搜档网
当前位置:搜档网 › Gamma分布与指数分布

Gamma分布与指数分布

Gamma分布与指数分布
Gamma分布与指数分布

Gamma分布与指数分布

"Gamma分布gamma distribution; form of gamma distribution;" 在学术文献中的解释

1、在地震序列的有序性、地震发生率的齐次性、计数特征具有独立增量和平稳增量情况下,可以导出地震发生i次时间的概率密度为Gamma密度函数(亦称为Gamma分布)

Γ(x)称为伽马函数,它是用一个积分式定义的,不是初等函数。伽马函数有性质:Γ(x+1)=xΓ(x),Γ(0)=1,Γ(1/2)=√π,对正整数n,有Γ(n+1)=n!

伽马分布里面Γ(α,β)(分布函数已经了解)。α,β个指代何种意义的参数?比如在化工里面有这样一个问题,说反应器管道的长度L服从Γ(α,β)分布,那么α,β是和管道形状和尺度相关的参数。α,β是两个分布调整参量,该分布

的期望=C+(α/β),也就是说α/β调整期望;分布的方差=α/β^2,由此并不需要单独定义二者,应该共同对分布起作用!

伽马函数Γ(z)的定义域是,C-{-n,n=0,1,2,...},其中C为复数域,

Re(z)>0时,常见的积分是收敛,也就是说Γ(z)可用常见的积分定义。

如1种常见的积分:Γ(z)=∫{0

先把gamma分布的概率密度函数写一下:

f(x)=入*[(入x)^(a-1)]*[e^(-入x)]/g(a)

其中:g(a)=∫{0到无穷} [x^(a-1)]*[e^(-x)]dx

均值是a/入

方差是a/(入^2)

指数分布

如果随机变量X的概率密度为

公式

P(X≥0)=λ乘以(e的-λX次方);p(x<0)=0

则称X遵从指数分布(参数为λ)。

在概率论和统计学中,指数分布(Exponential distribution)是一种连续概率分布。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。

许多电子产品的寿命分布一般服从指数分布。有的系统的寿命分布也可用指数分布来近似。它在可靠性研究中是最常用的一种分布形式。指数分布是伽玛分布和威布尔分布的特殊情况,产品的失效是偶然失效时,其寿命服从指数分布。

指数分布可以看作当威布尔分布中的形状系数等于1的特殊分布,指数分布的失效率是与时间t无关的常数,所以分布函数简单。

分布应用

在电子元器件的可靠性研究中,指数分布应用广泛,在日本的工业标准和美国军用标准中,半导体器件的抽验方案都是采用指数分布。此外,指数分布还用来描述大型复杂系统(如计算机)的故障间隔时间的失效分布。但是,由于指数分布具有缺乏“记忆”的特性.因而限制了它在机械可靠性研究中的应用,所谓缺乏“记忆”,是指某种产品或零件经过一段时间t0的工作后,仍然如同新的产品一样,不影响以后的工作寿命值,或者说,经过一段时间t0的工作之后,该产品的寿命分布与原来还未工作时的寿命分布相同,显然,指数分布的这种特性,与机械零件的疲劳、磨损、腐蚀、蠕变等损伤过程的实际情况是完全矛盾的,它违背了产品损伤累积和老化这一过程。所以,指数分布不能作为机械零件功能参数的分布形式。

指数分布虽然不能作为机械零件功能参数的分布规律,但是,它可以近似地作为高可靠性的复杂部件、机器或系统的失效分布模型,特别是在部件或机器的整机试验中得到广泛的应用。

指数分布比幂分布趋近0的速度慢很多,所以有一条很长的尾巴。指数分布很多时候被认为是长尾分布。互联网网页链接的出度入度符合指数分布指数分布的参数为a,则指数分布的期望为1/a,方差为(1/a)的平方。

概率论中几种具有可加性的分布及其关系

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1 几种常见的具有可加性的分布 (1) 1.1 二项分布 (2) 1.2 泊松分布(Possion分布) (3) 1.3正态分布 (4) 1.4 伽玛分布 (6) 1.5 柯西分布 (7) 1.6 卡方分布 (7) 2 具有可加性的概率分布间的关系 (8) 2.1 二项分布的泊松近似 (8) 2.2 二项分布的正态近似 (9) 2.3 正态分布与泊松分布间的关系 (10) 2.4 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布的关系 (11) 3 小结 (12) 参考文献 (12) 致谢 (13)

概率论中几种具有可加性的分布及其关系 摘要概率论与数理统计中概率分布的可加性是一个十分重要的内容.所谓分布的可加性指的是同一类分布的独立随机变量和的分布仍属于此类分布.结合其特点,这里给出了概率论中几种具有可加性的分布:二项分布,泊松分布,正态分布,柯西分布,卡方分布以及伽玛分布.文章讨论了各类分布的性质及其可加性的证明,这里给出了证明分布可加性的两种方法,即利用卷积公式和随机变量的特征函数.除此之外,文章就可加性分布之间的各种关系,如二项分布的泊松近似,棣莫佛-拉普拉斯中心极限定理等,进行了不同层次的讨论. 关键词概率分布可加性相互独立特征函数 Several Kinds of Probability Dstribution and its Relationship with Additive Abstract Probability and mathematical statistics in the probability distribution of additivity is a very important content.The distribution of the so-called additivity refers to the distribution of the same kind of independent random variables and distribution are still belong to this kind of https://www.sodocs.net/doc/e16863398.html,bined with its characteristics, here given several has additivity distribution in probability theory: the binomial distribution, poisson distribution and normal distribution and cauchy distribution, chi-square distribution and gamma distribution.Article discusses the nature of all kinds of distribution and its proof of additivity, additive of proof distribution are also given two methods, namely using convolution formula and characteristic function of a random variable. In addition, this paper the relationships between the additive property distribution, such as the binomial distribution of poisson approximation, Di mo - Laplace's central limit theorem, and so on, has carried on the different levels of discussion. Key Words probability distribution additivity property mutual independence characteristic function 引言概率论与数理统计是研究大量随机现象的统计规律性的学科,在概率论与数理统计中,有时候我们需要求一些随机变量的和的分布,在这些情形中,有一种求和类型比较特殊,即有限个相互独立且同分布的随机变量的和的分布类型不变,这一求和过程称为概率分布的“可加性”.概率分布中随机变量的可加性是一个相当重要的概念,本文给出了概率论中常见的六种具有可加性的分布,包括二项分布,泊松分布,正态分布,伽玛分布,柯西分布和卡方分布.文章最后讨论了几项分布之间的关系,如二项分布的泊松近似,正态近似等等. 1 几种常见的具有可加性的分布 在讨论概率分布的可加性之前,我们先来看一下卷积公式和随机变量的特征函数,首先来看卷积公式[1]:

标准正态分布的密度函数样本

幻灯片1 正态分布 第二章 第七节 一、标准正态分布的密度函数 二、标准正态分布的概率计算 三、一般正态分布的密度函数 四、正态分布的概率计算幻灯片2 正态分布的重要性正态分布是概率论中最重要的分布, 这能够由 以下情形加以说明: ⑴ 正态分布是自然界及工程技术中最常见的分布之一, 大量的随机现象都是服从或近似服从正态分布的.能够证明, 如果一个随机指标受到诸多因素的影响, 但其中任何一个因素都不起决定性作用, 则该随机指标一定服从或近似服从正态分布. 这些性质是其它 ⑵ 正态分布有许多良好的性质, 许多分布所不具备的. ⑶ 正态分布能够作为许多分布的近似分布.幻灯片3 -标准正态分布下面我们介绍一种最重要的正态分布 一、标准正态分布的密度函数若连续型随机变量X 的密度函数为定义 则称X 服从标准正态分布,

记为标准正态分布是一种特别重要的它的密度函数经常被使用, 分布。 幻灯片4 密度函数的验证 则有 ( 2) 根据反常积分的运算有能够推出 幻灯片5 标准正态分布的密度函数的性质若随机变量 , X 的密度函数为 则密度函数的性质为: 的图像称为标准正态( 高斯) 曲线幻灯片6 随机变量 由于 由图像可知, 阴影面积为概率值。对同一长度的区间 , 若这区间越靠近 其对应的曲边梯形面积越大。标准正态分布的分布规律时”中间多, 两头少” . 幻灯片7 二、标准正态分布的概率计算 1、分布函数分布函数为幻灯片8 2、标准正态分布表书末附有标准正态分布函数数值表, 有了它, 能够解决标准正态分布的概率计算.表中给的是x > 0时,①(x)的值. 幻灯片9 如果由公式得令则幻灯片10

怎样理解分布函数

怎样理解分布函数 概率论中一个非常重要的函数就是分布函数,知道了随机变量的 分布函数,就知道了它的概率分布,也就可以计算概率了。 一、理解好分布函数的定义: F(x)=P(X≤x), 所以分布函数在任意一点x的值,表示随机变量落在x点左边(X≤x)的概率。它的定义域是(-∞,+∞),值域是[0,1]. 二、掌握好分布函数的性质: (1)0≤F(x)≤1; (2)F(+∞)=1,F(-∞)=0; 可以利用这条性质确定分布函数中的参数,例如: 设随机变量X的分布函数为:F(x)=A+Barctanx,求常数A与B. 就应利用本性质计算出A=1/2,B=1/π. (3)单调不减; (4)右连续性。 三、会利用分布函数求概率 在利用分布函数求概率时,以下公式经常利用。

(1)P(a

数学概率多种分布的可加性原理

数学概率多种分布的可加性 1、0-1分布 作为离散变量,0-1分布的变量取值范围是0,1,两个0-1分布相加后取值范围变为0、1、2,显然与原来不一样,所以不满足可加性。 2、二项分布b (n ,p ) 设()~,X b n p ,()~,Y b m p ,且X ,Y 相互独立,令Z=X+Y 。由卷积公式, ()0()()k i P Z k P X i P Y k i =====-∑。因为可能性的缘故,i<=n ,k-i<=m ,因此 max{0,},min{,}a k m b n k =-=。则 ()()()(1) b b k m n k i m n k i i a i a P Z k P X i P Y k i p p C C +--======-=-∑∑,b i m k n k i m n i a C C C -+==∑Q , ()(1) k k m n k m n P Z k C p p +-+∴==-。因此,二项分布有可加性。 3、 负二项分布 设X 、Y 为满足系数为m 、n 的负二项分布且独立,令Z=X+Y 。有卷积公式 ()0()()k i P Z k P X i P Y k i =====-∑,由于可能性,m<=i<=k-n ,则 ()1111()()(1) b k n k k m n m n i k i i a i m P Z k P X i P Y k i p p C C --------======-=-∑∑, 111111k n m n m n i k i k i m C C C ---+-----==∑Q ,()11 (1)m n k k m n k P Z k C p p +----∴==-。因此,负二项分布有可加性。 4、几何分布 变量的取值范围相加后不再是1、2、3……而是2、3……,所以不再是几何分布,没有可加性。 5、均匀分布 设X ,Y 满足均匀分布X 对应a1、a2,Y 对应b1、b2,且相互独立。令Z=X+Y ,则a1+a2<=z<=b1+b2.卷积公式 ()()()Z X Y P z P z y P y dy +∞ -∞ = -?,1 2 2 1 max{,},min(,)a z b a b b z a =-=- 则1122()()()()() Z X Y b a P z P z y P y dy b a b a +∞ -∞ -= -= --? 。因此,均匀分布没有可加性。

标准正态分布的密度函数

正态分布 第二章 第七节 一、标准正态分布的密度函数 二、标准正态分布的概率计算 三、一般正态分布的密度函数 四、正态分布的概率计算 幻灯片2 正态分布的重要性正态分布是概率论中最重要的分布, 这可以由 以下情形加以说明: ⑴正态分布是自然界及工程技术中最常见的分布 之一, 大量的随机现象都是服从或近似服从正态分布的. 可以证明, 如果一个随机指标受到诸多因素的影响, 但其中任何一个因素都不起决定性作用, 则该随机指标 一定服从或近似服从正态分布. 这些性质是其它 ⑵正态分布有许多良好的性质, 许多分布所不具备的. ⑶正态分布可以作为许多分布的近似分布. 幻灯片3 -标准正态分布 下面我们介绍一种最重要的正态分布 一、标准正态分布的密度函数 若连续型随机变量X的密度函数为 定义 则称X服从标准正态分布, 记为 标准正态分布是一种特别重要的 它的密度函数经常被使用, 分布。 幻灯片4 密度函数的验证 则有 (2)根据反常积分的运算有 可以推出 幻灯片5 标准正态分布的密度函数的性质

,X的密度函数为 则密度函数的性质为: 的图像称为标准正态(高斯)曲线。 幻灯片6 随机变量 由于 由图像可知,阴影面积为概率值。 对同一长度的区间 ,若这区间越靠近 其对应的曲边梯形面积越大。 标准正态分布的分布规律时“中间多,两头少”. 幻灯片7 二、标准正态分布的概率计算 1、分布函数 分布函数为 幻灯片8 2、标准正态分布表 书末附有标准正态分布函数数值表,有了它,可以解决标准正态分布的概率计算. 表中给的是x > 0时, Φ(x)的值. 幻灯片9 如果 由公式得 令 则 幻灯片10 例1 解 幻灯片11 由标准正态分布的查表计算可以求得, 当X~N(0,1)时, 这说明,X 的取值几乎全部集中在[-3,3]区间内,超出这个范围的可能性仅占不到0.3%. 幻灯片12 三、一般正态分布的密度函数 如果连续型随机变量X的密度函数为 (其中 为参数) 的正态分布,记为 则随机变量X服从参数为 所确定的曲线叫 作正态(高斯)曲线. 幻灯片13

16种常见概率分布概率密度函数、意义及其应用

目录 1. 均匀分布 (1) 2. 正态分布(高斯分布) (2) 3. 指数分布 (2) 4. Beta分布(:分布) (2) 5. Gamm 分布 (3) 6. 倒Gamm分布 (4) 7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8. Pareto 分布 (6) 9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) 2 10. 分布(卡方分布) (7) 8 11. t分布................................................ 9 12. F分布 ............................................... 10 13. 二项分布............................................ 10 14. 泊松分布(Poisson 分布)............................. 11 15. 对数正态分布........................................

1. 均匀分布 均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。

2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作 X~N (」f 2)。正态分布为方差已知的正态分布 N (*2)的参数」的共轭先验分布。 1 空 f (x ): —— e 2- J2 兀 o' E(X), Var(X) _ c 2 3. 指数分布 指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。其 中,.0为尺度参数。指数分布的无记忆性: Plx s t|X = P{X t}。 f (X )二 y o i E(X) 一 4. Beta 分布(一:分布) f (X )二 E(X) Var(X)= (b-a)2 12 Var(X)二 1 ~2

16种常见概率分布概率密度函数、意义及其应用

目录 1. 均匀分布 ...................................................................................................... 1 2. 正态分布(高斯分布) ........................................................................... 2 3. 指数分布 ...................................................................................................... 2 4. Beta 分布(β分布) .............................................................................. 2 5. Gamma 分布 .............................................................................................. 3 6. 倒Gamma 分布 ......................................................................................... 4 7. 威布尔分布(Weibull 分布、韦伯分布、韦布尔分布) ..................... 5 8. Pareto 分布 ................................................................................................. 6 9. Cauchy 分布(柯西分布、柯西-洛伦兹分布) (7) 10. 2χ分布(卡方分布) (7) 11. t 分布 ......................................................................................................... 8 12. F 分布 ........................................................................................................ 9 13. 二项分布 ................................................................................................ 10 14. 泊松分布(Poisson 分布) .............................................................. 10 15. 对数正态分布 ....................................................................................... 11 1. 均匀分布 均匀分布~(,)X U a b 是无信息的,可作为无信息变量的先验分布。 1 ()f x b a =-

正态分布概率公式(部分)

Generated by Foxit PDF Creator ? Foxit Software https://www.sodocs.net/doc/e16863398.html, For evaluation only.
图 62正态分布概率密度函数的曲线 正态曲线可用方程式表示。 n 当 →∞时,可由二项分布概率函数方程推导出正态 分布曲线的方程:
fx= (61 ) () .6
式中: x—所研究的变数; fx —某一定值 x出现的函数值,一般称为概率 () 密度函数 (由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某 一区间的概率, 不能计算变量取某一值, 即某一点时的概率, 所以用 “概率密度” 一词以与概率相区分),相当于曲线 x值的纵轴高度; p—常数,等于 31 .4 19……; e— 常数,等于 2788……; μ 为总体参数,是所研究总体 5 .12 的平均数, 不同的正态总体具有不同的 μ , 但对某一定总体的 μ 是一个常数; δ 也为总体参数, 表示所研究总体的标准差, 不同的正态总体具有不同的 δ , 但对某一定总体的 δ 是一个常数。 上述公式表示随机变数 x的分布叫作正态分布, 记作 N μ ,δ2 ), “具 ( 读作 2 平均数为 μ,方差为 δ 的正态分布”。正态分布概率密度函数的曲线叫正态 曲线,形状见图 62。 (二)正态分布的特性
1、正态分布曲线是以 x μ 为对称轴,向左右两侧作对称分布。因 =

数值无论正负, 只要其绝对值相等, 代入公式 61 ) ( .6 所得的 fx 是相等的, () 即在平均数 μ 的左方或右方,只要距离相等,其 fx 就相等,因此其分布是 () 对称的。在正态分布下,算术平均数、中位数、众数三者合一位于 μ 点上。

第二章 随机变量及其概率分布

第二章 随机变量及其概率分布 教学目的与要求 1. 熟练掌握一维离散型随机变量及其分布的概念,会求一维离散型随机变量的分布列; 2. 熟练掌握一维随机变量分布函数的概念与性质; 3. 熟悉一维离散型随机变量的分布函数与分布列的关系; 3. 理解一维连续型随机变量分布函数与分布密度的概念及其关系; 4. 熟记常见的几种分布的表达形式. 6. 熟悉随机变量函数的分布函数与分布密度的计算公式. 教学重点 一维离散型、连续型随机变量及其分布 教学难点 随机变量函数的分布 教学方法 讲解法 教学时间安排 第11-12学时 第一节 随机变量 第四节 随机变量的分布函数 第13-16学时 第二节 离散型随机变量 第三节 连续型随机变量 第17-18学时 第五节 随机变量函数的分布 习题辅导 教学内容 第一节 随机变量 一、随机变量 在上一章所讲的有些随机试验的样本空间中基本事件是用数值描述的,这就提示我们,无论什么随机试验,如果用一个变量的不同取值来描述它的全部可能结果,样本空间的表达及其相应的概率就显得更明了、更简单.事实上,这种想法是可以的,为此,引入一个新概念. 定义2.1 设E 维随机试验,()ωΩ=为其样本空间,若对任意的ω∈Ω,有唯一的实数与之对应,且对{},x R x ξ?∈≤为事件,则称()ξω为随机变量. 这样,事件可通过随机变量的取值来表示,随机变量,(),(),b a b ξξξ≤<≤L 等都表

示为事件,其中,a b 表示任意实数.即用随机变量的各种取值状态和取值范围来表示随机事件. 二、分布函数的定义与性质 定义2.2 定义在样本空间Ω上,取值于实数域的函数()ξω,称为是样本空间Ω上的(实值)随机变量,并称 ()(()), (,)F x P x x ξω=≤∈-∞∞ 是随机变量()ξω的概率分布函数.简称为分布函数. 分布函数的性质: (1)单调性 若12,x x <则12()()F x F x ≤; (2)()lim ()0x F F x →-∞ -∞== ()lim ()1x F F x →+∞ +∞== (3)右连续性 (0)()F x F x += 反过来,任一满足这三个性质的函数,一定可以作为某个随机变量的分布函数.因此,满足这三个性质的函数通常都称为分布函数. 由分布函数还可以下列事件的概率: {()}1(){()}(0) {()}1(0){()}()(0) P x F x P x F x p x F x P x F x F x ξωξωξωξω>=-<=-≥=--==-- 由此可见,形如12121212{()},{()},{()},{()}x x x x x x x x ξωξωξωξω≤≤<<<≤≤<这些事件以及它们经过有限次或可列次并、交、差以后的概率,都可以由()F x 算出来,所以()F x 全面地描述了随机变量()ξω的统计规律. 第二节 离散型随机变量 一、离散型随机变量的概念及其分布 定义 2.2 定义在样本空间Ω上,取之于实数域R ,且只取有限个或可列个值的变量 ()ξξω=,称作是一维(实值)离散型随机变量,简称为离散型随机变量.称

概率论中几种具有可加性的分布与关系

. 目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1 几种常见的具有可加性的分布 (1) 1.1 二项分布 (2) 1.2 泊松分布(Possion分布) (3) 1.3 正态分布 (4) 1.4 伽玛分布 (6) 1.5 柯西分布 (7) 1.6 卡方分布 (7) 2 具有可加性的概率分布间的关系 (8) 2.1 二项分布的泊松近似 (8) 2.2 二项分布的正态近似 (9) 2.3 正态分布与泊松分布间的关系 (10) 2.4 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布的关系 (11) 3 小结 (12) 参考文献 (12) 致 (13)

概率论中几种具有可加性的分布及其关系 概率论中几种具有可加性的分布及其关系 摘要 概率论与数理统计中概率分布的可加性是一个十分重要的容.所谓分布的可加性指的是同一类分布的独立随机变量和的分布仍属于此类分布.结合其特点,这里给出了概率论中几种具有可加性的分布:二项分布,泊松分布,正态分布,柯西分布,卡方分布以及伽玛分布.文章讨论了各类分布的性质及其可加性的证明,这里给出了证明分布可加性的两种方法,即利用卷积公式和随机变量的特征函数.除此之外,文章就可加性分布之间的各种关系,如二项分布的泊松近似,棣莫佛-拉普拉斯中心极限定理等,进行了不同层次的讨论. 关键词 概率分布 可加性 相互独立 特征函数 Several Kinds of Probability Dstribution and its Relationship with Additive Abstract Probability and mathematical statistics in the probability distribution of additivity is a very important content.The distribution of the so-called additivity refers to the distribution of the same kind of independent random variables and distribution are still belong to this kind of https://www.sodocs.net/doc/e16863398.html,bined with its characteristics, here given several has additivity distribution in probability theory: the binomial distribution, poisson distribution and normal distribution and cauchy distribution, chi-square distribution and gamma distribution.Article discusses the nature of all kinds of distribution and its proof of additivity, additive of proof distribution are also given two methods, namely using convolution formula and characteristic function of a random variable. In addition, this paper the relationships between the additive property distribution, such as the binomial distribution of poisson approximation, Di mo - Laplace's central limit theorem, and so on, has carried on the different levels of discussion. Key Words probability distribution additivity property mutual independence characteristic function 引言 概率论与数理统计是研究大量随机现象的统计规律性的学科,在概率论与数理统计中,有时候我们需要求一些随机变量的和的分布,在这些情形中,有一种求和类型比较特殊,即有限个相互独立且同分布的随机变量的和的分布类型不变,这一求和过程称为概率分布的“可加性”.概率分布中随机变量的可加性是一个相当重要的概念,本文给出了概率论中常见的六种具有可加性的分布,包括二项分布,泊松分布,正态分布,伽玛分布,柯西分布和卡方分布.文章最后讨论了几项分布之间的关系,如二项分布的泊松近似,正态近似等等. 1 几种常见的具有可加性的分布 在讨论概率分布的可加性之前,我们先来看一下卷积公式和随机变量的特征函数,首先来看卷积公式[1]: ①离散场合的卷积公式 设离散型随机变量ξζ,彼此独立,且它们的分布列分别是n k a k P k ,1,0,)(???===ζ和.,,1,0,)(n k b k P k ???===ξ则ξζ?+=的概率分布列可表示

正态分布概率公式(部分)

图 6-2 正态分布概率密度函数的曲线 正态曲线可用方程式表示。当n→∞时,可由二项分布概率函数方程推导出正态分布曲线的方程: f(x)= (6.16 ) 式中: x —所研究的变数; f(x) —某一定值 x 出现的函数值,一般称为概率密度函数(由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某一区间的概率,不能计算变量取某一值,即某一点时的概率,所以用“概率密度”一词以与概率相区分),相当于曲线 x 值的纵轴高度; p —常数,等于 3.14 159 ……; e —常数,等于 2.71828 ……;μ为总体参数,是所研究总体的平均数,不同的正态总体具有不同的μ,但对某一定总体的μ是一个常数;δ也为总体参数,表示所研究总体的标准差,不同的正态总体具有不同的δ,但对某一定总体的δ是一个常数。 上述公式表示随机变数 x 的分布叫作正态分布,记作 N( μ , δ2 ) ,读作“具平均数为μ,方差为δ 2 的正态分布”。正态分布概率密度函数的曲线叫正态曲线,形状见图 6-2 。 (二)正态分布的特性 1 、正态分布曲线是以 x= μ为对称轴,向左右两侧作对称分布。因的数值无论正负,只要其绝对值相等,代入公式( 6.16 )所得的 f(x) 是相等的,即在平均数μ的左方或右方,只要距离相等,其 f(x) 就相等,因此其分布是对称的。在正态分布下,算术平均数、中位数、众数三者合一位于μ点上。

2 、正态分布曲线有一个高峰。随机变数 x 的取值范围为( - ∞,+ ∞ ),在( - ∞ ,μ)正态曲线随 x 的增大而上升,;当 x= μ时, f(x) 最大;在(μ,+ ∞ )曲线随 x 的增大而下降。 3 、正态曲线在︱x-μ︱=1 δ处有拐点。曲线向左右两侧伸展,当x →± ∞ 时,f(x) →0 ,但 f(x) 值恒不等于零,曲线是以 x 轴为渐进线,所以曲线全距从 -∞到+ ∞。 4 、正态曲线是由μ和δ两个参数来确定的,其中μ确定曲线在 x 轴上的位置 [ 图 6-3] ,δ确定它的变异程度 [ 图 6-4] 。μ和δ不同时,就会有不同的曲线位置和变异程度。所以,正态分布曲线不只是一条曲线,而是一系列曲线。任何一条特定的正态曲线只有在其μ和δ确定以后才能确定。 5 、正态分布曲线是二项分布的极限曲线,二项分布的总概率等于 1 ,正态分布与 x 轴之间的总概率(所研究总体的全部变量出现的概率总和)或总面积也应该是等于 1 。而变量 x 出现在任两个定值 x1到x2(x1≠x2)之间的概率,等于这两个定值之间的面积占总面积的成数或百分比。正态曲线的任何两个定值间的概率或面积,完全由曲线的μ和δ确定。常用的理论面积或概率如下: 区间μ ± 1 δ面积或概率 =0.6826 μ ± 2 δ =0.9545 μ ± 3 δ=0.9973 μ± 1.960δ=0.9500 μ ±2.576 δ =0.9900

16种常见概率分布概率密度函数、意义及其应用

目录 1.均匀分布 (1) 2.正态分布(高斯分布) (2) 3.指数分布 (2) 4.Beta分布(β分布) (2) 5.Gamma分布 (3) 6.倒Gamma分布 (4) 7.威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8.Pareto分布 (6) 9.Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) χ分布(卡方分布) (7) 10.2 11.t分布 (8) 12.F分布 (9) 13.二项分布 (10) 14.泊松分布(Poisson分布) (10) 15.对数正态分布 (11) 1.均匀分布 均匀分布~(,) X U a b是无信息的,可作为无信息变量的先验分布。

1()f x b a = - ()2 a b E X += 2 ()()12 b a Var X -= 2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量很可能服从正态分布,记作2~(,)X N μσ。正态分布为方差已知的正态分布 2(,)N μσ的参数μ的共轭先验分布。 22 ()2()x f x μσ-- = ()E X μ= 2()Var X σ= 3. 指数分布 指数分布~()X Exp λ是指要等到一个随机事件发生,需要经历多久时间。其中0λ>为尺度参数。指数分布的无记忆性:{}|{}P X s t X s P X t >+>=>。 (),0 x f x e x λλ-=> 1 ()E X λ = 2 1 ()Var X λ = 4. Beta 分布(β分布)

Beta 分布记为~(,)X Be a b ,其中Beta(1,1)等于均匀分布,其概率密度函数可凸也可凹。如果二项分布(,)B n p 中的参数p 的先验分布取(,)Beta a b ,实验数据(事件A 发生y 次,非事件A 发生n-y 次),则p 的后验分布(,)Beta a y b n y ++-,即Beta 分布为二项分布(,)B n p 的参数p 的共轭先验分布。 10 ()x t x t e dt ∞--Γ=? 1 1()()(1)()() a b a b f x x x a b --Γ+= -ΓΓ ()a E X a b = + 2 ()()(1) ab Var X a b a b = +++ 5. Gamma 分布 Gamma 分布即为多个独立且相同分布的指数分布变量的和的分布,解决的

正态分布的数学期望与方差

正态分布的数学期望与方差 正态分布: 密度函数为:分布函数为 的分布称为正态分布,记为N(a, σ2). 密度函数为: 或者 称为n元正态分布。其中B是n阶正定对称矩阵,a是任意实值行向量。 称N(0,1)的正态分布为标准正态分布。 (1)验证是概率函数(正值且积分为1) (2)基本性质: (3)二元正态分布: 其中, 二元正态分布的边际分布仍是正态分布: 二元正态分布的条件分布仍是正态分布:

即(其均值是x的线性函数) 其中r可证明是二元正态分布的相关系数。 (4)矩,对标准正态随机变量,有 (5)正态分布的特征函数 多元正态分布 (1)验证其符合概率函数要求(应用B为正定矩阵,L为非奇异阵,然后进行向量线性变换) (2)n元正态分布结论 a) 其特征函数为: b) 的任一子向量,m≤n 也服从正态分布,分布为其中,为保留B 的第,…行及列所得的m阶矩阵。 表明:多元正态分布的边际分布还是正态分布 c) a,B分别是随机向量的数学期望及协方差矩阵,即 表明:n元正态分布由它的前面二阶矩完全确定 d) 相互独立的充要条件是它们两两不相关 e) 若,为的子向量,其中是,的协方差矩阵,则是,相应分量的协方差构成的相互协方差矩阵。则相互独立的充要条件为=0 f) 服从n元正态分布N(a,b)的充要条件是它的任何一个线性组合服

从一元正态分布 表明:可以通过一元分布来研究多元正态分布 g) 服从n元正态分布N(a,b),C为任意的m×n阶矩阵,则服从m元正态分布 表明:正态变量在线性变换下还是正态变量,这个性质简称正态变量的线性变换不变性 推论:服从n元正态分布N(a,b),则存在一个正交变化U,使得是一个具有独立正态分布分量的随机向量,他的数学期望为Ua,而他的方差分量是B的特征值。 条件分布 若服从n元正态分布N(a,b),,则在给定下,的分布还是正态分布,其条件数学期望: (称为关于的回归) 其条件方差为: (与无关)

Excel中的正态分布的密度函数

Excel中的正态分布的密度函数 关于在Excel中的正态分布的密度函数NORMDIST(x,μ,σ,逻辑值)中积累逻辑值取“FALSE”时的图形,在《Excel:正态分布的面积图(积累逻辑值为FALSE)》(地址见【附录】)中简单作了尝试。现为了绘制正态累计分布逻辑值要取“TRUE”。 在Excel中的正态分布的密度函数NORMDIST的语法表达式是: NORMDIST(值,平均数,标准差,积累与否),其中: x ——“值”,是要求分布的随机变量数值; μ——“平均数”,是分布的算数平均数; σ——“标准差”,是分布的标准差; 逻辑值——“积累与否”,是决定函数的逻辑值,其中: ●如果“积累与否”的逻辑值取“TRUE”(真),则NORMDIST 会返回累计分布函数。如果为了绘制正态累计分布,逻辑值就要取 “TRUE”。 ●如果“积累与否”的逻辑值取“FALSE”(伪),则NORMDIST 会返回正态分布函数的高度。 为了制作正态累计分布面积图,先准备下列数据表格(实际使用的表格中,单元格中都是数据,以下为了说明具体公式,在“工具”-“选项”-“视图”中勾选了“公式”,以便各单元格的具体参数都显示出来,以供参考。实际使用时还应该将这个勾选取消)。下列表格中各列NORMDIST函数中的逻辑值都取“TRUE”: 表1 在A列,准备按自己需要设置自变量数据x,本例从0——100,(A2——A102)。 在F列:B2=NORMDIST(A2,50,5, TRUE),μ=50,σ=5,一直拖到F102。

在G列:G2=NORMDIST(A2,50,10, TRUE),μ=50,σ=10,一直拖到G102。 在H列:H2=NORMDIST(A2,50,15, TRUE),μ=50,σ=15,一直拖到H102。 在I列:I2=NORMDIST(A2,70,8, TRUE),μ=70,σ=8,一直拖到I102。 先选取I列,选取I2:I102,作二维面积图,如图1所示: 图1 再选取H列,选取H2:H102,作二维面积图,如图2所示:

正态分布的概率密度函数的推导

正态分布的概率密度函数的推导 An interesting question was posed in a Statistics assignment which was to show that the standard normal distribution was valid - ie the integral from negative infinity to infinity equated to one and in doing so showed the derivation of the part of the normal pdf. A friend of mine and I decided to try to derive the normal pdf and the thinking went along the lines of the central limit theorem which states that the mean of any probability distribution becomes normal as the number of trials increases. The derivation of this is well known.but we asked ourselves how the normal distribution was first achieved.There is another 'normal' derivation which is the binomial approximation and it is through this direction that we wondered how to derive the normal distribution from the binomial as n gets large. So the general approach we will take is to take a binomial distribution, then increase the number of samples n. (提出一个有趣的问题是在统计分配,这是表明,标准正态分布是有效的- 即从负无穷到正无穷的积分等同于一个,并在这样做表明推导了部分正常的PDF 。 我,我的一个朋友决定尝试推导出正常的PDF和沿中心极限定理指出,任何概率分布的均值作为试验增加的正常思维。 这个推导是众所周知的。但我们问自己如何正态分布首次实现。有另一种“正常”的推导,这是二项式近似和它是通过这个方向,我们想知道如何从二项式正态分布为n变大。 因此,我们将采取的一般方法是一个二项分布,再增加样本N.的数量)

如何理解概率分布函数和概率密度函数

如何理解概率分布函数和概率密度函数 大学的时候,我的《概率论和数理统计》这门课一共挂过3次,而且我记得最后一次考过的时候刚刚及格,只有60分。你可以想象我的《概率论》这门课学的是有多差了。后来,我工作以后,在学习数据分析技能时,又重新把《概率论》这本书学了一遍。原来之前一直没学好这门课的很重要一个原因就是,这门课涉及很多基础的概念,而我当初就是对这些概念非常不理解。 今天我就讲讲应该如何理解概率分布函数和概率密度函数的问题。是不是乍一看特别像,容易迷糊。如果你感到迷糊,恭喜你找到我当年的感觉了。 先从离散型随机变量和连续性随机变量说起 对于如何分辨离散型随机变量和连续性随机变量,我这里先给大家举几个例子: 1、一批电子元件的次品数目。 2、同样是一批电子元件,他们的寿命情况。 在第一个例子中,电子元件的次数是一个在现实中可以区分的值,我们用肉眼就能看出,这一堆元件里,次品的个数。但是在第二个例子中,这个寿命它是一个你无法用肉眼数的过来的数字,它需要你用笔记下来,变成一个数字你才能感受它。在这两个例子中,第一例子涉及的随机变量就是离散型随机变量,第二个涉及的变量就是连续型随机变量。 在贾俊平老师的《统计学》教材中,给出了这样的区分: 如果随机变量的值可以都可以逐个列举出来,则为离散型随机变量。如果随机变量X 的取值无法逐个列举则为连续型变量。 我始终觉得,贾老师这么说,对于我们这些脑子笨又爱钻牛角尖的学生来说,还是不太好理解。所以我就告诉大家一个不一定非常严谨,但是绝对好区分的办法。 只要是能够用我们日常使用的量词可以度量的取值,比如次数,个数,块数等都是离散型随机变量。只要无法用这些量词度量,且取值可以取到小数点2位,3位甚至无限多位的时候,那么这个变量就是连续型随机变量! 对了,如果你连随机变量这个概念还不理解的话,我送你一句贾俊平老师的话: 如果微积分是研究变量的数学,那么概率论与数理统计是研究随机变量的数学。 再来理解离散型随机变量的概率分布,概率函数和分布函数 在理解概率分布函数和概率密度函数之前,我们先来看看概率分布和概率函数是咋回事。一下子又冒出来两个长得差不多的概念!没事,他们长得差不多,实际代表的含义其实也差不多!

相关主题