搜档网
当前位置:搜档网 › 离心泵的汽蚀现象与安装高度

离心泵的汽蚀现象与安装高度

离心泵的汽蚀现象与安装高度
离心泵的汽蚀现象与安装高度

u12/2g≈0

当地大气压为9.81×104Pa,与泵出厂时的实验条件基本相符,所以泵的安装高度为

Hg=5.7-0-1.5=4.2 m。

(2) 输送80℃水时泵的安装高度

输送80℃水时,不能直接采用泵样本中的Hs值计算安装高度,需按下式对Hs时行换算,即 Hs1=Hs+(Ha-10.33) -(Hυ-0.24)

已知Ha=9.81×104Pa≈10mH2O,由附录查得80℃水的饱和蒸汽压为47.4kPa。

Hv=47.4×103 Pa=4.83 mH2O

Hs1=5.7+10-10.33-4.83+0.24=0.78m

将Hs1值代入式中求得安装高度

Hg=Hs1-Hf0-1=0.78-1.5=-0.72m

Hg为负值,表示泵应安装在水池液面以下,至少比液面低0.72m。

离心泵的气缚与气蚀现象

离心泵的气缚与气蚀现象 为区分离心泵的“气缚”与“汽蚀”现象,有必要先简要了解离心泵的结构和理解其工作原理。 离心泵的外观是一个蜗牛状的泉壳,里面装有与泵轴相连的叶轮及泵的进出口阀门等构成。离心泵在开泵前,泵内必须充满液体。启动电机后,电机通过轴带动叶轮高速旋转。高速旋转的叶轮带动液体转动,因叶轮的特殊结构,在离心力的作用下使液体获得很高的能量,表现为流速、压力的增大。在泵壳中崮泵壳的蜗壳形状.流速会逐渐减小,而压力会进一步增大,最终以较高的压力从泵的出口排出。同时,当叶轮中心的液体被甩出后,在叶轮中心形成一定的真空度,而液面的压强比叶轮中心处要高,液面与叶轮中心形成一定压力差。在压差的作用下,液体被吸入泵内。通俗地说离心泵的工作过程是吸进来压出去。 “气缚”现象 离心泵运转时,如果泵内没有充满液体。或者在运转中泵内漏入了空气,由于空气很轻(密度很小),产生的离心力小,在吸入口处所形成的真空度低,不足以将液体吸入泵内。这时,虽然叶轮转动,却不能输送液体,这种现象称为“气缚”。 可见“气缚”现象是由于泵内存有气体而不能吸液的现象。没有液体的吸入,当然就没有液体的排出。如果泵安装在液面以上时,在

吸入管底部必须安装一个单向底阀。目的是为了不使泵内液体漏掉,以防“气缚”产生。 对于“气缚”现象,只要赶跑泵内空气,使泵内充满液,泵就能恢复正常运行。 “汽蚀”现象 “汽蚀”现象是由于泵的安装高度过高,泵内叶轮中心附近压力过低,当压力低到等于被输送液体的饱和蒸汽压时,入口处液体将在泵内汽化,产生大量汽泡,随同液体一起进入高压区,在高压区内便被周围高压液体压碎。瞬间内周围的高压液体以极高的速度打向原汽泡所占据的空间,类似于子弹打在这些点上。使叶轮或泵壳出现麻点和小的裂缝,久而久之,叶轮或泵壳将烂成海绵状,这种现象称为“汽蚀”。 简要地说,“汽蚀”现象是由于泵的安装高度过高,叶轮中心附近压力过低.液体在泵内汽化而损坏泵体的现象。当“汽蚀”现象发生时,其特征是泵体震动并发出噪音,泵的流量、扬程也明显下降。 可见“气缚”与“汽蚀”直接导因是不同的。“气缚”是由于泵内存有空气而产生,不会严重损坏泵体。“汽蚀”是由于液体在泵内汽化而产生.会严重损坏泵体。因此在使用中,应严禁“汽蚀”现象的发生。

离心泵产生气蚀现象的原因及防止措施

离心泵因其操作简易、运行平稳、性价比高及便于维修护理而受到多数使用客户的喜爱并广泛应用于工业领域和日常生活。但凡是机械设备,在经过长时间的持续工作状态下,难免会出现设备的损坏和故障问题,离心泵的气蚀现象就是离心泵的常见故障之一。泵一旦发生汽蚀,其流量和扬程性能不仅会下降,还会表现出噪声、振动明显偏高,严重时甚至会使泵中液流中断,不能正常工作。汽蚀还会对泵的过流部件产生破坏,甚至影响管路系统。产生气蚀现象的原因有很多,例如离心泵产品质量有问题,操作人员的使用不当等。产品在出厂前会经过多道程序的质量检测,所以人为因素的影响比例更大。在工作状态下,离心泵的工作环境及操作因素的影响,占到离心泵发生气蚀现象比例的绝大部分。下面深圳恒才具体为大家介绍下气蚀产生的原因。 气蚀原因: 离心泵在工作的时候,离心泵输送的液体压力,会随着泵内液体从入口到叶轮入口下降而下降。当叶片入口附近的液体压力达到最低的时候,叶轮开始对液体做功,液体压力开始上升。当叶轮叶片入口附近的最低压力小于液体输送温度下的饱和蒸汽压力时,液体就会发生汽化的现象。同时溶解在液体内的气体也逸出,它们形成气泡。当气泡随液体流到叶道内压力较高处时,外面的液体压力高于气泡内的汽化压力,则气泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力突然增加。这样,不仅阻碍了离心泵输送的液体正常流动。而且当这些气泡在叶轮壁面附近破裂的时候,则液体就会连续不断地撞击离心泵的内壁表面。长期的撞击之下就会造成离心泵内壁的结构损坏和剥落。如果气泡内掺杂着一些化学气体例如氧气,这些气体就会借助气泡凝结时放出的热量(局部温度可达200~300℃),还会形成热电偶,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。像这种液体汽化、凝结、冲击、形成高压、高温、高频冲击

离心泵的汽蚀现象介绍

离心泵的汽蚀现象介绍 (一)、离心泵的汽蚀现象 离心泵的汽蚀现象是指被输送液体由于在输送温度下饱和蒸汽压等于或低于泵入口处(实际为叶片入口处的)的压力而部分汽化,引起泵产生噪音和震动,严重时,泵的流量、压头及效率的显著下降,显然,汽蚀现象是离心泵正常操作所不允许发生的。避免汽蚀现象发生的关键是泵的安装高度要正确,尤其是当输送温度较高的易挥发性液体时,更要注意。 (二)、离心泵的安装高度Hg 1允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度 而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为1.013×105Pa时的值,当操作条件及工作介质不同时,需进行换算。 (1) 输送清水,但操作条件与实验条件不同,可依下式换算 Hs1=Hs+(Ha-10.33) - (Hυ-0.24) (2) 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H?s 2 汽蚀余量Δh 对于油泵,计算安装高度时用汽蚀余量Δh来计算,即 用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定。若输送其它液体,亦需进行校正,详查有关书籍。 从安全角度考虑,泵的实际安装高度值应小于计算值。又,当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。 例2-3 某离心泵从样本上查得允许吸上真空高度Hs=5.7m。已知吸入管路的全部阻力为1.5mH2O,当地大气压为9.81×104Pa,液体在吸入管路中的动压头可忽略。试计算: (1) 输送20℃清水时泵的安装; (2) 改为输送80℃水时泵的安装高度。

管道离心泵的安装高度即吸程选用(精)

管道离心泵的安装高度即吸程选用 一、离心泵的关键安装技术 管道离心泵的安装技术关键在于确定水泵安装高度(即吸程)。这个高度是指水源水面到水泵叶轮中心线的垂直距离,它与允许吸上真空高度不能混为一谈,水泵产品说明书或铭牌上标示的允许吸上真空高度是指水泵进水口断面上的真空值,而且是在1标准大气压下、水温20摄氏度情况下,进行试验而测定得的。它并没有考虑吸水管道配套以后的水流状况。而水泵安装高度应该是允许吸上真空高度扣除了吸水管道损失扬程以后,所剩下的那部分数值,它要克服实际地形吸水高度。水泵安装高度不能超过计算值,否则,水泵将会抽不上水来。另外,影响计算值的大小是吸水管道的阻力损失扬程,因此,宜采用最短的管路布置,并尽量少装弯头等配件,也可考虑适当配大一些口径的水管,以减管内流速。 应当指出,管道离心泵安装地点的高程和水温不同于试验条件时,如当地海拔30 0米以上或被抽水的水温超过20摄氏度,则计算值要进行修正。即不同海拔高程处的大气压力和高于20摄氏度水温时的饱和蒸汽压力。但是,水温为20摄氏度以下时,饱和蒸汽压力可忽略不计。 从管道安装技术上,吸水管道要求有严格的密封性,不能漏气、漏水,否则将会破坏水泵进水口处的真空度,使水泵出水量减少,严重时甚至抽不上水来。因此,要认真地做好管道的接口工作,保证管道连接的施工质量。 二、离心泵的安装高度Hg计算 允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度。 而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。位应注意的是泵样本中给出的Hs值是

用清水为工作介质,操作条件为20℃及及压力为1.013×105Pa时的值,当操作条件及工作介质不同时,需进行换算。 (1) 输送清水,但操作条件与实验条件不同,可依下式换算 Hs1=Hs+(Ha-10.33) -(Hυ-0.24) (2) 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H?s 2 汽蚀余量Δh 对于油泵,计算安装高度时用汽蚀余量Δh来计算,即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。用汽蚀余量Δh由油泵样本中查取,其值也用2 0℃清水测定。若输送其它液体,亦需进行校正,详查有关书籍。 吸程=标准大气压(10.33米)-汽蚀余量-安全量(0.5米) 标准大气压能压管路真空高度10.33米。 例如:某泵必需汽蚀余量为4.0米,求吸程Δh? 解:Δh=10.33-4.0-0.5=5.83米 从安全角度考虑,泵的实际安装高度值应小于计算值。当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。 例2-3 某离心泵从样本上查得允许吸上真空高度Hs=5.7m。已知吸入管路的全部阻力为1.5mH2O,当地大气压为9.81×104Pa,液体在吸入管路中的动压头可忽略。试计算: (1) 输送20℃清水时泵的安装; (2) 改为输送80℃水时泵的安装高度。

泵的汽蚀现象分析及防止汽蚀措施

泵的汽蚀现象分析及防止汽蚀措施 一、汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、泵汽蚀基本关系式 泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为 NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHr(NPSHc)——泵开始汽蚀 NPSHa NPSHa>NPSHr(NPSHc)——泵无汽蚀 式中NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀; NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量; [NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。 三、装置汽蚀余量的计算 NPSHa=Ps/ρg+Vs/2g-Pc/ρg=Pc/ρg±hg-hc-Ps/ρg 四、防止发生汽蚀的措施 欲防止发生汽蚀必须提高NPSHa,使NPSHa>NPSHr可防止发生汽蚀的措施如下: 1.减小几何吸上高度hg(或增加几何倒灌高度); 2.减小吸入损失hc,为此可以设法增加管径,尽量减小管路长度,弯头和附件等; 3.防止长时间在大流量下运行; 4.在同样转速和流量下,采用双吸泵,因减小进口流速、泵不易发生汽蚀; 5.泵发生汽蚀时,应把流量调小或降速运行; 6.泵吸水池的情况对泵汽蚀有重要影响; 7.对于在苛刻条件下运行的泵,为避免汽蚀破坏,可使用耐汽蚀材料

离心泵汽蚀产生危害分析及防范措施

离心泵汽蚀产生危害分析及防范措施 摘要:离心泵是一种应用广泛的流体机械设备,然而在实际应用中,往往会发生汽蚀现象,对离心泵的性能和使用寿命造成威胁。本文简要分析了离心泵气蚀产生的原因及其危害,从设计、制造、使用管理等方面提出了防范离心泵气蚀的措施,从而提高了离心泵的运行效率和使用寿命。 关键词:离心泵汽蚀危害分析性能判定防范措施 离心泵是靠叶轮以一定转速旋转产生离心力将流体介质输送出去的一种流体机械。离心泵的用途十分广泛,如在石油化工、火力发电、建筑消防、给排水等领域都有着较为广泛的应用。但是,在实际应用中,离心泵经常会因操作或使用不当而使离心泵产生气蚀现象,产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。由此可见,离心泵汽蚀的危害是严重的,我们应该分析汽蚀发生的原因,进而采取相应的防范汽蚀发生的措施。 一、离心泵汽蚀的危害分析 汽蚀会影响离心泵的正常运行,引发许多严重后果。 1.损坏过流部件 由于汽蚀过程中伴随着机械点蚀和电化学腐蚀,在离心泵的过流部件如叶轮、蜗壳等的金属材料表面逐渐产生许多小麻点,继而麻点不断发展扩大呈沟槽状或蜂窝状,严重时就会形成空洞,甚至造成叶轮的断裂,如图1所示为某离心泵产生汽蚀一段时间后的照片,可以看出汽蚀造成叶片表面的金属材料产生了剥落。因此,汽蚀会损坏离心泵的过流部件,甚至影响泵的使用寿命。 图1汽蚀造成离心泵叶片材料的损坏 2.降低离心泵的性能 离心泵是通过叶轮的旋转将能量传递给介质,转化为介质的压力能,但汽蚀会对叶轮和液体之间的能量传递造成严重干扰。由于汽蚀发生,时会在介质中产生大量的气泡,使得介质的通流面积大为减少,并在局部产生旋涡,这些会破坏泵内介质的连续流动,增大流动损失,使泵的流量、扬程和效率均有所下降。由于离心泵叶轮的形状通常长且窄,汽蚀严重时,大量气泡很快就会堵塞整个流道,造成断流,使离心泵无法正常工作。从图2离心泵的性能曲线上来看,在汽蚀比较严重时,性能曲线发生陡降。 图2离心泵的性能曲线

泵的汽蚀余量和安装高度计算

一、气蚀的发生过程 液体汽化时的压力称为汽化压力(饱和蒸汽压力),液体汽化压力的大小和温度有关,温度越高,由于分子运动更剧烈,其汽化压力越大。20℃清水的汽化压力为233.8Pa,而100℃水的汽化压力为101296Pa(一个大气压)。可见,一定温度下的压力是促成液体汽化的外界因素。液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生气泡,把这种产生气泡的现象称为气蚀。 气蚀时产生的气泡,流动到高压处时,其体积减小以至破灭。这种压力上升,气泡消失在液体中的现象称为气蚀的溃灭。 为保证泵不汽蚀,泵叶轮进口处单位重量的液体所必须具有的超过汽化压力的富余能量。浅释如下: 当离心泵的吸入高度过大和液体温度较高时,以致使吸入口压强小于或等于液体饱和蒸汽压,则液体会在泵进口处沸腾汽化,在泵壳内形成一个充满蒸汽的空间,随着泵旋转,气泡进入高压区,由于压差的作用,气泡受压破裂而重新凝结,在凝结的一瞬间,质点互相撞击,产生了很高的局部压力,如果这些气泡在金属表面附近破裂而凝结,则液体质点就象无数小弹头一样,连续击打在金属表面,使金属表面产生裂纹,甚至局部产生剥落现象,使叶轮表面呈蜂窝状,同时气泡中的某些活泼气体如氧气等进入到金属表面的裂纹中,借助气泡凝结时放出的热量,使金属受到化学腐蚀作用,上述现象即为汽蚀。 汽蚀现象产生时,泵将产生噪音和振动,使泵的扬程、流量、效率的性能急剧下降,同时加速了材料的损坏,缩短了机件的使用寿命,因此,必须限制泵的吸入高度,防止液体大量汽化,以免发生汽蚀现象。 一台泵在运转中发生了气蚀,但在完全相同的条件下换上另一台泵可能就不会发生气蚀,这说明是否发生气蚀和泵本身的抗气蚀性能有关。反之,同一台泵在某一条件下(如吸上高度7米)使用发生气蚀,改变使用条件(如吸上高度5米)则不会发生气蚀,这说明是否发生气蚀还与使用条件有关。这就是泵汽蚀余量或必需气蚀余量NPSHr(又称必需的净正压头)和装置气蚀余量或有效气蚀余量NPSHa(又称有效的净正压头). 二、泵安装高度的计算: 泵之所以吸上液体,是因为叶轮旋转在叶轮进口造成真空,吸入液面的压力P0把液体压入泵的结果。即外因P0通过内因(真空)而起作用,二者缺一不可。最理想的情况是在叶轮造成真空,不计流动过程的损失,泵在标准大气压下只能吸上10.33米,实际泵的吸上高度均在10米以下。

离心泵汽蚀实验审批稿

离心泵汽蚀实验 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

离心泵汽蚀实验_________ 一、实验目的及要求: (1)通过实验了解测定离心泵汽蚀性能的基本方法; (2)观察离心泵汽蚀发生时,其扬程和流量迅速下降的现象,加深对离心泵汽蚀现象的理解。 二、实验原理: 离心泵转速和流量为定值时,泵的必需汽蚀余量NPSHr是不变的。而装置的有效汽蚀余量NPSHa可以随装置参数而变化。当NPSHa=NPSHr时离心泵开始汽蚀。 由离心泵原理可知,装置的有效汽蚀余量 NPSH a=p s ρg +v s2 2g ?p t ρg =p a ρg ?H s+v s2 2g ?p t ρg (1) 式中,p s和v s-------泵入口处液体的绝对压力和流速; P t和ρ------液体的饱和蒸汽压和密度; H s------为泵入口处的吸入真空度,H s=p a ρg ?p s ρg ; P a-------当地大气压。 由式可见,增加吸入真空度H s,可以使装置有效汽蚀余量NPSHa减小。当吸入真空度H s达到最大吸入真空度(H s)max时,NPSHa=NPSHr,离心泵发生汽蚀。 从装置吸入管能量方程中可以推导出吸入真空度: H s=p a ρg ?p A ρg +v s2 2g +H j+Δ?A?s=H A+v s2 2g +H j+Δ?A?s (米)m (2) 式中,p A------吸入液面上绝对压力; H A------吸入液面的真空度; H j ------泵的安装高度; 注:此处为负值(泵所在高程减去液面所在高程),称作是:灌注头。 Δh A-s ------吸入管路阻力损失。 从式中可知,增加吸入液面真空度H A,增大泵的安装高度H j和增大吸入管路损失Δh A-s,都可以使吸入真空度H s上升,促成离心泵汽蚀来进行汽蚀实验。 由离心泵性能可知,离心泵转速和流量不变时,扬程为定值。但当泵发生汽蚀时,扬程和流量都会急剧下降。这样,我们可以在一定流量Q下测出不同吸入真空度下的扬程H数值,根据扬程急剧下降的趋势判断汽蚀点,如图1所示,按JB1040-67规定,扬程下降1%的点为离心泵的最大吸入真空度(H s)max 值,即图上的C点。 离心泵的允许吸入真空度[H s]= (H s)max-K(米液柱)mH2O。

离心泵的安装高度

离心泵的汽蚀现象与安装高度 一、离心泵的汽蚀现象 离心泵的汽蚀现象是指被输送液体由于在输送温度下饱和蒸汽压等于或低于泵入口处(实际为叶片入口处的)的压力而部分汽化,引起泵产生噪音和震动,严重时,泵的流量、压头及效率的显著下降,显然,汽蚀现象是离心泵正常操作所不允许发生的。避免汽蚀现象发生的关键是泵的安装高度要正确,尤其是当输送温度较高的易挥发性液体时,更要注意。 二、离心泵的安装高度Hg 允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度 而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为×105Pa时的值,当操作条件及工作介质不同时,需进行换算。 (1) 输送清水,但操作条件与实验条件不同,可依下式换算 Hs1=Hs+(Ha--(Hυ- (2) 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H?s 2 汽蚀余量Δh 对于油泵,计算安装高度时用汽蚀余量Δh来计算,即 用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定。若输送其它液体,亦需进行校正,详查有关书籍。

从安全角度考虑,泵的实际安装高度值应小于计算值。又,当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。 例2-3 某离心泵从样本上查得允许吸上真空高度Hs=5.7m。已知吸入管路的全部阻力为,当地大气压为×104Pa,液体在吸入管路中的动压头可忽略。试计算: (1) 输送20℃清水时泵的安装; (2) 改为输送80℃水时泵的安装高度。 解:(1) 输送20℃清水时泵的安装高度 已知:Hs=5.7m Hf0-1=1.5m u12/2g≈0 当地大气压为×104Pa,与泵出厂时的实验条件基本相符,所以泵的安装高度为 Hg=4.2 m。 (2) 输送80℃水时泵的安装高度 输送80℃水时,不能直接采用泵样本中的Hs值计算安装高度,需按下式对Hs时行换算,即 Hs1=Hs+(Ha--(Hυ- 已知Ha=×104Pa≈10mH2O,由附录查得80℃水的饱和蒸汽压为。 Hv=×103 Pa=mH2O Hs1=+10--+=0.78m 将Hs1值代入式中求得安装高度

如何防止泵发生汽蚀现象

如何防止泵发生汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、泵汽蚀基本关系式 泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为 NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHr(NPSHc)——泵开始汽蚀 NPSHaNPSHa>NPSHr(NPSHc)——泵无汽蚀 式中NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀; NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好; NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量; [NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。 三、装置汽蚀余量的计算 NPSHa=Ps/ρg+Vs/2g-Pc/ρg=Pc/ρg±hg-hc-Ps/ρg 四、防止发生汽蚀的措施

离心泵汽蚀

离心泵汽蚀的研究现状 1.1. 汽蚀发生机理 国内外学者对汽蚀发生的机理进行了很多研究,提出了诸多观点和论述,其中最具代表性的是由柯乃普提出的“气核理论”。该理论认为经过特殊处理的“纯水”可以承受拉力,自然界中的水却只能承受很大的压力,其原因是水中存在很多含有气体或蒸汽的微小的气泡(称为核子),这些核子使液体的抗拉强度降低。当液体的压强低于汽化压强时,这些核子将迅速膨胀形成气泡,从而导致汽蚀发生。但是尺寸很小的气核,内部压强是很大的,核子内部的气体会受压而被周围的水体所吸收。所以小的核子将处于不稳定状态。由此可见,核子不可能长期存留在水中。这就得出一个很奇怪的结论:一方面,要产生汽蚀现象,就必须有核子的存在;而另一方面,核子又不可能在水中长期存在。对于这个矛盾,目前还无法正确解释,现有的汽蚀核子理论在很大程度上还带有臆想性,由核子发展成为汽蚀的过程还只是推测。但是,如果不假设气体核子的存在,就不能设想水体中在某种低的临界压强下会出现汽蚀。因此不得不假定气核具有一系列的附加特性,以保证它们能够存在于水中并处于稳定动态平衡。为此许多研究者便进行了一系列的设想。 这些设想的模式中,比较有名的是Fox和Herzfel模式和E.N.Hervery[7]模式。Fox等人提出,微小气核之所以不会溶解,是因为气核被有机薄膜所包围。这种有机薄膜是在水一气界面上自然形成的,它改变了液体的有效表面张力,推迟了蒸发,阻碍了扩散,使微小气核可以持久地悬浮,但有机薄膜是否存在,还有待物理上的证明。 E.N.Hervery于1947年提出,气体核子是水中固体颗粒或绕流物体表面缝隙中未被溶解的一些气体,而这些固体表面是疏水性的,使得在缝隙中的气体形成一个凹面的自由表面。在这样的情况下,表面张力将阻止液面进入缝隙,因而气体并不能被强迫溶解,而仍可能保持气相。Hervey模式可以解释观察到的所有汽蚀现象,也无须再假设一些不可能有的水的性质,并有很多试验数据予以证实。但是这一模式至今仍缺乏数学描述,这是因为缝隙的尺寸和形状的不确定性,以及固体表面疏水性的不同给数学分析造成了难以克服的困难。

如何解决水泵的气蚀现象

毕业论文 课程名称如何解决水泵的气蚀现象 学生姓名X X X 年级X X 专业X X X X 指导教师X X X

如何解决水泵的气蚀现象 摘要:离心泵以其转速高,体积小,重量轻,效率高,流量大,结构简单,性能平稳,容易操作和维修等优点,使其在输油生产中得到了广泛的应用,汽蚀现象也是离心泵在输油生产中常见的故障。 关键词:离心泵;汽蚀;汽蚀余量 一、气蚀现象含义 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡,把这种产生气泡的现象称为汽蚀。离心泵运转时,液体压力沿着泵入口到叶轮入口而下降,在叶片入口附近的液体压力达到最低,此后由于叶轮对液体做功,液体压力很快上升。当叶轮叶片入口附近的最低压力小于液体输送温度下的饱和蒸汽压力时,液体就汽化。同时,使原来溶解在液体内的气体也逸出,它们形成气泡。当气泡随液体流到叶道内压力较高处时,外面的液体压力高于气泡内的汽化压力,则气泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增加。这样,不仅阻碍液体正常流动,尤为严重的是,如果这些气泡在叶轮壁面附近溃灭,则液体就像无数个小弹头一样,连续地打击金属表面。其撞击频率很高,于是金属表面因冲击疲劳而剥裂。如若气泡内夹杂某种活性气体(如氧气等),它们借助气泡凝结时放出的热量,产生电

解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。像这种液体汽化、凝结、冲击、形成高压、高温、高频冲击负荷,造成金属材料的机械剥裂与电化学腐蚀破坏的综合现象称为离心泵的汽蚀现象。 二、水泵运行中产生气蚀现象的原因 液体的汽化程度与压力的大小、温度高低有关。当液体内部压力下降,低于液体在该温度下的饱和蒸汽压时,便产生汽蚀故障。吸入压力降低;吸入高度过高;吸入管阻力增大;输送液体粘度增大;抽吸液体温度过高等影响液体饱和蒸气压增加的现象都会影响汽蚀的发生,通常的因素有: (1)泵进口的结构参数,叶轮吸入口的形状、叶片入口边宽度及叶片进口边的位置和前盖板形状等。 (2)泵的操作条件,泵的流量、扬程及转速等。 (3)泵的安装位置,泵的吸入管路水力损失及安装高度。 (4)环境因素,泵安装地点的大气压力以及输送液体的温度等。 三、水泵气蚀现象所产生的危害 水泵汽蚀是水泵损坏的重要原因,水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。运行中使水泵抽水的效率降低,显著减少了水泵的扬程和流量,也减少了水泵的使用寿命。汽蚀时传递到叶轮及泵壳的冲击波,加上液体中微量溶解的氧对金属化学腐蚀的共同作用,在一定时间后,可使其表面出现斑痕及裂缝,甚至呈海面状逐步脱落;发生汽蚀时,还会发出噪声,进而使泵体震动;

离心泵汽蚀实验

离心泵汽蚀实验_________ 一、实验目的及要求: (1)通过实验了解测定离心泵汽蚀性能的基本方法; (2)观察离心泵汽蚀发生时,其扬程和流量迅速下降的现象,加深对离心泵汽蚀现象的理解。 二、实验原理: 离心泵转速和流量为定值时,泵的必需汽蚀余量NPSHr是不变的。而装置的有效汽蚀余量NPSHa可以随装置参数而变化。当NPSHa=NPSHr时离心泵开始汽蚀。 由离心泵原理可知,装置的有效汽蚀余量 NPSH a=p s ρg +v s2 2g ?p t ρg =p a ρg ?H s+v s2 2g ?p t ρg (1) 式中,p s和v s-------泵入口处液体的绝对压力和流速; P t和ρ------液体的饱和蒸汽压和密度; H s------为泵入口处的吸入真空度,H s=p a ρg ?p s ρg ; P a-------当地大气压。 由式可见,增加吸入真空度H s,可以使装置有效汽蚀余量NPSHa减小。当吸入真空度H s达到最大吸入真空度(H s)max时,NPSHa=NPSHr,离心泵发生汽蚀。 从装置吸入管能量方程中可以推导出吸入真空度: H s=p a ρg ?p A ρg +v s2 2g +H j+Δ?A?s=H A+v s2 2g +H j+Δ?A?s(米)m (2) 式中,p A------吸入液面上绝对压力; H A------吸入液面的真空度; H j ------泵的安装高度; 注:此处为负值(泵所在高程减去液面所在高程),称作是:灌注头。 Δh A-s ------吸入管路阻力损失。 从式中可知,增加吸入液面真空度H A,增大泵的安装高度H j和增大吸入管路损失Δh A-s,都可以使吸入真空度H s上升,促成离心泵汽蚀来进行汽蚀实验。 由离心泵性能可知,离心泵转速和流量不变时,扬程为定值。但当泵发生汽蚀时,扬程和流量都会急剧下降。这样,我们可以在一定流量Q下测出不同吸入真空度下的扬程H数值,根据扬程急剧下降的趋势判断汽蚀点,如图1所示,按JB1040-67规定,扬程下降1%的点为离心泵的最大吸入真空度(H s)max值,即图上的C点。 离心泵的允许吸入真空度[H s]= (H s)max-K(米液柱)mH2O。 K为安全裕量,K=(米液柱)mH2O。在不同流量Q下测不同的最大吸入真空度(H s)max,考虑安全裕量就可以得到离心泵汽蚀性能[H s]-Q关系,离心泵汽蚀性能另一种形式[NPSHr]-Q也可以经过计算得到。 离心泵汽蚀实验可以在闭式或开式实验装置上进行。吸入真空度H s改变,在封闭式实验装置内是靠储水罐液面真空度H A的变化来实现的;开式实验装置是利用吸入液面水位(H j)的变化或调节吸入阀门(Δh A-s变化)来完成的。

离心泵的安装高度Hg计算

离心泵的安装高度Hg计算 允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度。 而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为1.013×105Pa时的值,当操作条件及工作介质不同时,需进行换算。 1 输送清水,但操作条件与实验条件不同,可依下式换算 Hs1=Hs+Ha-10.33 - Hυ-0.24 2 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H?s 2 汽蚀余量Δh 对于油泵,计算安装高度时用汽蚀余量Δh来计算,即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定。若输送其它液体,亦需进行校正,详查有关书籍。 吸程=标准大气压(10.33米)-汽蚀余量-安全量(0.5米) 标准大气压能压管路真空高度10.33米。 例如:某泵必需汽蚀余量为4.0米,求吸程Δh? 解:Δh=10.33-4.0-0.5=5.83米 从安全角度考虑,泵的实际安装高度值应小于计算值。当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。 例2-3 某离心泵从样本上查得允许吸上真空高度Hs=5.7m。已知吸入管路的全部阻力为1.5mH2O,当地大气压为9.81×104Pa,液体在吸入管路中的动压头可忽略。试计算: 1 输送20℃清水时离心泵的安装。 2 改为输送80℃水时离心泵的安装高度。 解:1 输送20℃清水时泵的安装高度。

泵的汽蚀现象以及其产生原因

泵的汽蚀现象以及其产生原因 1、汽蚀 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。苏华泵业 2、汽蚀溃灭 汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。苏华泵业 3、产生汽蚀的原因及危害 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。苏华泵业 4、汽蚀过程 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。苏华泵业 什么是泵的特性曲线? 通常把表示主要性能参数之间关系的曲线称为离心泵的性能曲线或特性曲线,实质上,离心泵性能曲线是液体在泵内运动规律的外部表现形式,通过实测求得。特性曲线包括:流量-扬程曲线(Q-H),流量-效率曲线(Q-η),流量、功率曲线(Q-N),流量-汽蚀余量曲线(Q-(NPSH)r),性能曲线作用是泵的任意的流量点,都可以在曲线上找出一组与其相对的扬程,功率,效率和汽蚀余量值,这一组参数称为工作状态,简称工况或工况点,离心泵最高效率点的工况称为最佳工况点,最佳工况点一般为设计工况点。一般离心泵的额定参数即设计工况点和最佳工况点相重合或很接近。在实践选效率区间运行,即节能,又能保证泵正常工作,因此了解泵的性能参数相当重要。苏华泵业

离心泵的安装技术间隙规范标准

一、离心泵的关键安装技术 管道离心泵的安装技术关键在于确定水泵安装高度(即吸程)。这个高度是指水源水面到水泵叶轮中心线的垂直距离,它与允许吸上真空高度不能混为一谈,水泵产品说明书或铭牌上标示的允许吸上真空高度是指水泵进水口断面上的真空值,而且是在1标准大气压下、水温20摄氏度情况下,进行试验而测定得的。它并没有考虑吸水管道配套以后的水流状况。而水泵安装高度应该是允许吸上真空高度扣除了吸水管道损失扬程以后,所剩下的那部分数值,它要克服实际地形吸水高度。水泵安装高度不能超过计算值,否则,水泵将会抽不上水来。另外,影响计算值的大小是吸水管道的阻力损失扬程,因此,宜采用最短的管路布置,并尽量少装弯头等配件,也可考虑适当配大一些口径的水管,以减管内流速。 应当指出,管道离心泵安装地点的高程和水温不同于试验条件时,如当地海拔300米以上或被抽水的水温超过20摄氏度,则计算值要进行修正。即不同海拔高程处的大气压力和高于20摄氏度水温时的饱和蒸汽压力。但是,水温为20摄氏度以下时,饱和蒸汽压力可忽略不计。 从管道安装技术上,吸水管道要求有严格的密封性,不能漏气、漏水,否则将会破坏水泵进水口处的真空度,使水泵出水量减少,严重时甚至抽不上水来。因此,要认真地做好管道的接口工作,保证管道连接的施工质量。二、离心泵的安装高度Hg计算 允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度。 而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为1.013×

离心泵的汽蚀原因及措施

离心泵的气蚀原因及采取措施 【摘要】:通过掌握离心泵的气蚀原因,我们在设计、安装、和生产中应如何预防与消除气蚀现象。 【关键词】:离心泵气蚀原因消除措施 离心泵的气蚀原理: 离心泵运转时,液体压力沿着泵入口到叶轮入口而下降,在叶片入口附近的K点上,液体压力p K最低。此后由于叶轮对液体作功,液体压力很快上升。当叶轮叶片入口附近的压力p K小于液体输送温度下的饱和蒸汽压力p v时,液体就汽化。同时,使溶解在液体内的气体逸出。它们形成许多汽泡。当汽泡随液体流到叶道内压力较高处时,外面的液体压力高于汽泡内的汽化压力,则汽泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增加(有的可达数百个大气压)。这样,不仅阻碍液体正常流动,尤为严重的是,如果这些汽泡在叶轮壁面附近溃灭,则液体就像无数个小弹头一样,连续地打击金属表面。其撞击频率很高(有的可达2000~3000Hz),于是金属表面因冲击疲劳而剥裂。如若汽泡内夹杂某种活性气体(如氧气等),它们借助汽泡凝结时放出的热量(局部温度可达200~300℃),还会形成热电偶,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。上述这种液体汽化、凝结、冲击、形成高压、高温、高频冲击负荷,造成金属材料的机械剥裂与电化学腐蚀破坏的

综合现象称为气蚀。 离心泵最易发生气蚀的部位有: 1.叶轮曲率最大的前盖板处,靠近叶片进口边缘的低压侧; 2.压出室中蜗壳隔舌和导叶的靠近进口边缘低压侧; 3.无前盖板的高比转数叶轮的叶梢外圆与壳体之间的密封间 隙以及叶梢的低压侧; 4.多级泵中第一级叶轮。 提高离心泵本身抗气蚀性能的措施 (1)改进泵的吸入口至叶轮附近的结构设计。增大过流面积;增大叶轮盖板进口段的曲率半径,减小液流急剧加速与降压;适当减少叶片进口的厚度,并将叶片进口修圆,使其接近流线形,也可以减少绕流叶片头部的加速与降压;提高叶轮和叶片进口部分表面光洁度以减小阻力损失;将叶片进口边向叶轮进口延伸,使液流提前接受作功,提高压力。 (2)采用前置诱导轮,使液流在前置诱导轮中提前作功,以提高液流压力。 (3)采用双吸叶轮,让液流从叶轮两侧同时进入叶轮,则进口截面增加一倍,进口流速可减少一倍。 (4)设计工况采用稍大的正冲角,以增大叶片进口角,减小叶片进口处的弯曲,减小叶片阻塞,以增大进口面积;改善大流量下的工作条件,以减少流动损失。但正冲角不宜过大,否则影响效率。 (5)采用抗气蚀的材料。实践表明,材料的强度、硬度、韧性

泵的汽蚀余量和安装高度计算

泵的汽蚀余量和安装高度的计算 一、气蚀的发生过程 液体汽化时的压力称为汽化压力(饱和蒸汽压力),液体汽化压力的大小和温度有关,温度越高,由于分子运动更剧烈,其汽化压力越大。20℃清水的汽化压力为,而100℃水的汽化压力为101296Pa(一个大气压)。可见,一定温度下的压力是促成液体汽化的外界因素。液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生气泡,把这种产生气泡的现象称为气蚀。 气蚀时产生的气泡,流动到高压处时,其体积减小以至破灭。这种压力上升,气泡消失在液体中的现象称为气蚀的溃灭。 为保证泵不汽蚀,泵叶轮进口处单位重量的液体所必须具有的超过汽化压力的富余能量。浅释如下: 当离心泵的吸入高度过大和液体温度较高时,以致使吸入口压强小于或等于液体饱和蒸汽压,则液体会在泵进口处沸腾汽化,在泵壳内形成一个充满蒸汽的空间,随着泵旋转,气泡进入高压区,由于压差的作用,气泡受压破裂而重新凝结,在凝结的一瞬间,质点互相撞击,产生了很高的局部压力,如果这些气泡在金属表面附近破裂而凝结,则液体质点就象无数小弹头一样,连续击打在金属表面,使金属表面产生裂纹,甚至局部产生剥落现象,使叶轮表面呈蜂窝状,同时气泡中的某些活泼气体如氧气等进入到金属表面的裂纹中,借助气泡凝结时放出的热量,使金属受到化学腐蚀作用,上述现象即为汽蚀。 汽蚀现象产生时,泵将产生噪音和振动,使泵的扬程、流量、效率的性能急剧下降,同时加速了材料的损坏,缩短了机件的使用寿命,因此,必须限制泵的吸入高度,防止液体大量汽化,以免发生汽蚀现象。 一台泵在运转中发生了气蚀,但在完全相同的条件下换上另一台泵可能就不会发生气蚀,这说明是否发生气蚀和泵本身的抗气蚀性能有关。反之,同一台泵在某一条件下(如吸上高度7米)使用发生气蚀,改变使用条件(如吸上高度5米)则不会发生气蚀,这说明是否发生气蚀还与使用条件有关。这就是泵汽蚀余量或必需气蚀余量NPSHr(又称必需的净正压头)和装置气蚀余量或有效气蚀余量NPSHa(又称有效的净正压头). 二、泵安装高度的计算: 泵之所以吸上液体,是因为叶轮旋转在叶轮进口造成真空,吸入液面的压力P0把液体压入泵的结果。即外因P0通过内因(真空)而起作用,二者缺一不可。最理想的情况是在叶轮造成真空,不计流动过程的损失,泵在标准大气压下只能吸上10.33米,实际泵的吸上高度均在10米以下。

离心泵发生气缚与气蚀现象的原因是什么

2、离心泵发生气缚与气蚀现象的原因是什么?有何危害?应如何消除? 解答要点:离心泵在启动过程中若泵壳内混有空气或未灌满泵,则泵壳内的流体在随电机作离心运动产生负压不足以吸入液体至泵壳内,泵象被“气体”缚住一样,称离心泵的气缚现象;危害是使电机空转,容易烧坏电机;避免或消除的方法是启动前灌泵并使泵壳内充满待输送的液体,启动时关闭出口阀。 当泵壳内吸入的液体在泵的吸入口处因压强减小恰好气化时,给泵壳内壁带来巨大的水力冲击,使壳壁象被“气体”腐蚀一样,该现象称为汽蚀现象;汽蚀的危害是损坏泵壳,同 3、刚安装好的一台离心泵,启动后出口阀已经开至最大,但不见水流出,试分析原因并采取措施使泵正常运行。时也会使泵在工作中产生振动,损坏电机;降低泵高度能避免汽蚀现象的产生。 解答要点:原因可能有两个: 其一,启动前没灌泵,发生气缚现象,此时应停泵、灌泵,关闭出口阀后再启动。 其二,吸入管路被堵塞,此情况下应疏通管路后灌泵,关闭出口阀,然后启动泵。 4、试比较离心泵和往复泵的工作原理,适用范围和操作上有何异同? 解答要点: 工作原理:离心泵依靠旋转叶轮产生离心力,使其叶轮间形成负压,在大气压或吸入槽面压力作用下吸入液体,与此同时,被叶轮甩出的液体获得了较高的静压能及动能,再经逐渐扩大流道使部分动能转化为静压能,在出口处静压能达最大而将液体压出泵外。 往复泵是依靠泵缸内作往复运动的活塞,靠容积改变而吸液和排液。其吸液过程都是靠压差,而排液过程,往复泵是通过活塞将机械能以辟压能的形式直接给予液体,使液体静压能提高而排液。 适用范围:离心泵适用于输送粘度不大的液体和悬浮液,流量大而扬程不太高的场合;往复泵适用输送高扬程,而流量不大的清洁液体。 操作:离心泵会发生气缚现象,故开泵前一定要灌液排汽,而往复泵无气缚现象,有自吸能力;离心泵开泵前应将出口阀关闭,以减少启动功率,而往复泵则须打开出口阀,否则会因排不出液体使压力急剧增大而损坏泵;离心泵流量调节常用出口阀,往复泵流量调节则应用旁路阀,等等。 1.固体粒子的沉降过程分__加速__阶段和__恒速__阶段。沉降速度是指__恒速__阶段颗粒相对于__流体__的速度。 2.在重力场中,固粒的自由沉降速度与下列因素无关(D ) A)粒子几何形状B)粒子几何尺寸C)粒子及流体密度D)流体的流速 3.在降尘室中除去某粒径的颗粒时,若降尘室高度增加一倍,则颗粒的沉降时间__加长一倍,气流速度__为原来的1/2 ,生产能力不变。 4.在斯托克斯区,颗粒的沉降速度与其直径的_2_次方成正比,而在牛顿区,与其直径的1/2 次方成正比。 5.沉降雷诺准数Ret越大,流体粘性对沉降速度的影响__越小__。 6.一球形石英粒子在空气中作滞流自由沉降。若空气温度由20℃提高至50℃,则其沉降速度将__减小__。 7.降尘室操作时,气体的流动应控制在__层流__区。 8.含尘气体通过长4m、宽3m、高1m的降尘室,颗粒的沉降速度为0.03m/s,则降尘室的最大生产能力为__0.36 __m3/s。 9.降尘室内,颗粒可被分离的条件是气体在降尘室的停留时间大于颗粒的沉降时间。10.理论上降尘室的生产能力与__底面积__和__沉降速度__有关,而与__高度__无关。

相关主题