搜档网
当前位置:搜档网 › 数列

数列

数列
数列

2.1.1数列

【课标点击】

(一)学习目标:1.通过大量实例,理解数列概念,了解数列和函数之间的关系;

2.了解数列的通项公式,并会用通项公式写出数列的任意一项; 3.对于比较简单的数列,会根据其前几项写出它的一个通项公式.

(二)教学重、难点:

学习重点:理解数列概念,会求简单数列的通项公式

学习难点:根据一些数列的前几项抽象、归纳数列的通项公式的能力

【课前准备】

(一)情境引入:数学的产生源于现实生活的需要,数列也不例外传说古希腊毕达哥拉斯(Pythagoras,约公元前570年—约公元前500年)学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数.比如,他们将石子摆成如图(1)所示的三角形状,就将其所对应石子个数称为三角形数,将石子摆成如图(2)所示的正方形状,就将其所对应石子个数称为正方形数.你能将三角形数和正方形数所对应的一列数分别写出吗?本节我们就来解决这个问题.

(二)问题导引:

1.看下面的几组例子,各组数据有何共同特征?

(1)全体自然数按从小到大排成一列数:0,1,2,3,4,…;

(2)正整数1,2,3,4,5的倒数排成一列数:1,

1

2,

1

3,

1

4,

1

5;

(3)π精确到1,0.1,0.01,0.001,…的不足近似值排成一列数:3,3.1,3.14,3.141,…;

(4)无穷多个1排成一列数:1,1,1,1,1,…;

(5)当n分别取1,2,3,4,5,…时,(-1)n的值排成一列数:-1,1,-1,1,-1,….

请你根据上面的例子尝试给数列下个定义.

【学习过程】阅读课本25至27页,完成下列问题

(一)知识点梳理:

1.数列:按一定的排列的一列数叫数列.

2.项: 数列中的都叫做这个数列的项. 各项依次叫做这个数列的第1

项(或首项),第2项, …,第n项, …

3.数列的一般形式:

,

,

,

,

,

3

2

1n

a

a

a

a,其中

n

a是数列的,叫做数列

的,我们通常把一般形式的数列简记作.

4.数列的通项公式:如果数列{

n

a}中的第n项

n

a与n之间的关系可以用一个公式

来表示,则称此公式为数列的通项公式.

5.从函数的观点看,数列可以看作是以为定义域的函

数)

(n

f

a

n

=,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值,

其图像是一群孤立的点.

6.数列的分类:按项数分为和.按数列

中项与项的关系可分为、和.

(二)思考与讨论:

(1)数列与数集有什么区别?

(2)是否所有的数列都有通项公式?

(3){

n

a}与

n

a有什么区别?

(三) 典例示范

题型一求通项公式

例1.根据数列的前几项,写出下列各数列的一个通项公式.

(1)1,-3, 5,-7, 9,…;(2)

1

2,2,

9

2,8,

25

2,…;

(3)9, 99, 999, 9 999,…;(4)0, 1, 0, 1,….

小结:

变式训练:写出下面数列的一个通项公式,使它的前4项分别是下列各数:

(1)1,3,5,7 (2)0,2,0,2

(3)

63

8

,

35

6

,

15

4

,

3

2

-

-

-

-(4)2

1

2,4

1

4,6

1

8,8

1

16

(5)0.9,0.99,0.999,0.999 9 (6)-

1

2,

1

6,-

1

12,

1

20

例2.已知数列{a n}的通项公式a n=

(-1)n(n+1)

(2n-1)(2n+1)

.

(1)写出它的第10项;(2)判断2

33是不是该数列中的项.

变式训练:1.根据下面数列的通项公式,写出它的前5项.

(1)1

21

2--=n n a n (2)2sin πn a n =

2.数列{a n }的通项公式为a n =1n (n +2)

(n ∈N *),那么1

120是这个数列的第 项.

题型二 判断数列的增减性

例3.已知数列{a n }的通项公式为a n =n 2

n 2+1

.求证:数列{a n }为递增数列.

小结:

变式训练:已知a n =9n (n +1)

10n (n ∈N *),试问数列{a n }中有没有最大项?如果有,求出这个最大项;如果没有,说明理由.

(四)归纳总结

(五)当堂检测

1. 数列,924

,715,58,1--…的一个通项公式是( )

A .12)1()1(++-=n n n a n

n B .1

2)

3()1(++-=n n n a n n C .1

2)1()1(2

++-=n n a n

n D .12)2()1(++-=n n n a n n

2.数列1,3,6,10,x ,21,28,…中的x 值是 ( )

A .12 B. 15 C. 17 D. 18

3.观察下面数列的特点,用适当的数填空,并写出每个数列的一个通项公式 (1)1,3,7,( ),31,( ),127 (2)2,5,( ),17,26,( ),50

(3)1281),(,321,161),(,41,21--

(4)1,2,( ),2,5,( ),7

4. 根据下面数列的通项公式,写出它的第10项:

(1)121)1(1-+-=+n n a n n (2)2)1(cos 1π

-+=n a n

(3)请判断99

51

是不是第(1)小题中的那个数列的项.

5.已知函数x

x x f 1

)(-=,设)(n f a n =,)(+∈N n

(1)求证:1

数列放缩法高考专题

高考专题—数列求和放缩法 一.先求和后放缩 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1 n n n n a a 4.放缩后为裂项相消,再求和 例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1(Λ-+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的逆序数63=a . (1)求a 4、a 5,并写出a n 的表达式; (2)令n n n n n a a a a b 11+++=,证明32221+<++

函数与数列的极限的强化练习题答案(含详细分析)

第一讲:函数与数列的极限的强化练习题答案 一、单项选择题 1.下面函数与y x =为同一函数的是() 2 .A y= .B y= ln .x C y e =.ln x D y e = 解:ln ln x y e x e x === Q,且定义域 () , -∞+∞,∴选D 2.已知?是f的反函数,则() 2 f x的反函 数是() () 1 . 2 A y x ? =() .2 B y x ? = () 1 .2 2 C y x ? =() .22 D y x ? = 解:令() 2, y f x =反解出x:() 1 , 2 x y =?互 换x,y位置得反函数() 1 2 y x =?,选A 3.设() f x在() , -∞+∞有定义,则下列函数 为奇函数的是() ()() .A y f x f x =+- ()() .B y x f x f x =-- ?? ?? () 32 .C y x f x = ()() .D y f x f x =-? 解:() 32 y x f x = Q的定义域() , -∞+∞且 ()()()()() 3232 y x x f x x f x y x -=-=-=- ∴选C 4.下列函数在() , -∞+∞内无界的是() 2 1 . 1 A y x = + .arctan B y x = .sin cos C y x x =+.sin D y x x = 解: 排除法:A 2 1 122 x x x x ≤= + 有界, B arctan 2 x π <有界, C sin cos x x +≤ 故选D 5.数列{}n x有界是lim n n x →∞ 存在的() A 必要条件 B 充分条件 C 充分必要条件 D 无关条件 解:Q{}n x收敛时,数列n x有界(即 n x M ≤),反之不成立,(如() {}11n--有界, 但不收敛, 选A 6.当n→∞时,2 1 sin n 与 1 k n 为等价无穷小, 则k= () A 1 2 B 1 C 2 D -2 解:Q 2 2 11 sin lim lim1 11 n n k k n n n n →∞→∞ ==,2 k=选C 二、填空题(每小题4分,共24分) 7.设() 1 1 f x x = + ,则() f f x ?? ??的定义域 为

数列与数学文化专题 9

高中数学中国传统文化专题 1.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法复合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2 018这2 018个数中,能被3除余1且被7除余1的数按从小到大的顺序排成一列,构成数列{a n},则此数列共有() A.98项 B.97项 C.96项 D.95项 解析能被3除余1且被7除余1的数就只能是被21除余1的数,故a n=21n-20,由1≤a n≤2 018得1≤n≤97,又n∈N*,故此数列共有97项. 答案 B 2.(数学文化)著名的斐波那契数列{a n}:1,1,2,3,5,8,…,满足a1=a2=1,a n+2=a n+1+a n,n∈N*,那么1+a3+a5+a7+a9+…+a2 017是斐波那契数列的第________项. 解析1+a3+a5+a7+a9+…+a2 017=a2+a3+a5+a7+a9+…+a2 017=a4+a5+a7+a9+…+a2 017=a6+a7+a9+…+a2 017=a8+a9+…+a2 017=…=a2 016+a2 017=a2 018,即为第2

018项. 答案 2 018 3.\中国古诗词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子作盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是() A.174斤 B.184斤 C.191斤 D.201斤 解析用a1,a2,…,a8表示8个儿子按照年龄从大到小得到的绵数, 由题意得数列a1,a2,…,a8是公差为17的等差数列,且这8项的和为996,

数列经典题目集锦答案

数列经典题目集锦一 一、构造法证明等差、等比 类型一:按已有目标构造 1、 数列{a n },{b n },{c n }满足:b n =a n -2a n +1,c n =a n +1+2a n +2-2,n ∈N * . (1) 若数列{a n }是等差数列,求证:数列{b n }是等差数列; (2) 若数列{b n },{c n }都是等差数列, 求证:数列{a n }从第二项起为等差数列; (3) 若数列{b n }是等差数列,试判断当b 1+a 3=0时, 数列{a n }是否成等差数列?证明你的结论. 类型二: 整体构造 2、设各项均为正数的数列{a n }的前n 项和为S n ,已知a 1=1,且(S n +1+λ)a n =(S n +1)a n +1对一切n ∈N * 都成立. (1) 若λ=1,求数列{a n }的通项公式; (2) 求λ的值,使数列{a n }是等差数列. 二、两次作差法证明等差数列 3、设数列{}n a 的前n 项和为{}n S ,已知11,6,1321===a a a , 且* 1,)25()85(N n B An S n S n n n ∈+=+--+,(其中A ,B 为常数). (1)求A 与B 的值;(2)求数列{}n a 为通项公式; 三、数列的单调性 4.已知常数0λ≥,设各项均为正数的数列{}n a 的前n 项和为n S , 满足:11a =,() 1 1131n n n n n n a S S a a λ+++= +?+(*n ∈N ). (1)若0λ=,求数列{}n a 的通项公式; (2)若11 2 n n a a +<对一切*n ∈N 恒成立,数λ的取值围. 5.设数列{}n a 是各项均为正数的等比数列,其前n 项和为n S ,若1564a a =,5348S S -=. (1)求数列{}n a 的通项公式; (2)对于正整数,,k m l (k m l <<),求证:“1m k =+且3l k =+”是“5,,k m l a a a 这三项经适当排序 后能构成等差数列”成立的充要条件; (3)设数列{}n b 满足:对任意的正整数n ,都有121321n n n n a b a b a b a b --++++L 1 3246n n +=?--, 且集合*| ,n n b M n n N a λ??=≥∈???? 中有且仅有3个元素,求λ的取值围.

高考数学玩转压轴题专题7.1与数学文化相关的数学考题

专题7.1 与数学文化相关的数学考题 一、方法综述: 关注学生数学文化的意识的养成,努力推进数学文化的教育,已经成为当今数学教师与改革的一个重要特征,在新课改的数学命题中,数学文化已经得到足够的重视,但并没由得到应有的落实,造成数学文化教学的缺失的根本原因在于教师自身数学文化素养的缺乏,令人欣喜的是在近几年的高考试题中已经开始有意识的进行尝试和引导,在众多的经典试题中,湖北卷的数学文化题更超凡脱俗和出类拔萃,因此,我们特别策划了此专题,将数学文化与数学知识相结合,选取典型样题深度解读,希望能够给予广大师生的复习备考以专业的帮助与指导. 二、解答策略: 类型一、取材数学游戏 游戏可以让数学更加好玩,在游戏中运用数学知识,或蕴含着数学原理的智力游戏可笼统地称为数学游戏,把数学游戏改编为高考试题,既不失数学型,又能增加了考题的趣味性,充分体现了素质教育与大众数学的理念。 例1、五位同学围成一圈依次循环报数,规定: ①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和; ②若报出的数是3的倍数,则报该数的同学需拍手一次。 已知甲同学第一个报数,当五位同学依次循环报到第100个数时,甲同学拍手的总次数为。 探究提高:以数学游戏为素材的命制高考题目,创造了既宽松又竞争的环境,拉近了考生与数学的心理距离,但要注意游戏素材的选择应与考生的实际生活密切相关,便于考生更好地理解游戏。例如:2012年高考湖北卷第13题“回文数”,考查排列、组合和归纳推理等知识。本题以此为背景,以简单的游戏为分析计算对象,考查学生的阅读理解能力和合情推理能力。 举一反三:回文数是指从左到右与从右到左读都一样的正整数。如22,,11,3443,94249等。显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999。则 (Ⅰ)4位回文数有______个; (Ⅱ)2n+1(n∈N+)位回文数有______个。

(完整版)数列经典试题(含答案)

强力推荐人教版数学高中必修5习题 第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a 的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ).

数列中包含的数学文化

数列中包含的数学文化 数学家的故事———数学王子高斯 高斯(Carl Fried rich Gauss,1777~1855)德国数学家、天文学家和物理学家,被誉为历史上伟大的数学家之一,和阿基米德、牛顿并列,同享盛名。 1777年4月30日生于不伦瑞克的一个工匠家庭,1855年2月23日卒于格丁根。幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。1795~1798年在格丁根大学学习1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。高斯是近代数学奠基者之一,在历史上影响之大,可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称。高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。 幼年时,他在数学方面就显示出了非凡的才华。3岁能纠正父亲计算中的错误;10岁便独立发现了算术级数的求和公式;11岁发现了二项式定理。少年高斯的聪颖早慧,得到了很有名望的布瑞克公爵的垂青与资助,使他得以不断深造。19岁的高斯在进大学不久,就发明了只用圆规和直尺作出正17边形的方法,解决了两千年来悬而未决的几何难题。1801年,他发表的《算术研究》,阐述了数论和

高等代数的某些问题。他对超几何级数、复变函数、统计数学、椭圆函数论都有重大贡献。作为一个物理学家,他与威廉.韦伯合作研究电磁学,并发明了电极。为了进行实验,高斯还发明了双线磁力计,这是他对电磁学问题研究的一个很有实际意义的成果。高斯30岁时担任了德国著名高等学府天文台台长,并一直在天文台工作到逝世。他平生还喜欢文学和语言学,懂得十几门外语。他一生共发表323篇(种)著作,提出了404项科学创见,完成了4项重要发明。 高斯去世后,人们在他出生的城市竖起了他的雕像。为了纪念他发现做出17边形的方法,雕像的底座修成17边形。世人公认他是一位和牛顿、阿基米德、欧拉齐名的数学家。他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教书真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真。 这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来。“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发。教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。 还不到半个小时,小高斯拿起了他的石板走上前去。“

沪教版高三C专题(二轮复习-函数与数列3星)

专题:函数与数列★★★ 教学目标 1.理解并能知道数列是一个定义域在N *上的函数; 2.掌握好等差数列的相关函数性质. 知识梳理 5 min 1.数列的定义:数列可以看作以正整数集(或它的有限子集)为定义域的函数()n a f n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值; 2.等差数列的通项公式:11(1)()n a a n d dn a d n N * =+-=+-∈,不难看出: 当0d =,则等差数列为一个常数列; 当0d ≠,则等差数列的通项公式可以看作是一个一次函数. 3.等差数列的前n 项和公式:2111()(1)()()2222 n n n a a n n d d S a n d n a n n N *+-= =+=+-∈. 当0d =,则等差数列前n 项和为一次函数(10a ≠); 当0d ≠,则等差数列前n 项和为过原点的二次函数,开口方向由d 的符号决定. 典例精讲 33 min 例1.(★★)设数列{}n a 的通项公式是14 13--=n n a n ,则该数列中最最大的项是第__________项,最小 的项是第__________项. 解:131414131413 1141414 n n n a n n n --+--= ==+---, 由函数图象可知:最大的项是第4项,最小的项是第3项. 例2.(★★★)已知数列2 n a n kn =-为递增数列,则k 的取值范围是__________. 解:结合函数图象可知:对称轴3 (,)22 k n = ∈-∞,则3k <.

例3.(★★★)已知数列{}n a 满足1116,2n n a a a n +=-=,则n a n 的最小值为__________. 解:由题意得:2 16n a n n =-+,16 121617n a n n n ∴ =+-≥-=, 当且仅当16 n n = ,即4n =时等号成立. 课堂检测 1.(★★★)公差为d ,各项均为正整数的等差数列中,若11,51n a a ==,则n d +的最小值为__________. 解:150(1)1n a a n d d n =+-?= -,则5050 11250111 n d n n n n +=+=-++≥+--, 但n N * ∈ ,∴能成立,所以根据分析得:当115n d =?? =?或6 10n d =??=? 时,原式有最小值16. 2.(★★★)已知数列{}n a 的通项公式为9(1)( )10 n n a n =+,是否存在自然数m ,使对于一切n N *∈,n m a a ≤恒成立?若存在,求出m 的值;若不存在,说明理由. 解:本题只要求出数列n a 的最大值即可,所以根据119 8n n n n a a n a a n -+≥≤?????≥≥??, 所以8m =或9m =时满足题意. 3.(★★★)已知等差数列{}n a 中,120032004200320040,0,0a a a a a >+>?<,则使前n 项和0n S >成立的最大自然数n 是__________. 解:由题意得:2003140054005200414007400720032004140064006000 00000 a a a S a a a S a a a a S >+>>?????? +>>???,所以4006n =. 4.(★★★★)已知函数121()(0),,4x f x m x x R m =>∈+,当121x x +=时,12 1 ()()2 f x f x +=. (1) 求()f x 的解析式; (2) 数列{}n a ,若1 21(0)()()( )()n n n a f f f f f n n n n -=+++++ ,求n a ; (3) 对任意的自然数n N * ∈,1 1 n n n n a a a a ++<恒成立,求正实数a 的取值范围. 解:(1)令1212x x == ,则有111222m m +=++,得2m =.1 ()42 x f x =+;

精品高考数列经典大题

精品高考数列经典大题 2020-12-12 【关键字】条件、满足 1.等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =. (1)求数列{}n a 的通项公式; (2)设()()25 2123n n n b a n n += ++,求数列{}n b 的前n 项和n S . 2.已知数列{}n a 满足:11a =,且对任意∈n N *都有 n a ++ += . (Ⅰ)求2a ,3a 的值; (Ⅱ)求数列{}n a 的通项公式; n n a a ++∈n N *). 3.已知数列}{n a 满足且01=a *)(),1(2 1 21N n n n S S n n ∈++=+ (1)求23,,a a :并证明12,(*);n n a a n n N +=+∈ (2)设*),(1N n a a b n n n ∈-=+求证:121+=+n n b b ; (3)求数列*)}({N n a n ∈的通项公式。 4.设b>0,数列}{n a 满足b a =1,)2(1 11 ≥-+= --n n a nba a n n n .(1)求数列}{n a 的通项公 式;(2)证明:对于一切正整数n ,121+≤+n n b a . 5: 已知数列{}n a 是等差数列,() *+∈-=N n a a c n n n 21 2 (1)判断数列{}n c 是否是等差数列,并说明理由;(2)如果 ()为常数k k a a a a a a 13143,130********-=+++=+++ ,试写出数列{}n c 的 通项公式;(3)在(2)的条件下,若数列{}n c 得前n 项和为n S ,问是否存在这样的实数k ,使n S 当且仅当12=n 时取得最大值。若存在,求出k 的取值范围;

数列与函数相结合题型求解方法

数列与函数相结合的题型求解方法 在解数列综合题中经常碰到与函数相结合的题目,对于这类题目不少学生感到难度较大,其主要原因是有的学生难以运用函数知识进行解题。本文通过具体的例子来说明这类题型的求解方法。 1.与一次函数相结合 例1.设数列{a n }的前n项之和是,a, b是常数,且b≠a。 (1)证明:数列{a n }是等差数列; (2)证明:以为坐标的点P n (n=1,2,3,……)都在同一直线上,并写出此直线方程。 (1993年上海高考题) 分析:要证数列{a n }是等差数列,只要证a n =kn+t (其中k, t是常数),即数列的通项是关于n的一次函数即 可, ∵ S n =an+bn(n-1), ∴ 即 ∴a n =a+2(n-1)b,从而数列a n 的通项是关于n的一次函数,所以数列{a n }是等差数列。 (2)要证以为坐标的点P n (n=1,2,3,……)都在同一直线上, 只要证P n (n≥2且n∈N)与第一点连线的斜率为定值即可。因为 , 所以,以为坐标的点P n (n=1,2,3,……)都在过(a, a-1)且斜率为的同一直线上,

所以所求的直线方程为,即x-2y+a-2=0。2.与二次函数相结合 例2.在直角坐标平面上有一点列P 1(a 1 ,b 1 ),P 2 (a 2 ,b 2 ),P 3 (a 3 ,b 3 ),……,P n (a n ,b n ),……,对每一个自然数n,点 P n (a n ,b n )在函数y=x2的图象上,且点P n (a n ,b n ),点A(n,0),点B(n+1,0),构成一个以点P n (a n ,b n )为顶点的等腰三角 形。 (1)求对每一个自然数n,以点P n 纵坐标构成的数列b n 的通项公式; (2)令,求的值。 分析:(1) 由P n A=P n B可得。 又∵ P n (a n ,b n )在函数y=x2的图象上,∴. (2)∵ , ∴ 3.与指数函数相结合 例3.在xOy平面上有一点列P 1(a 1 ,b 1 ),P 2 (a 2 ,b 2 ),P 3 (a 3 ,b 3 ),……,P n (a n ,b n ),……对每一个自然数n,点 P n (a n ,b n )在函数y=的图象上,且点P n (a n ,b n ),点(n,0)与点(n+1,0)构成一个以点 P n (a n ,b n )为顶点的等腰三角形。 (1)求点P n (a n , b n )的纵坐标b n 的表达式; (2)若对每一个自然数n, 以b n , b n+1 , b n+2 为边长能构成一个三角形,求a的范围; (3)设B n =b 1 b 2 b 3 ……b n (n∈N + ),若a是(2)中确定的范围内的最小整数时,求{B n }的最大项是第几项?

数学文化――数列(27题)

数学文化——数列(27题) 1、“竹九节”问题 【编号第1题】 1.【2015秋?九江校级期末】《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共5升,下面3节的容积共4升,则第5节的容积为() A.B.C.D. 【考点】等差数列的前n项和;等差数列的通项公式. 【分析】由题意可得等差数列的首项和公差,由通项公式可得. 【解析】:由题意可得每节的容积自上而下构成9项等差数列, 且a1+a2+a3+a4=5,a9+a8+a7=4,设公差为d, 则a1+a2+a3+a4=4a1+6d=5,a9+a8+a7=3a1+21d=4, 两式联立可得a1=,d=, 所以第5节的容积a5=a1+4d=. 故选:B 【点评】本题考查等差数列的通项公式和求和公式,属基础题. 【编号第2题】 2.【2011?湖北】《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积为()A.1升B.升C.升D.升 【考点】等差数列的性质. 【分析】设出竹子自上而下各节的容积且为等差数列,根据上面4节的容积共3升,下面3节的容积共4升列出关于首项和公差的方程,联立即可求出首项和公差,根据求出的首项和公差,利用等差数列的通项公式即可求出第5节的容积. 【解析】:设竹子自上而下各节的容积分别为:a1,a2,…,a9,且为等差数列, 根据题意得:a1+a2+a3+a4=3,a7+a8+a9=4, 即4a1+6d=3①,3a1+21d=4②,②×4﹣①×3得:66d=7,解得d=, 把d=代入①得:a1=, 则a5=+(5﹣1)=. 故选B 【点评】此题考查学生掌握等差数列的性质,灵活运用等差数列的通项公式化简求值,是一道中档题. 2、“女子织布”问题

函数导数与数列结合题

1已知函数)0.()1ln()(2≤++=a ax x x f (1)若)(x f 在0=x 处取得极值,求a的值; (2)讨论)(x f 的单调性; (3)证明:e N n e n ,()311)...(8111)(911(*2∈<++ +为自然对数的底数) (本题满分14分) (1)()()的使x f x a x x x f 0,122=++=' 一个极值点,则 ()0,00=∴='a f ,验证知a=0符合条件…………………….3分 (2)()2221212x a x ax a x x x f +++=++=' 1)若a=0时, ()+∞∴,0)(在x f 单调递增,在()0,∞-单调递减; 2)若()恒成立,对时,得,当R x x f a a ∈≤'-≤? ??≤?<0100 R x f 在)(∴上单调递减…………………………………6分 3)若()020012 >++>'<<-a x ax x f a 得时,由 a a x a a 2 21111---<<-+-∴ 再令()可得,0<'x f a a x a a x 2 21111-+-<--->或 上单调递增,在)11,11()(2 2a a a a x f ----+-∴ 在上单调递减和),11()11,(2 2+∞----+--∞a a a a 综上所述,若),()(1+∞-∞-≤在时,x f a 上单调递减, 若时,01<<-a 上单调递增,在)11,11()(2 2a a a a x f ----+-

上单调递减和),11()11,(2 2+∞----+--∞a a a a 。 若()()分单调递减,单调递增,在在时,9..................0,0)(0∞-+∞=x f a (3)由(2)知,当()单调递减,在时,∞+∞--=)(1x f a 当()0)0()(,0=<+∞∈f x f x 时,由 分14.......................,.........)3 11)...(8111)(911(21311213 113113131......3131)3 11ln(......)8111ln()911()]311)...(8111)(911ln[()1ln(2122222e e x x n n n n n n =<+++∴

高中数列经典题型 大全

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211=a ,n n a a n n ++=+2 11 ,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+, 其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,65 1=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121= =x x Θ,∴1 2 11--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ? ? ?+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a 例:已知数列{}n a 中,11=a ,22=a ,n n n a a a 3 1 3212+=++,求n a 。

三角函数与数列

三角函数与数列(高考题) 1.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=. (1)证明:sin A sin B=sin C;(2)若b2+c2-a2=bc,求tan B. 2.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c. (1)求C; (2)若c=,△ABC的面积为,求△ABC的周长. 3.在△ABC中,a2+c2=b2+ac. (1)求∠B的大小; (2)求cos A+cos C的最大值. 4.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin 2B=b sin A. (1)求B; (2)若cos A=,求sin C的值.

5.设f(x)=2sin(π-x)sin x-(sin x-cos x)2. (1)求f(x)的单调递增区间; (2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g的值. 6.设f(x)=sin x cos x-cos2. (1)求f(x)的单调区间; (2)在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f=0,a=1,求△ABC面积的最大值. 7.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍. (1)求;(2)若AD=1,DC=,求BD和AC的长.

8.已知向量=,=(sinx,cos2x),x∈R,设函数f(x)=·. (1) 求f(x)的最小正周期. (2) 求f(x) 在上的最大值和最小值. 9.已知ΔABC的角A,B,C所对的边分别是a,b,c,设向量,, . (1)若知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1. (1)求数列{b n}的通项公式; (2)令c n=.求数列{c n}的前n项和T n. 11.设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*. (1)求通项公式a n;(2)求数列{|a n-n-2|}的前n项和. 12.已知数列的前项和为,且对一切正整数都成立。 (Ⅰ)求,的值;

7.数列的综合应用之一(数列与函数的综合)

数列的综合应用 数列综合应用题型分类: 一、数列与函数的综合; 二、数列与不等式的综合; 三、数列与平面解析几何的综合; 四、数列与极限、数学归纳法、导数等知识的综合。 数列与函数的综合应用 ——数列的综合应用之一 一、典例培析 1、已知函数2*1 ()(,,)ax f x a b N c R bx c += ∈∈+是奇函数,在区间(0,)+∞上()(1)f x f ≥恒成立,且(1)1f ≥ (1)求函数()f x 的解析式; (2)是否存在这样的区间D :①D 是()f x 定义上的一个子区间;②对任意12,,x x D ∈当 1212120,|()||()|x x x x f x f x ><<且时有,若存在,求出区间D ;若不存在,说明理由。 (3)若数列{}n a ,{}n b 满足关系:111 ,()12n n n n n b a a f a b ++==-,当13a =时,求数列{} n b 的通项公式,且当{}n b 的前n 项之积1 128 n T ≥时,求n 的最大值。 2 、已知函数()2)f x x = <- (1)求()f x 的反函数1 ()f x -; (2)设1*11 1 1,()()n n a f a n N a -+==-∈,求n a ; (3)设22 2121, n n n n n S a a a b S S +=+++=- 是否存在最小正整数m ,使得对任意* n N ∈,都有25 n m b <成立?若存在,求出m 的值;若不存在,说明理由。

3、定义:称 12n n p p p +++ 为n 个正数12,,,n p p p 的“均倒数”。若已知数列{}n a 的前 n 项的“均倒数”为 1 21 n +, (1)求{}n a 的通项公式; (2)设21 n n a C n =+,试判断并说明*1()n n C C n N +-∈的符号; (3)设函数2()421 n a f x x x n =-+-+是否存在最大的实数λ,当x λ≤时,对一切* n N ∈, 都有()0f x ≤成立?若存在,求出λ的值;若不存在,说明理由。 4、设数列{},{}n n a b 满足:1122336,4,3a b a b a b ======且数列1{}n n a a +-是等差数列,{2}n b -是等比数列。 (1)求数列{},{}n n a b 的通项公式; (2)是否存在* k N ∈,使1 02 k k a b <-< ?若存在,求出k ;若不存在,说明理由。 5、已知函数()log (01)a f x x a a =>≠且,若数列*122,(),()(),24()n f a f a f a n n N +∈ 成等差数列, (1)求{}n a 的通项公式; (2)若01a <<,数列{}n a 的前n 项和为n S ,求lim n n S →∞ ; (3)记n m S →表示这个数列的第n 项到第m 项共1m n -+项的和,求证: ,,n n m p p m S S →+→+*(2,,,)r r m S p r n m n p r N →+=+∈且成等比数列; (4)若2a =,设()n n n b a f a =?对任意* n N ∈,都有1()n b f t ->,求t 的范围。 6、已知*111 1()23n S n N n =++++∈ ,设211()n n f n S S ++=-,试确定实数m 的取值范围,使得对于任意2n ≥,不等式:2 2111()[log (1)][log ]20 m m f n m m ->--恒成立。

函数与数列综合复习

学员编号: 年 级:高二 课 时 数:2小时 学员姓名: 辅导科目:数学 学科教师:曾老师 课程主题:函数与数列综合复习 授课时间:2019. 学习目标 1.函数综合复习 2.数列综合复习 3.推升学生解题经验和运算巧 教学内容 数列综合卷一 一、选择题 1. 已知等差数列{}n a 满足56=28a a +,则其前10项之和为 ( ) A . 140 B . 280 C . 168 D . 56 2. 由公差为d 的等差数列a 1、a 2、a 3…重新组成的数列a 1+a 4, a 2+a 5, a 3+a 6…是 A .公差为d 的等差数列 B .公差为2d 的等差数列 C .公差为3d 的等差数列 D .非等差数列 3. 等差数列{}n a 的前m 项和为30,前m 2项和为100,则它的前m 3项和为( ) A.130 B.170 C. 210 D. 260 4.已知数列 满足:10a > ,11 2n n a a +=,则数列是( )[ A. 递增数列 B. 递减数列 C. 摆动数列 D. 不确定 5. 已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为( ) A .-90 B .-180 C .90 D . 180 6.设数列的前n 项和,则8a 的值为( ) A . 15 B. 16 C. 49 D. 64 7. 已知等比数列满足,且,则当 时, ( ) {}n a {}n a {}n a 2n S n ={}n a 0,1,2,n a n >=L 25252(3)n n a a n -?=≥1 n ≥2123221log log log n a a a -+++=L

数列典型例题(含答案)

《2.3 等差数列的前n项和》测试题 一、选择题 1.(2008陕西卷)已知是等差数列,,,则该数列前10项和 等于( ) A.64 B.100 C.110 D.120 考查目的:考查等差数列的通项公式与前项和公式及其基本运算. 答案:B 解析:设的公差为. ∵,,∴两式相减,得,.∴,. 2.(2011全国大纲理)设为等差数列的前项和,若,公差, ,则( ) A.8 B.7 C.6 D.5 考查目的:考查等差数列通项公式的应用、前项和的概念. 答案:D 解析:由得,,即,将, 代入,解得. 3.(2012浙江理)设是公差为的无穷等差数列的前项和,则下列命题错误的是( ) A.若,则数列有最大项 B.若数列有最大项,则 C.若数列是递增数列,则对任意,均有 D.若对任意,均有,则数列是递增数列 考查目的:考查等差数列的前项和公式及其性质. 答案:C 解析:根据等差数列的前项和公式,可得,因为,所以其图像表示的一群孤立的点分布在一条抛物线上. 当时,该抛物线开口向下,所以这群孤立的点中一定有最高点,即数列有最大项;反之也成立,故选项A、B的两个命题是正确的. 选项C的命题是错误的,举出反例:等差数列-1,1,3,5,7,…满足数列是 递增数列,但.对于选项D的命题,由,得, 因为此式对任意都成立,当时,有;若,则,与矛盾,所以一定有,这就证明了选项D的命题为真. 二、填空题

4.(2011湖南理)设是等差数列的前项和,且,,则 . 考查目的:考查等差数列的性质及基本运算. 答案:81. 解析:设的公差为. 由,,得,. ∴,故. 5.(2008湖北理)已知函数,等差数列的公差为. 若 ,则 . 考查目的:考查等差数列的通项公式、前项和公式以及对数的运算性质,考查运算求解能力. 答案:. 解析:∵是公差为的等差数列,∴,∴ ,∴,∴ . 6.(2011广东理)等差数列前9项的和等于前4项的和. 若,,则 ____. 考查目的:考查等差数列的性质及基本运算. 答案:10. 解析:设等差数列前项和为. ∵,∴;∵ ,∴. ∴,故. 三、解答题 7.设等差数列的前项和为,且,求: ⑴的通项公式及前项和; ⑵. 考查目的:考查等差数列通项公式、前项和的基本应用,考查分析问题解决问题的能力. 答案:⑴;.⑵ 解析:设等差数列的公差为,依题意,得,解得. ⑴; ⑵由,得.

数列的函数特征(学生版)

数列的函数特征 1、数列的函数特征 数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应的函数解析式,即a n=f(n)(n∈N*).数列的函数图像是一群孤立的点。 2、数列的增减性 (1)若,n∈N*,则数列{a n}叫作递增数列; (2)若,n∈N*,则数列{a n}叫作递减数列; (3)若,n∈N*,则数列{a n}叫作常数列; (4)若a n的符号或大小交替出现,则数列{a n}叫作摆动数列. 3、数列的最大项与最小项 (1)若a n是最大项,则;(2)若a n是最小项,则。 4、数列的周期性 对于数列{a n},若存在一个大于1的自然数T(T为常数),使a n+T=a n,对一切n∈N*恒成立,则称数列{a n}为周期数列,T就是它的一个周期. 考向一数列的单调性 例1—1 已知数列{a n}的通项公式为a n=n2 n2+1 ,判断数列{a n}的增减性.

例1—2 已知数列{a n}的通项公式是a n=an bn+1 ,其中a,b均为正常数,则该数列是单调递__________数列. ①判断数列单调性的基本方法是利用作差或作商的方法比较a n 与a n+1的大小关系,若a n>a n+1(n∈N*)恒成立,则{a n}是递减数列;若a n<a n+1(n∈N*)恒成立,则{a n}是递增数列;②判断数列单调性时,也可从数列与函数的关系出发,分析数列{a n}的通项公式a n=f(n)对应函数的单调性来确定数列的单调性. 变式1—1 已知数列{a n}的通项公式是a n= kn 2n+3 (k∈R). (1)当k=1时,判断数列{a n}的单调性;(2)若数列{a n}是递减数列,求实数k的取值范围. 变式1—2 已知数列{a n}的通项公式a n= 1 1+n2-n ,n∈N*,则该数列是单调递__________数列. 考向二数列的最大项与最小项例2—1 已知数列{a n}的通项公式为a n=n2-5n+4 (n∈N*),则 (1)数列中有多少项是负数?(2)n为何值时,a n有最小值?并求出最小值.

相关主题