搜档网
当前位置:搜档网 › 最新二项分布专题练习

最新二项分布专题练习

最新二项分布专题练习
最新二项分布专题练习

二项分布专题练习

1.已知随机变量X 服从二项分布,X ~B 16,3?? ??

?

,则P (X =2)=( ).

A .

316

B .

4

243

C .

13

243

D .

80243

2.设某批电子手表正品率为

34,次品率为1

4

,现对该批电子手表进行测试,设第X 次首次测到正品,则P (X =3)等于( ).

A .2

23

13

C 44

??? ???

B .2

23

31C 44

??? ???

C . 2

1344

??? ???

D .2

3144

??? ???

3.甲、乙两名篮球队员轮流投篮直至某人投中为止,设甲每次投篮命中的概率为0.4,乙投中的概率为0.6,而且不受其他次投篮结果的影响,设投篮的轮数为X ,若甲先投,则P (X =k )等于( ).

A .0.6k -

1×0.4

B .0.24k -

1×0.76

C .0.4k -

1×0.6

D .0.76k -

1×0.24

4.10个球中有一个红球,有放回地抽取,每次取出一球,直到第n 次才取得k (k ≤n )次红球的概率为( ).

A .2191010n k

-???? ? ?

????

B . 191010k n k

-???? ? ?

????

C .1119C 1010k

n k

k n ---???? ? ?????

D .1

1119C 1010k n k

k n ----???? ? ???

??

5.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为

65

81

,则事件A 在1次试验中发生的概率为( ). A .

13

B .

25

C .

56

D .

34

6.某一批花生种子,如果每一粒发芽的概率为4

5

,那么播下4粒种子恰有2粒发芽的概率是__________.

7.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为__________.(用数字作答)

8.假定人在365天中的任意一天出生的概率是一样的,某班级中有50名同学,其中有两个以上的同学生于元旦的概率是多少?(结果保留四位小数)

9.某安全生产监督部门对6家小型煤矿进行安全检查(安检).若安检不合格,则必须进行整改.若整改后经复查仍不合格,则强行关闭.设每家煤矿安检是否合格是相互独立的, 每家煤矿整改前安检合格的概率是0.6,整改后安检合格的概率是0.9,计算:

(1)恰好有三家煤矿必须整改的概率; (2)至少关闭一家煤矿的概率.(精确到0.01)

10.甲、乙两人各进行3次射击,甲每次击中目标的概率为

2

1

,乙每次击中目标的概率3

2, (I )甲恰好击中目标的2次的概率; (II )乙至少击中目标2次的概率;

(III )求乙恰好比甲多击中目标2次的概率.

参考答案

1. 答案:D

解析:P (X =2)=2

4

201180C 133243????

-= ? ?

??

??

. 2. 答案:C

解析:P (X =3)是前两次未抽到正品,第三次抽到正品的概率,则P (X =3)=2

13

44

??? ???.

3. 答案:B

解析:甲每次投篮命中的概率为0.4,不中的概率为0.6,乙每次投篮命中的概率为0.6,不中的概率为0.4,

则在一轮中两人均未中的概率为0.6×0.4=0.24,至少有一人中的概率为0.76. 所以P (X =k )的概率是前k -1轮两人均未中,第k 轮时至少有一人中,则P (X =k )=0.24k

-1

×0.76. 4. 答案:C

解析:10个球中有一个红球,每次取出一球是红球的概率为

110,不是红球的概率为9

10

,直到第n 次才取得k (k ≤n )次红球,说明前n -1次中已取得红球k -1次,其余均不为红球.则概率为1

1

1

19C

1010k n k

k n ----???? ? ???

??

×110=1119C 1010k n k

k n ---???? ? ?????

.

5. 答案:A

解析:事件A 在一次试验中发生的概率为p ,

由题意得1-0

4C p 0(1-p )4=

65

81

. 所以1-p =

2

3

,p =13.

6. 答案:

96625

解析:每粒种子的发芽概率为

4

5

,并且4粒种子的发芽与不发芽互不影响,符合二项分布B 44,5?? ???,则4粒种子恰有2粒发芽的概率为:2

2

244196C 55625

????

= ? ?

????. 7. 答案:0.947 7

解析:治愈的病人数X ~B (4,0.9),

则4个病人中至少被治愈3人的概率为P (X ≥3)=P (X =3)+P (X =4)=3

4C 0.93×0.1+

44C 0.94=0.947 7.

8. 解:由题意,设“一个人生日是元旦”为事件A ,要研究50人的生日,则相当于进行50次试验,显然各人的生日是随机的,互不影响的,所以属于50次独立重复试验,P (A )=

1

365

,设50人中生于元旦的人数为ξ, 则P (ξ=0)=0

50

0501364C 365365???? ? ?????

P (ξ=1)=1

49

1501364C 365365??

?? ?

???

??

, “两人以上生于元旦”的概率为:

P (ξ≥2)=1-P (ξ<2)=1-P (ξ=0)-P (ξ=1)=1-050

050

1364C 365365????

? ?????

1

49

1501364C 365365???? ? ???

??

≈0. 008 4. 9. 解:(1)每家煤矿需整改的概率是1-0.6=0.4,且每家煤矿是否整改是独立的.所以恰好有三家煤矿必须整改的概率是p 1=3

6C ·0.43·0.63≈0.28.

(2)每家煤矿被关闭的概率是0.4×0.1=0.04,且每家煤矿是否被关闭是相互独立的,所以至少关闭一家煤矿的概率是p 2=1-(1-0.04)6≈0.22.

工程施工日志填写范本

一、路基部分:

日期xxx年x月x日天气晴温度18℃-27℃

数学高考复习点拨:二项分布与超几何分布辨析

二项分布与超几何分布辨析 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到 黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ?? ???,. 3 03 1464(0)55125P X C ????==?= ? ?????∴;1 2 131448(1)55125 P X C ????==?= ? ? ????; 2123 1412(2)55125P X C ????==?= ? ?????;30 33141(3)55125 P X C ????==?= ? ? ????. 因此,X 的分布列为 2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有: 03283107 (0)15 C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C P Y C ===. 因此,Y 的分布列为 辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样. 超几何分布和二项分布都是离散型分布,超几何分布和二项分布的区别: 超几何分布需要知道总体的容量,而二项分布不需要; 超几何分布是不放回抽取,而二项分布是放回抽取(独立重复) 当总体的容量非常大时,超几何分布近似于二项分布........

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法 Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德 目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质

命名原因 泊松分布实例 泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。应用场景

在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: 例如采用0.05J/㎡紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: …… 是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/㎡照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此就意味着全部死亡的概率。 推导 泊松分布是最重要的离散分布之一,它多出现在当X表示在一定的时间或空间内出现的事件个数这种场合。在一定时间内某交通路口所发生的事故个数,是一个典型的例子。泊松分布的产生机制可以通过如下例子来解释。

二项分布经典例题+测验题

二项分布 1.n 次独立重复实验 一般地,由n 次实验构成,且每次实验相互独立完成,每次实验的结果仅有两种对立的状态,即A 与A ,每次实验中()0P A p =>。我们将这样的实验称为n 次独立重复实验,也称为伯努利实验。 (1)独立重复实验满足的条件第一:每次实验是在同样条件下进行的;第二:各次实验中的事件是互相独立的;第三:每次实验都只有两种结果。 (2)n 次独立重复实验中事件A 恰好发生k 次的概率 ()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量X 的分布列为()P X k == k k n k n C p q -,其中 0 1.1,0,1,2,,,p p q k n <<+==则称X 服从参数为,n p 的二项分布,记作(,)X B n p 。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 3.甲乙两人各进行3次射击,甲每次击中目标的概率为2 1,乙每次击中目标的概率为3 2 . (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】 1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球,且

规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和. (Ⅰ)求X的分布列。 (Ⅱ)求X的数学期望E(X). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投 篮投中的概率为1 3,乙每次投篮投中的概率为1 2 ,且各次投篮互不 影响. (Ⅰ) 求甲获胜的概率。 (Ⅱ) 求投篮结束时甲的投篮次数 的分布列与期望 3.设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜 4场则比赛宣告结束,假定,A B在每场比赛中获胜的概率都是1 2 , 试求需要比赛场数的期望. 3.(2012年高考(辽宁理))电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查. 下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图。

超几何分布与项分布

10 超几何分布与二项分布 ?选择题(共9小题) 则p (!< i 今)的值为( 则 P ( 1^X €013)等于( A .—〔丄)2012 6. (2010?江西)一位国王的铸币大臣在每箱 100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方 法来检测.方法一:在 10箱中各任意抽查一枚;方法二:在 5箱中各任意抽查两枚.国王用方法一、二能发现至 少一枚劣币的概率分别记为 P 1和P 2.则( ) A . P 1=P 2 B . P 1V P 2 C . P 1> P 2 D .以上三种情况都有可能 1. (2004?辽宁)已知随机变量 E 的概率分布如下,则 P ( e =io )=( E 1 2 3 4 5 6 7 8 9 P 2 2 |2 2 2 2 2 _2_ 1 ¥ 33 34 35 3 3s 2 B . 2 C . 1 310 39 m D.- 310 2. (2011?黄冈模拟)随机变量 2、3、4、 …),其中a 是常数, r=2 +1,贝y n 的期望值是( -1 L P 1 2 1 6 1 3 29 3& 4.设随机变量X 的概率分布为 (k=1 , 2, 3, 4, 5),则P 绪g) A .亠 Io 5.电子手表厂生产某批电子手表正品率为 上,次品率为「现对该批电子手表进行测试,设第 X 次首次测到正品, E 的概率分布规律为 (n=1、 A . 1 B . 3. (2008?石景山区一模)已知随机变量 E 的分布列为且设

A ■ J B ? _ C ? _ D ?; [16 24^ 243 245 8 (2012?衡阳模拟)已知随机变量严N (0, a2),且p (4 1)=p (M a-3)的值为() A . 2 B . - 2 C. 0 D . 1 9. 设随机变量匕N (0, 1),若P (E翱=p,则P (- 1 v M 0)=() A . 1- P B. P C. D ?丄—p 二?填空题(共5小题) 10. ________________________________________________________________________________________________ (2010?上海模拟)在10件产品中有2件次品,任意抽取3件,则抽到次品个数的数学期望的值是 _____________________________________ . 11?有一批产品,其中有6件正品和4件次品,从中任取3件,至少有2件次品的概率为___________________________________ . 12. ____________________________________________________________________________________ (2010?枣庄模拟)设随机变量X?B (n,0.5),且DX=2,则事件X=1 ”的概率为_______________________________________________ (作数字作答.) 13. 若随机变量X服从二项分布,且X?B (10,0.8 ),贝U EX、DX分别是___________________________,____________ . 14. (2011?浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公 司面试的概率为丄,得到乙、丙公司面试的概率均为P,且三个公司是否让其面试是相互独立的.记X为该毕业生3 得到面试的公司个数.若P (X=0 )=—,则随机变量X的数学期望E (X)= . 12 -------------------------------------------------------- 三.解答题(共3小题) 15. (2009?朝阳区二模)在袋子中装有10个大小相同的小球,其中黑球有3个,白球有n ( 2《韦,且n希)个, 其余的球为红球. (I )若n=5,从袋中任取1个球,记下颜色后放回,连续取三次,求三次取出的球中恰有2个红球的概率; (H )从袋里任意取出2个球,如果这两个球的颜色相同的概率是,求红球的个数; |15| (川)在(n)的条件下,从袋里任意取出2个球.若取出1个白球记1分,取出1个黑球记2分,取出1个红球 记3分.用E表示取出的2个球所得分数的和,写出E的分布列,并求E的数学期望E E

【数学】高考复习点拨:二项分布与超几何分布辨析

二项分布与超几何分布辨析 山东 韩文文 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到 黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ?? ??? ,. 03 31464(0)55125P X C ????==?= ? ?????∴; 12 1 31448(1)55125P X C ????==?= ? ?????; 21 2 31412(2)55125P X C ????==?= ? ?????; 30 33141(3)55125P X C ????==?= ? ?????. 因此,X 的分布列为 X 0 1 2 3 P 64125 48125 12125 1125 2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有: 03283107(0)15 C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C P Y C ===. 因此,Y 的分布列为 Y 0 1 2 P 715 715 115 辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.

高考复习点拨:二项分布与超几何分布辨析

二项分布与超几何分布辨析 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到 黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ?? ??? ,. 03 31464(0)55125P X C ????==?= ? ?????∴; 12 131448(1)55125 P X C ????==?= ? ?????; 212 31412(2)55125P X C ????==?= ? ?????; 30 3 3141(3)55125P X C ????==?= ? ?????. 因此,X 的分布列为 2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有: 03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15 C C P Y C ===. 因此,Y 的分布列为 到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布) 生存分析 贝叶斯概率公式 全概率公式讲解

数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。 也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。 可以简单的理解为求一个概率性事件的平均状况。 各种数学分布的方差是: 1、一个完全符合分布的样本 2、这个样本的方差 概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。 下图为概率密度函数图(F(x)应为f(x),表示概率密度):

离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X 2分布、t 分布、F 分布 抽样分布只与自由度,即样本含量(抽样样本含量)有关 二项分布(binomial distribution ):例子抛硬币 1、 重复试验(n 个相同试验,每次试验两种结果,每种结果概率恒定————伯努利试验) 2、 抽样分布

负二项分布(研究生)

负二项分布(Negative Binomial Regression)福建医科大学流行病与统计教研室

负二项分布(Negative Binomial Regression)Introduction Scott Long notes that the Poisson regression model rarely fits in practice since in most applications the variance of the count data is greater than the mean

NB Distribution One, the variance of the NB distribution exceeds the variance of the Poisson distribution for a given mean Two, the increased variance of the NB regression model results in substantially larger probabilities for small counts Finally, in the NB distribution there are slightly larger probabilities for larger counts .

负二项分布的概念 常用于描述生物的群聚性,如钉螺在土壤的 分布、昆虫的空间分布等。医学上可用于描述传染性疾病的分布和致病生物的分布,在毒理学上 显性致死试验或致癌试验。 独立重复试验次数n 不固定,n=X+k ,k 为大于0的常数。 若要求X+K 次试验,出现“阳性”的次数恰为X 次的概率分布为负二项分布:k -? ?? ?? ???? ??-+ππ111

二项分布和超几何分布(含答案)

超几何分布和二项分布 一、两者的定义是不同的 1超几何分布的定义 2独立重复试验与二项分布的定义 (1)独立重复试验. (2)二项分布. 本质区别 (1)超几何分布描述的是不放回抽样问题,而二项分布描述的是放回抽样问题. (2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题. 二、两者之间是有联系的 人教版新课标选修2-3第59页习题2.2B组第3题:

例1某批n件产品的次品率为2%,现从中任意地依次抽出3件进行检验,问: (1)当n=500,5000,500000时,分别以放回和不放回的方式抽取,恰好抽到1件产品的概率各是多少?(2)根据(1)你对超几何分布与二项分布的关系有何认识?

【说明】由于数字比较大,可以利用计算机或计算器进行数值计算.另外,本题目也可以帮助学生了解超几何分布和二项分布之间的关系: 第一,n次试验中,某一事件A出现的次数X可能服从超几何分布或二项分布.当这n次试验是独立重复试验时,X服从二项分布;当这n次试验是不放回摸球问题,事件A为摸到某种特性(如某种颜色)的球时,X服从超几何分布 第二,在不放回n次摸球试验中,摸到某种颜色的次数X服从超几何分布,但是当袋子中的球的数目N 很大时,X的分布列近似于二项分布,并且随着N的增加,这种近似的精度也增加. 从以上分析可以看出两者之间的联系: 当调查研究的样本容量非常大时,在有放回地抽取与无放回地抽取条件下,计算得到的概率非常接近,可以近似把超几何分布认为是二项分布. 例2袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取一个球,求(1)又放回抽样时,取到黑球的个数X的分布列;(2)无放回地抽样时,取到黑球的个数Y的分布列.

06二项分布及泊松分布

●Bernoulli 试验(Bernoulli T est): 将感兴趣的事件A出现的试验结果称为“成功”,事件A不出现的试验结果称为“失败”,这类试验就称为Bernoulli 试验 ●二项分布(binomial distribution): 是指在只会产生两种可能结果如阳性或阴性之一的n次独立重复试验中,当每次试验的阳性概率π保持不变时,出现阳性次数X=0,1,2,…,n的一种概率分布。 ●Poisson分布(Poisson distribution): 随机变量X服从Poisson分布式在足够多的n次独立试验中,X取值为1,2,…,的相应概率为 …的分布。 ★二项分布成立的条件: ①每次试验只能是互斥的两个结果之一;②每次试验的条件不变;③各次试验独立。 ★二项分布的图形: 当∏=0.5,二项分布图形是对称的,当∏不等于0.5,图形是偏态的,随着n增大,图形趋于对称。当n趋于无穷大时,只有∏不太靠近0或者1,二项分布近似正态分布。 ★二项分布的应用 总体率的区间估计,样本率与总体率比较,两样本率的比较 ★Poisson 分布的应用 总体均数的区间估计,样本均数与总体均数的比较,两个样本均数的比较:两个样本计数均较大时,可根据Poisson 分布的正态近似性对其进行u 检验。 ★Poisson 分布成立的条件: ①平稳性:X 的取值与观察单位的位置无关,只与观察单位的大小有关;②独立增量性:在某个观察单位上X 的取值与前面各观察单位上X 的取值无关;③普通性:在充分小的观察单位上X 的取值最多为1。 Poisson 分布,X~P(μ),X 的均数μX =μ,X的方差σ2 =μ,X的标准差σX ★Poisson分布的性质 1、总体均数λ与总体方差相等是泊松分布的重要特点。 2、当n增大,而∏很小,且n∏=λ总体均数时,二项分布近似泊松分布。 3、当总体均数增大时,泊松分布渐近正态分布,一般而言,总体均数》20时,泊松分布资料做为正态分布处理。 4、泊松分布具有可加性。 ★泊松分布的图形 当总体均数越小,分布就越偏态,当总体均数越大,泊松分布就越趋近正态分布。当总体均数小于等于1时,随X取值的变大,P(X)值反而变小;当总体均数大于1时,P(X)值先增大而后变小,若总体均数取整数时,则P(X)在X=总体均数,和X=总体均数—1取得最大值。 ★二项分布和泊松分布的特性 1.可加性 二项分布和Poisson 分布都具有可加性。 如果X1,X2,?Xk 相互独立,且它们分别服从以ni,p(i=1,2, ?,k)为参数的二项分 布,则X=X1+X2+?+Xk 服从以n,p(n=n1+n2+?+nk)为参数的二项分布。如果X1,X2,?,Xk相互独立,且它们分别服从以μi(i=1,2, ?,k)为参数的Poisson 分布,则X=X1+X2+?+Xk服从以μ(μ=μ1+μ2+?+μk)为参数的Poisson 分布。 2.近似分布

二项分布与正态分布的特点及联系

二项分布与正态分布的特点及他们的联系 2008-05-23 09:22:10| 分类:数学|举报|字号订阅 正态分布的特点如下: 1.正态分布的形式是对称的,它的对称轴是过平均数点的垂直线,即关于x=u对称。 2.曲线在Z=0处为最高点,向左右延伸时,在正负1个标准差之内,既向下又向内弯。从正负1个标准差开始,既向下又向外弯。拐点位于正负一个标准差处,曲线两端向靠近基线处无限延伸和接近,但不相交。 3.正态分布下的面积为1,过平均数的垂直线将面积分为左右各0.50的部分。正态曲线下的每一面积都可以被看成是概率,即对应着横坐标值的随机变量出现的概率。 4.正态分布是一族分布,它随着随机变量的平均数、标准差的大小与单位不同而有不同的分布形态。但是所有的正态分布都可以通过公式Z=(Xl—M)/S,转换成标准正态分布,即平均数为0,标准差为1的正态分布。 5.在正态分布曲线中,标准差与概率(面积)有一定的关系。 二项分布的特点如下: 1、二项分布的均值为np,方差为npq。 2、以事件A出现的次数为横坐标,以概率为纵坐标,画出二项分布的图象,可以看出: (1)、二项分布是一种离散性分布 (2)、当p=q=0.5时,图象对称;当p不等于q时,图形是偏斜的。p>q 时,呈负偏态; 3、n->∞时,趋近于正态分布N(np,npq)

一般1/2np>=5且nq>=5时,二项分布就非常接近正态分布。 二项分布函数在教育中主要用来判断试验结果的机遇性与真实性的界限,例如,求测验猜测行为的判断标准:在选择题测验中,通过二项分布计算得出被试凭猜测答对N道以上的概率。 阅读(744)|评论(0)

《二项分布与超几何分布》复习课程

二项分布与超几何分布 ★ 知 识 梳理 ★ 1.条件概率:称)()()|(A P AB P A B P = 为在事件A 发生的条件下,事件B 发生的概率。 特别提醒: ①0≤P (B|A )≤1; ②P(B ∪C|A)=P(B|A)+P(C|A)。 2. 相互独立事件:如果事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件。 特别提醒: ①如果事件A 、B 是相互独立事件,那么,A 与_B 、_A 与B 、_A 与_ B 都是相互独立事件 ②两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。我们把两个事件A 、B 同时发生记作A ·B ,则有P (A ·B )= P (A )·P (B ) 推广:如果事件A 1,A 2,…A n 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积。即:P (A 1·A 2·…·A n )= P (A 1)·P (A 2)·…·P(A n ) 3.独立重复试验: 在同样的条件下,重复地、各次之间相互独立地进行的一种试验.在这种试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的. 4.如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率计算公式: P n (k )=C k n P k (1-P ) n -k ,其中,k =0,1,2,…,n 5.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ 0 1 … k … n P n n q p C 00 111-n n q p C … k n k k n q p C - … 0q p C n n n 由于k n k k n q p C -恰好是二项展开式 011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--ΛΛ 中的各项的值,所以称这样的随机变量ξ服从二项分布, 记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k k n q p C -=b (k ;n ,p ). 6. 两点分布: X 0 1 P 1-p p 特别提醒: 若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1)为成功率. 7. 超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则

浅析二项分布与泊松分布之间的关系

学年论文 题目:浅析二项分布与泊松分布之间的关系 学生: 学号: 院(系):理学院 专业:信息与计算科学 指导教师:安晓钢 2013 年11月25日

浅析二项分布与泊松分布之间的关系 信息121班; 指导教师:安晓钢 (陕西科技大学理学院 陕西 西安 710021) 摘 要:泊松分布刻画了稀有事件在一段时间内发生次数这一随机变量的分布,如电话交换台单位时间内接到的呼唤次数等。二项分布是n 个独立的是/非试验中成功的次数的离散概率分布。它们有着密切的关系。泊松分布是二项分布的特例。某现象的发生率很小,而样本例数n 很大时,则二项分布接近于泊松分布,即:如果试验次数n 很大,二项分布的概率p 很小,且乘积np =λ比较适中,则事件出现的次数的概率可以用泊松分布来逼近。事实上,二项分布可以看作泊松分布在离散时间上的对应物,是二项分布的特例。通过分析二项分布和泊松分布之间的关系,使学生对概率分布理论的理解更为深刻,能够将学到的理论知识应用在实际生活中,从而提高自己的综合素质。 关 键 词:二项分布, 泊松分布, 近似 The Application of Asignment Poblem ABSTRACT: Poisson distribution is used to depict the distribution of rare events that a random variable frequency over a period of time, such as a telephone exchange in unit time received the call number. The two distribution is n independent / discrete probability distributions of number of successful non trials. They have a close relationship. Poisson distribution is two distribution case. The incidence of the phenomenon is very small, and the number of sample n is large, then the two distribution is close to the Poisson distribution, i.e.: if the test number n is large, the two probability distribution P is small, and the product of lambda = N P is moderate, the probability of the event can be used to force the Poisson distribution near. In fact, the two distribution can be seen as the counterpart of Poisson distribution in discrete time, are the two distribution case. Through the analysis of the relationship between two binomial distribution and Poisson distribution, enables the student to the theory of probability distribution for more profound understanding will be able to learn the application of theoretical knowledge in real life, so as to improve their comprehensive quality. KEY WORDS : Two distribution, Poisson distribution, Approximate

超几何分布和二项分布的联系和区别精编版

超几何分布和二项分布的联系和区别 开滦一中 张智民 在最近的几次考试中,总有半数的的学生搞不清二项分布和超几何分布,二者到底该如何区分呢?什么时候利用二项分布的公式解决这道概率问题?什么时候用超几何分布的公式去解决呢? 好多学生查阅各种资料甚至于上网寻找答案,其实这个问题的回答就出现在教材上,人教版新课标选修2-3从两个方面给出了很好的解释. 诚可谓:众里寻他千百度,蓦然回首,那人却在灯火阑珊处! 一、两者的定义是不同的 教材中的定义: (一)超几何分布的定义 在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k) =n N k -n M -N k M C C C , ,2,1,0k =, m,其中m=min{M,n},且n ≤N,M ≤N,n,M,N ∈N,称随机变量X 服从超几何分布 (二)独立重复试验和二项分布的定义 1)独立重复试验:在相同条件下重复做的n 次试验,且各次试验试验的结果相互独立,称为n 次独立重复试验,其中A(i=1,2,…,n)是第ⅰ次试验结果,则 P(A1A2A3…An)=P(A 1)P(A2)P(A3)…P(An) 2)二项分布 在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率 为P,则P(X=k)=k n k p p --)1(C k n (k=0,1,2,…,n),此时称随机变量X 服从二项分布,记作X~B(n,p),并称P 为成功概率。 1.本质区别 (1)超几何分布描述的是不放回抽样问题,二项分布描述的是放回抽样问题; (2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题 2.计算公式 超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k)

二项分布和超几何分布的区别(含答案)复习过程

二项分布和超几何分布的区别(含答案)

超几何分布和二项分布 一、两者的定义是不同的 1超几何分布的定义 2独立重复试验与二项分布的定义 (1)独立重复试验. (2)二项分布. 本质区别 (1)超几何分布描述的是不放回抽样问题,而二项分布描述的是放回抽样问题. (2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题. 二、两者之间是有联系的 人教版新课标选修2-3第59页习题2.2B组第3题:

例1某批n件产品的次品率为2%,现从中任意地依次抽出3件进行检验,问: (1)当n=500,5000,500000时,分别以放回和不放回的方式抽取,恰好抽到1件产品的概率各是多少?(2)根据(1)你对超几何分布与二项分布的关系有何认识?

【说明】由于数字比较大,可以利用计算机或计算器进行数值计算.另外,本题目也可以帮助学生了解超几何分布和二项分布之间的关系: 第一,n次试验中,某一事件A出现的次数X可能服从超几何分布或二项分布.当这n次试验是独立重复试验时,X服从二项分布;当这n次试验是不放回摸球问题,事件A为摸到某种特性(如某种颜色)的球时,X服从超几何分布 第二,在不放回n次摸球试验中,摸到某种颜色的次数X服从超几何分布,但是当袋子中的球的数目N 很大时,X的分布列近似于二项分布,并且随着N的增加,这种近似的精度也增加. 从以上分析可以看出两者之间的联系: 当调查研究的样本容量非常大时,在有放回地抽取与无放回地抽取条件下,计算得到的概率非常接近,可以近似把超几何分布认为是二项分布. 例2袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取一个球,求(1)又放回抽样时,取到黑球的个数X的分布列;(2)无放回地抽样时,取到黑球的个数Y的分布列.

正确理解泊松分布

正确理解泊松分布 很多人在上概率论这门课的时候就没搞明白过泊松分布到底是怎么回事,至少我就是如此。虽然那个时候大家都会背“当试验的次数趋于无穷大,而乘积np固定时,二项分布收敛于泊松分布”,大部分的教科书上也都会给出这个收敛过程的数学推导,但是看懂它和真正的理解还有很大距离。如果我们学习的意义是为了通过考试,那么我们大可停留在“只会做题”的阶段,因为试卷上不会出现“请发表一下你对泊松公式的看法”这样的题目,因为那样一来卷子就变得不容易批改,大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。 而如果我们学习的目的是为了理解一样东西,那么我们就有必要停下来去思考一下诸如“为什么要有泊松分布?”、“泊松分布的物理意义是什么?”这样的“哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:“电话是一种机器,两个距离很远的人可以通过它进行交谈”,而不会说:“电话在18XX年由贝尔发明,一台电话由几个部分构成……”(泊松分布在18XX年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是“泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。什么是排队论?比如我们去每天食堂打饭,最头疼的一个问题就是排队,之所以要排队是因为食堂打饭的大叔有限,假设学校有1000个学生,而食堂恰好配了1000个大叔和打饭的窗口,那么就永远不会有人排队。但是出于经营成本方面的考虑食堂通常不会这么干,因此如何控制窗口的数量并且保证学生不会因为排队时间太长而起义是一门很高深的学问。 在一段时间t(比如1个小时)内来到食堂就餐的学生数量肯定不会是一个常数(比如一直是200人),而应该符合某种随机规律:比如在1个小时内来200 个学生的概率是10%,来180个学生的概率是20%……一般认为,这种随机规律服从的就是泊松分布。 也就是在单位时间内有k个学生到达的概率为: 其中为单位时间内学生的期望到达数。 问题是“这个式子是怎么来的呢?”——我们知道泊松分布是二项分布满足某种条件的一个特殊形式,因此可以先从简单的二项分布入手,寻找两者之间的联系。

二项分布的期望和方差的详细证明

二项分布的期望的方差的证明 山西大学附属中学 韩永权 hyq616@https://www.sodocs.net/doc/e64429866.html, 离散型随机变量的二项分布: 在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k k n n q p C k P -==)(ξ,(0,1,2k n = p q -=1) 于是得到随机变量ξ的概率分布如下: ξ 1 2 3 ... 1n - n P 0n n C q 11n n C pq - 222n n C p q - 333 n n C p q - ... 11 n n n C p q -- n n n C p 称这样的随机变量ξ服从二项分布,记作ξ~B(n ,p),其中n ,p 为参数,并记k n k k n q p C -=b(k ;n ,p). 1 求证:服从二项分布的随机变量ξ的期望E np ξ=. 证明如下:预备公式: 1 1k k n n kc nc --= 100110220211(1)()11011111()(......)n n n n k k n n k n n n n n n n p q c p q c p q c p q c p q c p q ----------------+=++++++因为()(1),k k n k k k n k n n p k c p p c p q ξ--==-= 所以 001112220012......n n n k k n k n n n n n n n E c p q c p q c p q k c p q nc p q ξ---=?+?++?++?++ =00110220211(1)()11011111(......)n n n k k n n k n n n n n n n np c p q c p q c p q c p q c p q ---------------++++++ =1()n np p q np -+= 所以E np ξ= 方法二: 证明:若 ),(~p n B X ,则X 表示n 重贝努里试验中的“成功” 次数,现在我们来求X 的数学期望。

二项分布、超几何分布、正态分布总结归纳与练习

二项分布?还是超几何分布 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用 这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析.例 1 袋中有 8 个白球、 2 个黑球,从中随机地连续抽取 3 次,每次取 1 个球.求:( 1)有放回抽样时,取到黑球的个数X的分布列; ( 2)不放回抽样时,取到黑球的个数Y的分布列. 解:( 1)有放回抽样时,取到的黑球数X可能的取值为0,1, 2, 3.又由于每次取到黑球的概率 均为1 , 3 次取球可以看成 3 次独立重复试验,则 1 ,.5X~B 35 0312 ∴ P(X 0) C301 464 ;P(X 1)C31 1 448 ; 5512555125 21 P(X 3) C33 130 P(X 2) C321 412 ;4 1 .5512555125 因此, X 的分布列为 X0123 P 6448121 125125125125 (2)不放回抽样时,取到的黑球数Y可能的取值为0, 1,2,且有: P(Y 0)C20C837 ;P(Y1)C21C82 7 ;P(Y2)C22C81 1 . C10315C10315C10315 因此, Y 的分布列为 Y012 771 P 1515 15 例 2 某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40 件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495] , (495,500] ,,, ,(510,515] ,由此得到样本的频率分布直方图,如图4 ( 1)根据频率分布直方图,求重量超过505 克的产品数量 , ( 2)在上述抽取的40 件产品中任取 2 件,设 Y 为重量超过505 克 的产品数量,求Y 的分布列; ( 3)从该流水线上任取 5 件产品,求恰有 2 件产品的重量超过505 克的概率。

相关主题