIt W:电功,j; U:电压,V; I:电流,A; t:时间,s 7、交流电路瞬时值与最大值的关系 I=Imax×sin(ωt+Φ) I:电流,A; Imax:最大电流,A; (ωt+Φ):相位,其中Φ为初相。 8、交流电路最大值与在效值的关系 Imax=2的开平方×I I:电流,A; Imax:最大电流,A; 9、发电机绕组三角形联接

I线=3的开平方×I相 I线:线电流,A; I相:相电流,A; 10、发电机绕组的星形联接 I线=I相 I线:线电流,A; I相:相电流,A; 11、交流电的总功率 P=3的开平方×U线×I线×cosΦ P:总功率,w; U线:线电压,V; I线:线电流,A; Φ:初相角 12、变压器工作原理 U1/U2=N1/N2=I2/I1 U1、U2:一次、二次电压,V; N1、N2:一次、二次线圈圈数; I2、I1:二次、一次电流,A; 13、电阻、电感串联电路 I=U/Z Z=(R2+XL2)和的开平方(式中2为平方) Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω 14、电阻、电感、电容串联电路 I=U/Z Z=[R2+(XL-Xc)2]和的开平方(式中2为平方)Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω; Xc:容抗,Ω

功率计算公式表

功率计算公式 P=UI功率的计算公式 p=w/t p=UI P=I^2 *R P=Fv P=U^2 /R 功的计算公式: W=Fs W=UIt W=I^2 *Rt W=U^2 *t /R 1,两相家用电器功率的计算方法是: P=电流*电压*功率因素 如5A电流*220V交流电压*0.9功率因素=990W 1度电=1000W 2,对称三相交流家用电器功率的计算方法是: 有功功率(W)P=跟号3*电流*交流电压*功率因素(COS) 无功功率(VAR)Q=跟号3*电流*交流电压*功率因素(SIN) 视在功率(VA)S=跟号3*电流*交流电压 P表示功率,单位是“瓦特”,简称“瓦”,符号是“w”。W表示功,单位是“焦耳”,简称“焦”,符号是“J”。t表示时间,单位是“秒”,符号是“s”。因为W=F(f 力)*s(s 距离)(功的定义式),所以求功率的公式也可推导出P=F·V(F为力,V为速度)。功率越大转速越高,汽车的最高速度也越高,常用最大功率来描述汽车的动力性能。最大功率一般用马力(PS)或千瓦(kw)来表示,1马力等于0.735千瓦。 1w=1J/s P=W/t=FV=FL/t 1、串联电路电流和电压有以下几个规律:(如:R1,R2串联) ①电流:I=I1=I2(串联电路中各处的电流相等) ②电压:U=U1+U2(总电压等于各处电压之和) ③电阻:R=R1+R2(总电阻等于各电阻之和)如果n个阻值相同的电阻串联,则有R总=nR

2、并联电路电流和电压有以下几个规律:(如:R1,R2并联) ①电流:I=I1+I2(干路电流等于各支路电流之和) ②电压:U=U1=U2(干路电压等于各支路电压) ③电阻:(总电阻的倒数等于各并联电阻的倒数和)或。 如果n个阻值相同的电阻并联,则有R总= R 注意:并联电路的总电阻比任何一个支路电阻都小。 电功计算公式:W=UIt(式中单位W→焦(J);U→伏(V);I→安(A);t→秒)。 5、利用W=UIt计算电功时注意:①式中的W、U、I和t是在同一段电路;②计算时单位要统一;③已知任意的三个量都可以求出第四个量。 6、计算电功还可用以下公式:W=I2Rt ;W=Pt;W=UQ(Q是电量); 【电学部分】 1电流强度:I=Q电量/t 2电阻:R=ρL/S 3欧姆定律:I=U/R 4焦耳定律: ⑴Q=I2Rt普适公式) ⑵Q=UIt=Pt=UQ电量=U2t/R (纯电阻公式) 5串联电路: ⑴I=I1=I2 ⑵U=U1+U2 ⑶R=R1+R2 ⑷U1/U2=R1/R2 (分压公式) ⑸P1/P2=R1/R2 6并联电路: ⑴I=I1+I2 ⑵U=U1=U2 ⑶1/R=1/R1+1/R2 [ R=R1R2/(R1+R2)] ⑷I1/I2=R2/R1(分流公式) ⑸P1/P2=R2/R1

反激式开关电源设计

基于U C3845的反激式开关电源设计 时间:2011-10-2821:40:13来源:作者: 引言 反激式开关电源以其结构简单、元器件少等优点在自动控制及智能仪表的电源中得到广泛的应用。开关电源的调节部分通常采用脉宽调制(PWM)技术,即在主变换器周期不变的情况下,根据输入电压或负载的变化来调节功率MOSFET管导通的占空比,从而使输出电压稳定。脉宽调制的方法很多,本文中所介绍的是一种高性能的固定频率电流型脉宽集成控制芯片UC3845。该芯片是专为离线的直流至直流变换器应用而设计的。其主要特点是具有内部振荡器、高精度误差比较器、逐周电流取样比较、启动电流小、大电流图腾柱输出等,是驱动MOSFET的理想器件。 1UC3845简介 UC3845芯片为SO8或SO14管脚塑料表贴元件。专为低压应用设计。其欠压锁定门限为8.5v(通),7.6V(断);电流模式工作达500千赫输出开关频率;在反激式应用中最大占空比为0.5;输出静区时间从50%~70%可调;自动前馈补偿;锁存脉宽调制,用于逐周期限流;内部微调的参考源;带欠压锁定;大电流图腾柱输出;输入欠压锁定,带滞后;启动及工作电流低。 芯片管脚图及管脚功能如图1所示。 图1UC3845芯片管脚图 1脚:输出/补偿,内部误差放大器的输出端。通常此脚与脚2之间接有反馈网络,以确定误差放大器的增益和频响。 2脚:电压反馈输入端。此脚与内部误差放大器同向输入端的基准电压(2.5V)进行比较,调整脉宽。 3脚:电流取样输入端。 4脚:RT/CT振荡器的外接电容C和电阻R的公共端。通过一个电阻接Vref通过一个电阻接地。 5脚:接地。 6脚:图腾柱式PWM输出,驱动能力为土1A. 7脚:正电源脚。 8脚:Vref,5V基准电压,输出电流可达50mA. 2设计方法 如图2为基于UC3845反激式开关电源的电路图,虚线框内为UC3845内部简化方框图。 1)启动电压和电容的选择 交流电源115VAC经整流、滤波后为一个纹波非常小的直流高压Udc,该电压根据交流电源范围往往可得到一个最大Udcmax,一和最小电压Udcmin。 当直流输入电压大于144V以上时,UC3845应启动开始工作,启动电阻应由线路直流电压和启动所需电流来确定。 根据UC3845的参数分析可知,当启动电压低于8.5V时,UC3845的整个电路仅消耗lmA的电流,即UC3845的典型启动电压为8.5V,电流为1mA.加上外围电路损耗约0.5mA,即整个电路损耗约1.5mA.在输入直流电压为最小电压Ddcmmn时,启动电阻Rin的计算如下: 图2基于UC3845反激式开关电源的电路图 启动过程完成后,UC3845的消耗电流会随着MOSFET管的开通增至100mA左右。该电流由启动电容在启动时储存的电荷量来提供。此时,启动电容上的电压会发生跌落到7.6V以上,要使UC3845fj~

峰值电流控制优缺点

开关电源峰值电流模式控制PWM的优缺点 近年来电流模式控制面临着改善性能后的电压模式控制的挑战,因为这种改善性能的电压模式控制加有输入电压前馈功能,并有完善的多重电流保护等功能,在控制功能上已具备大部分电流模式控制的优点,而在实现上难度不大,技术较为成熟。 由输出电压VOUT 与基准信号VREF的差值经过运放(E/A)放大得到的误差电压信号 VE 送至PWM比较器后,并不是象电压模式那样与振荡电路产生的固定三角波状电压斜波比较,而是与一个变化的其峰值代表输出电感电流峰值的三角状波形或梯形尖角状合成波形信号 VΣ比较,然后得到PWM脉冲关断时刻。因此(峰值)电流模式控制不是用电压误差信号直接控制PWM脉冲宽度,而是直接控制峰值输出侧的电感电流大小,然后间接地控制PWM脉冲宽度。 电流模式控制是一种固定时钟开启、峰值电流关断的控制方法。因为峰值电感电流容易传感,而且在逻辑上与平均电感电流大小变化相一致。但是,峰值电感电流的大小不能与平均电感电流大小一一对应,因为在占空比不同的情况下,相同的峰值电感电流的大小可以对应不同的平均电感电流大小。而平均电感电流大小才是唯一决定输出电压大小的因素。电感电流下斜波斜率的至少一半以上斜率加在实际检测电流的上斜波上,可以去除不同占空比对平均电感电流大小的扰动作用,使得所控制的峰值电感电流最后收敛于平均电感电流。因而合成波形信号VΣ要有斜坡补偿信号与实际电感电流信号两部分合成构成。当外加补偿斜坡信号的斜率增加到一定程度,峰值电流模式控制就会转化为电压模式控制。因为若将斜坡补偿信号完全用振荡电路的三角波代替,就成为电压模式控制,只不过此时的电流信号可以认为是一种电流前馈信号。当输出电流减小,峰值电流模式控制就从原理上趋向于变为电压模式控制。 当处于空载状态,输出电流为零并且斜坡补偿信号幅值比较大的话,峰值电流模式控制就实际上变为电压模式控制了。峰值电流模式控制PWM是双闭环控制系统,电压外环控制电流内环。电流内环是瞬时快速的,是按照逐个脉冲工作的。 功率级是由电流内环控制的电流源,而电压外环控制此功率级电流源。在该双环控制中,电流内环只负责输出电感的动态变化,因而电压外环仅需控制输出电容,不必控制LC 储能电路。峰值电流模式控制PWM具有比起电压模式控制大得多的带宽。以下是开关电源峰值电流模式控制PWM的优缺点: 峰值电流模式控制PWM的优点是: ①暂态闭环响应较快,对输入电压的变化和输出负载的变化的瞬态响应均快; ②控制环易于设计; ③输入电压的调整可与电压模式控制的输入电压前馈技术相妣美; ④简单自动的磁通平衡功能; ⑤瞬时峰值电流限流功能,内在固有的逐个脉冲限流功能; ⑥自动均流并联功能。 峰值电流模式控制PWM的缺点是: ①占空比大于50%的开环不稳定性,存在难以校正的峰值电流与平均电流的误差。 ②闭环响应不如平均电流模式控制理想。 ③容易发生次谐波振荡,即使占空比小于50%,也有发生高频次谐波振荡的可能性。因而需要斜坡补偿。 ④对噪声敏感,抗噪声性差。因为电感处于连续储能电流状态,与控制电压编程决定的电流电平相比较,开关器件的电流信号的上斜波通常较小,电流信号上的较小的噪声就很容易使得开关器件改变关断时刻,使系统进入次谐波振荡。 ⑤电路拓扑受限制。

反激式开关电源设计资料.doc

反激式开关电源设计资料 前言 反激式开关电源的控制芯片种类非常丰富,芯片厂商都有自己的专用芯片,例如UC3842、UC3845、OB2262、OB2269、TOPSWITCH 等等。虽然控制芯片略有不同,但是反激式开关电源的拓扑结构和电路原理基本上是一样的,本资料以UC3842为控制芯片设计了一款反激式开关电源。 单端反激式开关稳压电源的基本工作原理如下: D1 T R L 图1 反激式开关电源原理图 当加到原边主功率开关管Q1的激励脉冲为高电平使Q1导通时,直流输入电压V IN加载原边绕组N P两端,此时因副边绕组相位是上负下正,使整流管D1反向偏置而截止;当驱动脉冲为低电平使Q1截止时,原边绕组N P两端电压极性反向,使副边绕组相位变为上正下负,则整流管被正向偏置而导通,此后存储在变压器中的磁能向负载传递释放。因单端反激式电源只是在原边开关管到同期间存储能

量,当它截止时才向负载释放能量,故高频变压器在开关工作过程中,既起变压隔离作用,又是电感储能元件。因此又称单端反激式变换器是一种“电感储能式变换器”。 学习了反激式开关电源的工作原理之后,我们可以自行设计一款电源进行调试。开关电源是一门实验科学,理论知识的学习是必不可少的,但是光掌握了理论知识是远远不够的,还要多做实验,测试不同环境不同参数下的电源工作情况,这样才能对电源有更深的认识。除此之外,掌握大量的实验数据可以对以后设计电源和电源的优化提供很大帮助,可以更快速更合理的设计出一款新电源或者排除一些电源故障。通过阅读下面的章节,可以使你对电源从原理理解到设计能力有一个快速的提升。

第一章 电源参数的计算 第一步,确定系统的参数。我们设计一个电源首先要确定电源工作在一个什么样的环境,比如说输入电压的范围、频率、网侧电压是否纯净,接下来是电源的输出能力包括输出电压、电流和纹波大小等等。先要确定这些相关因素,才能更好的设计出符合标准的电源。我们在第二章会详细介绍如何利用这些参数设计电源。 输入电压范围(V line min 和V line max ); 输入电压频率(f L ); 输出电压(V O ); 输出电流(I O ); 最大输出功率 (P 0)。 效率估计(E ff ):需要估计功率转换效率以计算最大输入功率。如果没有参考数据可供使用,则对于低电压输出应用和高电压输出应用,应分别将E ff 设定为0.8~0.85。 利用估计效率,可由式(1-1)求出最大输入功率。 O IN ff P P E = (1-1) 第二步:确定输入整流滤波电容(C DC )和DC 电压范围。 最大DC 电压纹波计算: max DC V ?= (1-2) 式(1-2)中,D ch 为规定的输入整流滤波电容的充电占空比。其 典型值为0.2。对于通用型输入(85~265Vrms ),一般将max V DC ?设定为

各种电机电流计算方法

各种电机额定电流的计算 1、电机电流计算: 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相 B相 C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流 当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式 p=根号3 UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 三相的计算公式: P=1.732×U×I×cosφ (功率因数:阻性负载=1,感性负载≈0.7~0.85之间,P=功率:W) 单相的计算公式: P=U×I×cosφ 空开选择应根据负载电流,空开容量比负载电流大20~30%附近。P=1.732×IU×功率因数×效率(三相的) 单相的不乘1.732(根号3) 空开的选择一般选总体额定电流的1.2-1.5倍即可。

经验公式为: 380V电压,每千瓦2A, 660V电压,每千瓦1.2A, 3000V电压,4千瓦1A, 6000V电压,8千瓦1A。 3KW以上,电流=2*功率;3KW及以下电流=2.5*功率 2功率因数(用有功电量除以无功电量,求反正切值后再求正弦值)功率因数cosΦ=cosarctg(无功电量/有功电量) 视在功率S 有功功率P 无功功率Q 功率因数cosΦ 视在功率S=(有功功率P的平方+无功功率Q 的平方)再开平方 而功率因数cosΦ=有功功率P/视在功率S 3、求有功功率、无功功率、功率因数的计算公式,请详细说明下。(变压器为单相变压器) 另外无功功率的降低会使有功功率也降低么?反之无功功率的升高也会使有功功率升高么? 答:有功功率=I*U*cosφ即额定电压乘额定电流再乘功率因数 单位为瓦或千瓦 无功功率=I*U*sinφ,单位为乏或千乏. I*U 为容量,单位为伏安或千伏安. 无功功率降低或升高时,有功功率不变.但无功功率降低时,电流要降低,线路损耗降低,反之,线路损耗要升高. 4、什么叫无功功率?为什么叫无功?无功是什么意思?

电流电压功率之间的关系及公式.

电流、电压、功率的关系及公式 1、电流I,电压V,电阻R,功率W,频率F W=I2乘以R V=IR W=V2/R 电流=电压/电阻 功率=电压*电流*时间 2、电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N(瓦 特)之间的关系是: V=IR, N=IV=I*I*R,或也可变形为:I=V/R,I=N/V等等. 但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用. 如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 还有P=I2R P=IU R=U/I 最好用这两个;

3、如电动机电能转化为热能和机械能: 电流符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安) 1A(安)=1000mA(毫安)=1000000μA(微安) 单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ三相电阻类电功率的计算公式= 1.732*线电压U*线电流I(星形接法) = 3*相电压U*相电I(角形接法)三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ 星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P P=I2R 4、串联电路 P(电功率),U(电压),I(电流),W(电功),R(电阻),T(时

反激式开关电源的设计方法

1 设计步骤: 1.1 产品规格书制作 1.2 设计线路图、零件选用. 1.3 PCB Layout. 1.4 变压器、电感等计算. 1.5 设计验证. 2 设计流程介绍: 2.1 产品规格书制作 依据客户的要求,制作产品规格书。做为设计开发、品质检验、生产测试等的依据。 2.2 设计线路图、零件选用。 2.3 PCB Layout. 外形尺寸、接口定义,散热方式等。 2.4 变压器、电感等计算. 变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的, 2.4.1 决定变压器的材质及尺寸: 依据变压器计算公式 Gauss x NpxAe LpxIp B 100(max ) B(max) = 铁心饱合的磁通密度(Gauss) Lp = 一次侧电感值(uH) Ip = 一次侧峰值电流(A) Np = 一次侧(主线圈)圈数 Ae = 铁心截面积(cm 2) B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考 虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的 power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心 因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以 做较大瓦数的Power 。 2.4.2 决定一次侧滤波电容: 滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。 2.4.3 决定变压器线径及线数: 变压器的选择实际中一般根据经验,依据电源的体积、工作频率,

反激式开关电源原理与工程设计讲解

反激式开关电源原理与工程设计 一.反激式开关电源的原理分析 二.反激式开关电源实际电路的主要部件及其作用三.反激式开关电源电路各主要器件的参数选择四.反激式开关电源pcb排板原则 五.变压器的设计 六.反激式开关电源的稳定性问题

反激式开关电源原理与工程设计 一.反激式开关电源的原理分析 1.反激式开关电源电路拓扑 2.为什么是反激式 a.变压器的同名端相反 b.利用了二极管的单向导电特性 3.电感电流的变化为何不是突变 电压加在有电感的闭合回路上,流过电感上电流不是突变

的,而是线性增加。 愣次定律: a.当电感线圈流过变化的电流时会产生感生电动势,其大 小于与线圈中电流的变化率成正比; b.感生电动势总是阻碍原电流的变化 4.变压器的主要作用与能量的传递 理想变压器与反激式变压器的区别 反激式变压器的作用 a.电感(储能)作用 遵守的是安匝比守恒(而不是电压比守恒) 储存的能量为1/2×L×Ip2

b.限流的作用 c.变压作用 初次级虽然不是同时导通,它们之间也存在电压转换关系,也是初级按匝比变换到次级,次级按变比折射回初级。 d.变压器的气隙作用 扩展磁滞回线,能使变压器更不易饱和 磁饱和的原理 图 电感值跟导磁率成正比,

导磁率=B/H B是磁通密度 H是磁场强度 简单一点,H跟外加电流成正比就是了,增加电流,磁流密度会跟着增加, 当加电流至某一程度时,我们会发现,磁通密度会增加得很慢, 而且会趋近一渐近线.当趋近这一渐近线时,这时的磁通密度,我们就称為饱和磁通密度,电感值跟导磁率成正比,导磁率=B/H B是磁通密度,H是磁场强度(电流增加,H会增加.) H会增加,但B不会增加, 导磁率变化量会趋近零啦! 电感值跟导磁率变化量成正比, 导磁率变化量趋近零,那电感值会是多少? 零 5.开关管漏极电压的组成 a. 高压为基础部分 b. 折射回来的电压部分 c. 漏感产生的尖峰部分 波形

电流、电压、功率的关系及公式

电流=电压/电阻 功率=电压*电流*时间 电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR 电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR W=V的平方除以R 电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N(瓦特)之间的关系是: V=IR,N=IV =I*I*R, 或也可变形为:I=V/R,I=N/V等等.但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用.如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R P=IU R=U/I 最好用这两个;如电动机电能转化为热能和机械能。电流 符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻 I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安) 1A(安)=1000mA(毫安)=1000000μA(微安)单相电阻类电功率的计算公式= 电压U*电流I

单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ 三相电阻类电功率的计算公式= *线电压U*线电流I (星形接法) = 3*相电压U*相电流I(角形接法) 三相电机类电功率的计算公式= *线电压U*线电流I*功率因数COSΦ(星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R ⑴串联电路 P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间) 电流处处相等 I1=I2=I 总电压等于各用电器两端电压之和 U=U1+U2 总电阻等于各电阻之和 R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和 W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和 P=P1+P2 ⑵并联电路 总电流等于各处电流之和 I=I1+I2 各处电压相等 U1=U1=U 总电阻等于各电阻之积除以各电阻之和R=R1R2÷(R1+R2) 总电功等于各电功之和 W=W1+W2 I1:I2=R2:R1 W1:W2=I1:I2=R2:R1 P1:P2=R2:R1=I1:I2 总功率等于各功率之和 P=P1+P2

20170807-峰值电流型控制Buck等效功率级的小信号传递函数

峰值电流型控制Buck 等效功率级的小信号传递函数 普高(杭州)科技开发有限公司 张兴柱 博士 Buck 变换器在峰值电流型控制下的等效功率级小信号传递函数(CCM ): ) 1)(1()1()(220n n p p zc vc vc s Q s s s G s G ωωωω++++′≈′ )1)(1()1()(220 n n p p zc vg vg s Q s s s G s G ωωωω++++′≈′ ) 1()1()(0p zc out s s R s Z ωω++′≈′ 其中:101F R R G i vc = ′,120F F L RT G s vg =′,10F R R =′ 11F RC p =ω,)5.0(1?′=D m Q c p π,C R c zc 1=ω,s n T πω= )5.0(11?′+ =D m L RT F c s ,)]21([2D D m D F c ??′=,n e c S S m +=1 i o g n R L V V S ×?= 从求得的峰值电流控制Buck 等效功率级的三个CCM 小信号传递函数,我们可以来分析这种控制的特点。其峰值电流控制等效功率级的控制电压到输出电压小信号传递函数)(s G vc ′,和输入电压到输出电压小信号传递函数)(s G vg ′,形式完全相同,所不同的只是零频分量。它由一个左半平面单极点,一个1/2开关频率处的双极点和一个因输出滤波电容ESR 引起的左半平面单零点组成。双极点的频率在1/2开关频率,比起开关电源的带宽要高得多,故一般情况下可将其忽略。在R.Ridely 引入采样函数之前的分析文章中,所得到的结果都是用一阶小信号传递函数近似,所以就不能解释在实验中出现的子谐波振荡现象。所谓的子谐波振荡是峰值电流型控制的等效功率级,在工作占空比大于0.5时和无外部补偿斜波时,会在输出产生一种1/2开关频率的有规则的振荡,可在MOSFET 的ds V 波形上反映出来,它在时钟的相邻开关周期内,具有不同的导通时间和截止时间,一长一短,其波形示意图如图1所示。虽然这种振荡波形,人耳一般听不到,但它会影响开关电源长期工作的可靠性,所以必须避免。

电流电压功率的关系及公式

电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR W=V的平方除以R 电流=电压/电阻 功率=电压*电流*时间 电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR 电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR W=V的平方除以R 电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N(瓦特)之间的关系是:V=IR,N=IV =I*I*R, 或也可变形为:I=V/R,I=N/V等等.但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用.如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P

就记得这一些了,不知还有没有 还有P=I2R P=IU R=U/I 最好用这两个;如电动机电能转化为热能和机械能。电流 符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安) 1A(安)=1000mA(毫安)=1000000μA(微安)单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ 三相电阻类电功率的计算公式= 1.732*线电压U*线电流I (星形接法) = 3*相电压U*相电流I(角形接法) 三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ(星形电流= I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R ⑴串联电路P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间)电流处处相等I1=I2=I 总电压等于各用电器两端电压之和U=U1+U2 总电阻等于各电阻之和R=R1+R2

总结:开关电源设计心得

总结:开关电源设计心得 首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。 1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接近开关电源输入端,输入线应避免与其他电路平行,应避开。 Y电容应放置在机壳接地端子或FG连接端。共摸电感应与变压器保持一定距离,以避免磁偶合。如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电源的EMC性能影响较大。 输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口。 控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号电路,特别是电流控制型电路,处理不好易出现一些想不到的意外。 下面谈一谈印制板布线的一些原则 线间距:随着印制线路板制造工艺的不断完善和提高,一般加工厂制造出线间距等于甚至小于0.1mm已经不存在什么问题,完全能够满足大多数应用场合。考虑到开关电源所采用的元器件及生产工艺,一般双面板最小线间距设为0.3mm,单面板最小线间距设为0.5mm,焊盘与焊盘、焊盘与过孔或过孔与过孔,最小间距设为0.5mm,可避免在焊接操作过程中出现“桥接”现象。,这样大多数制板厂都能够很轻松满足生产要求,并可以把成品率控制得非常高,亦可实现合理的布线密度及有一个较经济的成本。 最小线间距只适合信号控制电路和电压低于63V的低压电路,当线间电压大于该值时一般可按照500V/1mm经验值取线间距。

相关主题