搜档网
当前位置:搜档网 › 气相色谱法在食品分析中的应用(精)

气相色谱法在食品分析中的应用(精)

气相色谱法在食品分析中的应用(精)
气相色谱法在食品分析中的应用(精)

气相色谱法在食品分析中的应用

所在学院

专业班级学生姓名学号

指导教师

完成日期年月

1 文献综述

气相色谱法在食品分析中的应用

摘要:综述气相色谱法在食品分析中的应用,通过参考近20篇相关文献,本文阐述了气相色谱技术的原理和气相色谱技术在食品安全检测及监控中的实际应用, 对近年来气相色谱技术在食品检测方面的应用进行综述,主要包括农药残留分析,食品添加剂分析,兽药残留分析以及食品包装材料中挥发物分析,并对未来的应用进行了展望。

关键词: 气相色谱法;基本原理;食品安全检测;有害物质;添加剂

气相色谱法是一种很重要的,以气体为流动相,以液体或固体为固定相的,采用冲洗法的柱色谱分离技术。通过物质之间吸附和解吸附作用,能够实现对复杂样品组分的分离由于气相色谱技术具有技术成熟、易掌握、检测灵敏度高、分离效能高、选择性高、检出限低、样品用量少、方便快捷等特点和优势,可对卤素、硫、磷化物等进行分析,已被广泛应用于食品和酿酒发酵工业的安全检测中。为此,本文就主要谈谈气相色谱技术在食品安全检测中的应用,以供参考[1]。 1 气相色谱技术的基本原理

基本原理:混合物中各组份在一种流动相( 气体或液体的带动下,流经另一固定相( 固体或液体时,固定相对各组份的作用力不同( 溶解、解吸或吸附能力的不同,造成各组份在固定相中滞留时间产生差异,从而使混合物中各组份得以分

离。各组份分离后,随流动相逐一按次序进入一种叫做检测器的系统进行非电量转换,转换成与组份浓度成比例的电讯号→记录、绘图、计算[2]。 2 气相色谱技术在食品安全检测中的应用

目前, 气相色谱技术在食品安全检测方面的应用主要包括:蔬菜、水果及烟草中的农药残留分析; 畜禽、水产品中兽药残留及瘦肉精、三甲胺含量分析; 饮用水中的农药残留及挥发性有机物污染分析; 熏肉中的多环芳烃分析; 食品中添加剂种类与含量分析; 油炸食品中的丙烯酰胺分析; 白酒中的甲醇和杂醇油含量分析; 啤酒、葡萄酒和饮料的风味组分及质量控制分析; 食品包装袋中有害物质及含量的检测分析; 食用植物油中的脂肪酸组成分析等[3]。

2.1 农药和其他药物残留与污染检测分析

近年来,在蔬菜和水果中有机氯、有机磷农药残留和肉类、鱼类产品中的兽

药残留已被社会广泛关注。目前,可采用GC/ECD 气相色谱检测有机氯农药残留,如可利用GC/ECD 分析技术准确检测高丽人参中的有机氯农药残留;可采用

GC/NPD 气相色谱检测有机磷和有机氮农药残留;可采用GC/FPD 气相色谱检测有机磷和有机硫农药残留等。另外,胡彩虹等研究证明,采用GC/FID 气相色谱可检测出猪肉、鱼和虾中三甲胺的含量[4]。

2. 2 多环芳烃、添加剂及丙烯酰胺含量检测分析

多环芳烃( PAHs是一类重要的环境和食品污染物, 目前已知的2~7环PAHs 就有数百种, 其中很多种具有致突变性和致癌性。加工食品中以烟熏和烧烤食品中的PAHs 污染最为严重, 而我国烟熏食品风味独特, 为广大消费者所青睐, 分析检测烟熏类食品中PAHs 含量、了解我国烟熏类食品中PAHs 的污染程度并制定相应的卫生标准有着重要的食品安全意义。采用GC /MS技术可迅速检测与分析常见的20多种PAHs ,其中在熏肉制品中利用GC /MS技术已检出9种PAHs 污染[5]。

2. 3 发酵饮料产品中风味组分的质量控制分析

甲醇和杂醇油在氢火焰中化学电离可进行色谱检测, 是采用GC /FID气相色谱检测白酒中甲醇及杂醇油含量的原理, 使用GC /FID气相色谱对白酒进行质量控制, 方法简便, 快捷、准确[6]。

啤酒、葡萄酒和饮料中有许多挥发性化合物和风味物质, 可以直接反映产品的质量状况, 通过检测这些化合物在生产过程中的变化, 可以控制在生产过程产品质量, 确定发生在发酵酿造过程中影响饮料产品最终味觉和质量的关键问[7]。

顶空进样的气相色谱分析(HS - GC 技术, 是当今世界上应用最广泛的监控啤酒、葡萄酒等酿造发酵饮料产品质量的检测分析技术。采用HS - GC技术可监控啤酒中的硫化物等有害组分、有害色素及挥发性气体, 从而对啤酒、葡萄酒等发酵饮料产品的生产进行适时安全检测与控制。例如, 可以利用GC /F ID 技术对啤酒进行质量分析监控, 快速、准确地检出啤酒中的杂醇油含量[8]。

2. 4 食品包装袋有害物质的检测

人们在购买油分较高的食品时, 往往用到塑料食品包装袋。塑料包装材料生产过程中, 为增加塑料的可塑性和强度及提高其透明度, 往往添加多种增塑剂, 其中使用量最大、最普遍的是酞酸酯(邻苯二甲酸酯, PAEs 。酞酸酯在接触到食品中的油脂时, 特别是在加热的条件下便会溶解出来, 添加的酞酸酯含量越高, 被溶出的数量越多[9]。大量的研究证实, 酞酸酯对动物和人均有慢性毒性并包括

生殖与发育毒性, 具有致突变、致癌作用, 是目前全球范围内最广泛存在的化学污染物之一。国内外关于酞酸酯在环境中分布的研究已较为深入 ,但酞酸酯通过各种途径污染食品的现象还没有引起足够的重视。利用GC /FID气相色谱技术可对塑料食品袋及包装食品中的5种酞酸酯, 包括邻苯二甲酸二甲(DMP 、邻苯二甲酸二乙酯(DEP 、邻苯二甲酸二丁酯(DBP 、邻苯二甲酸二正辛酯(DOP和邻苯二甲酸二(2 - 乙基己基酯(DE2HP进行准确分离和检测[10]。

2. 5 食用油的浸油溶剂残留及脂肪酸组成分析

目前国内生产植物食用油大多采用6号溶剂为萃取剂[11], 而6号溶剂C6 ~C8 烷烃类化合物为主要成分, 并含少量芳烃, 长期接触这些物质会麻醉呼吸中枢, 损伤皮肤屏障功能, 损害周围神经和造血功能[12]。因此, 加强对食用油生产过程中的浸出原油及成品油中的溶剂残留量的监控, 有利于食用植物油加工环节的工艺控制, 切实提高食用油的卫生和安全品质。

国家标准规定以6号溶剂油为标准物配制标准溶液, 以顶空气相色谱法(HS - GC 测定食用植物油中的残留溶剂。该方法能实现对C6 ~C8 烷烃及芳香烃类化合物进行有效分离及检测。

此外, 采用GC /FID法还可以对食用植物油中的30多种脂肪酸的含量进行测定与分析, 主要是检测分析能对人体的营养状况产生不良影响、具有抑制生长并引起甲状腺肥大等副作用的芥酸的含量。利用GC /FID能使30多种脂肪酸得到较好的分离, 以便准确检出特定脂肪酸[13]。

3 气相色谱技术在食品添加剂检测方面的应用

食品添加剂是指“为改善食品品质和色、香、味以及防腐和加工工艺的需要而加入食品中的化学合成或者天然物质”。食品添加剂按用途分为增强食品营养价值的营养强化剂,如氨基酸、维生素、矿物质及微量元素等;保持食品新鲜的添加剂,如防腐剂、抗氧化剂等;改善食品品质的添加剂,如着色剂、酸味剂、增味剂等;利于加工的添加剂,如消泡剂、凝固剂等。气相色谱法主要用于酸型防腐剂、酯型防腐剂。这些添加剂的萃取一般要求将样品用盐酸或硫酸等试剂酸化,使添加剂的由离子形式转化为有机分子,再用极性低的溶剂如石油醚、乙醚等萃取[14]。

毛江胜等[15]采用毛细管气相色谱法测定食用油中的酚类抗氧化剂BHA 、

BHT 、TBHQ 。BHA 、BHT 、TBHQ 检出限分别为5、l0、5 ng(进样量为5.0 ,加标回收率为82.8%~95.6%,相对标准偏差为1.06%~3.11%。

晋玉霞等[16]采用毛细管气相色谱法测定食品中对羟基苯甲酸酯类防腐剂,方法的检出限为2.0~3.2 mg/kg ,回收率为78%~106%,相对标准偏差小于11%。

4 气相色谱技术在兽药残留检测方面的应用

兽药残留是指给动物使用药物后蓄积或储存在细胞、组织或器官内的药物原形、代谢物和药物杂质。近年来,由于在畜牧生产中抗生素、生长促进剂等的应用增加,导致了动物性食品中兽药残留问题日益突出,严重地影响了人们的身体健康。可靠、灵敏的检测技术是检测和控制兽药残留、保证食品安全的重要前提。近年来气相色谱、气相色谱一质谱联用等技术解决了许多兽药残留分析中存在的问题。

丁罡斗等[17]建立了固相萃取一气相色谱一离子阱二级质谱(GC—MS /MS 测定猪肉中氢化泼尼松和甲基氢化泼尼松残留量的分析方法。采用DB 一5毛细管柱分离,电子轰击电离源二级质谱监测模式检测,外标法定量。氢化泼尼松和甲基氢化泼尼松的回收率均为56%~84%。两种药物的检测限和定量限均分别为1 ug /kg 和2 ug/kg 。

应永飞等[18]采用气相色谱一质谱法测定猪肉中的莱克多巴胺,用乙腈提取试样中的莱克多巴胺,经SLH 固相萃取柱净化,猪肉中莱克多巴胺的检出限为0.5ug/ kg,定量限为2.0ug/ kg,平均回收率为81.4%,批内相对标准偏差小于8.4%。

谢孟峡等[19]对鸡肉、猪肉、猪肝、鸭肝等动物组织样品中的氯霉素残留的检测方法进行了研究。用乙酸乙酯和磷酸盐缓冲溶液提取动物组织中的氯霉素残留,用硅胶和C 固相萃取柱对乙酸乙酯提取物进行净化和富集。样品的加标回收率为80%~100%,相对标准偏差小于2.O %,检出限为0.1 kg。 5 结论与展望

食品分析涉及多学科交叉的方法学领域,分析对象和样品机质复杂,高灵敏度、低检出限、高选择性、联用分析、高分析速度、智能化、多残留分析、在线分析、活体分析、现场快速分析、分析仪器的微型化、集成化和便携化是目前食

品分析的主要发展方向[20]相信随着色谱技术的发展,气相色谱技术可以结合。其他检测技术在食品安全检测领域得到更好的应用,为广大人民群众把好食品质量安全关。参考文献 [1] [2] [3] [4] 曹环礼.气相色谱技术的研究进展及其应用[J].广东化工,2009,36(8).李礼,等.色谱,2007,25(4:573—576.杨惠芬. 食品卫生理化检验标准手册[M ]. 北京:中国标准出版社, 1997: 577 - 578. 胡彩虹,许梓荣. 气相色谱法测定猪肉、鱼和虾中三甲胺的含量[ J ]. 食品科学, 2001, 22 (5 : 62 - 64. [5] Li X J, Zeng Z R, Chen Y, et al. Determination of phthalate acid es2ters p lasticizers in p lastic by ultrasonic solvent extraction combinedwith solid - phase micro - extraction using calix[ 4 ] arene fiber[ J ].Talanta, 2004, 63: 1013 - 1019. [6] 王斌,冯锡凯,马立明. 气相色谱内标(环己烷法测定蒸馏酒中甲醇、杂醇油含量[ J ]. 中国卫生检验杂志, 2006, 16 (7 : 802 -803. [7] [8] 吴广黔.气相色谱技术在白酒分析中的应用[J].酿酒,2008,35(1).宋家玉,胡作林,唐勤俭. 气相色谱法测定保健食品功效成分DHA和

EPA[ J ]. 预防医学文献信息, 2001, 7 (5 : 532 - 533. [9] 张明霞,庞建光,周建科. 气相色谱法测定膨化食品中氯丙醇类化合物[ J ]. 食品科学, 2004, 25 (3 : 147 - 149. [10] 袁毅,汪海峰.食用油中溶剂残留测定的若干影响因素分析[J].中国油脂,2006, 31(9). [11] 李艳梅. 关于食用油脂中残留溶剂油对人体危害的探讨及对策[ J ]. 职

业与健康,

2001, 17 (6 : 46 - 47. [12] 林秋萍,李克勤,贾斌,等. 气相色谱法测定肌肉中氯霉素残留[ J ]. 食品科学, 2004, 25 (11 : 245 - 247. [13] 汪海峰,鞠兴荣,杨晓蓉,等. 食用植物油中残留溶剂的高温顶空气相色谱分离与测定 [ J ]. 食品科学, 2006, 27 (2 : 235 - 238. [14] GB 2760—1996 食品添加剂使用卫生标准 [S]. [15] 毛江胜,等.化学分析计量,2006,l5(6:11—12 [16] 晋玉霞,等.现代食品科技,2007,23(3:77.78—79 [17] 丁罡斗,等.色谱,2007,25(4:602—603 [18] 应永飞,等.中国兽药杂志,

2006,40(5:23—26 [19] 谢孟峡,等分析化学,2005,(331:l一4 [20] 黄冬梅,等.色谱,2007,25(6:953—954.

气相色谱定性和定量分析

气相色谱定性和定量分析 一、实验目的 1、了解气相色谱各种定性定量方法的优缺点。 2、掌握纯标样对照、保留值定性的方法。 3、掌握面积和峰高归一化定量方法。 二、实验原理 气相色谱是一种强有力的分离技术,但其定性鉴定能力相对较弱。一般检测器只能“看到”有物质从色谱中流出,而不能直接识别其为何物。若与强有力的鉴定技术如质谱及傅里叶变换红外光谱等联用,则能大大提高气相色谱的定性能力。 在实际工作中,有时遇到的样品其成分是大体已知的,或者是可以根据样品来源等信息进行推测的。这时利用简单的气相色谱定性方法往往能解决问题。气相色谱定性方法主要有以下几种: (1)标准样品对照定性; (2)相对保留值定性; (3)利用调整保留时间与同系物碳数的线性关系定性; (4)利用调整保留时间与同系物沸点的线性关系定性; (5)利用Kovats 保留指数定性; (6)双柱定性或多柱定性。 (7)仪器联用定性,如用质谱、红外光谱及原子发射光谱检测器。 本实验采用标准样品对照和相对保留值定性方法。 气相色谱在定量分析方面是一种强有力的手段。常用的定量方法有峰面积百分比法、内部归一化法、内标法和外标法等。峰面积百分比法适合于分析响应因子十分接近的组分的含量,它要求样品中所有组分都出峰。内部归一化法定时准确,但它不仅要求样品中所有组分都出峰,而且要求具备所有组分的标准品,以便测定校正因子。内标法是精度最高的色谱定量方法,但要选择一个或几个合适的内标物并不总是易事,而且在分析样品之前必须将内标物加入样品中。外标法简便易行,但定量精度相对较低,且对操作条件的重现性要求较严。本实验采用内部归一化法,其计算公式如下: %100%?=∑mi i mi i i f A f A A 式中Ai 为组分i 的峰面积,fmi 为组分i 的相对校正因子,它可由计算相对响应值S ’的方法求得: i s i s m yA x A S S S f ==='1 式中,Ss 、Si 分别为标准物(常为苯)和被测物的响应因子,As 、y 和Ai 、x 分别为标准物和被测物的色谱峰面积及进样量。有些工具书或参考书记录了文献发表的一些fm 或S’值。

气相色谱法基本原理及其应用

安徽建筑大学 现代水分析技术论文 专业:xx级市政工程 学生姓名:xxx 学号:xxx 课题:气相色谱法基本原理及其应用指导教师:xxx xx年xx月xx日

气相色谱法基本原理及其应用 xx (安徽建筑工业学院环境与能源工程学院,合肥,230601) 摘要:气相色谱法是分离混合物中各组分的一种有效的手段,其中气相色谱仪是20世纪50年代末在多数科学家的共同努力下诞生的。本文针对气相色谱法的起源与发展历程、工作原理与特点、在环境水污染物分析领域的应用进行了详细的概述,并列举了饮用水中挥发性有机物的气相色谱检测方法,同时提出了该方法新的发展前景。它的发展已在环境监测、水污染控制领中得到了广泛的应用。 关键词:气相色谱法;发展历程;工作原理;水污染物分析 1.气相色谱法的起源与发展历程 (1)气相色谱法的起源 色谱的发现首先认识到这种分离现象和分离方法大有可为的是俄国的植物学家Tswett。Tswett于1903年在波兰华沙大学研究植物叶子的组成时,将叶绿素的石油醚抽提液倒入装有碳酸钙吸附剂的玻璃管上端,然后用石油醚进行淋洗,结果不同色素按吸附顺序在管内形成一条不同颜色的环带,就像光谱一样。1906年,Tswett在德国植物学杂志上发表的一篇论文中首次把这些彩色环带命名为“色谱图”,玻璃管称为“色谱柱”,碳酸钙称为“固定相”,石油醚称为“流动相”。Tswett开创的方法叫做“液-固色谱法”[1-2],这就是色谱法的起源。 1941年,英国科学家Martin和Synge在研究液-液分配色谱时,预言可以使用气体作流动相,即气-夜色谱法。他们在1941年发表的论文中写到“流动相不一定是液体,也可以是蒸气,如以永久性气体带动挥发性混合物,在色谱柱中通过装有浸透不挥发性溶剂的固体时,可以得到很好的分离”[3]。1950年,Martin和James使用硅藻土助滤剂做载体,硅油为固定相,用气体流动相对脂肪酸进行精细分离,这就是气^液分配色谱的起源。后来,他们在1952年的Biochemical Journal上又连续发表了3篇论文[4-6],叙述了用气相色谱分离低碳数脂肪酸、挥发性胺和吡啶类同系物的方法,这标志着气相色谱法正式进入历史舞台。当时在石油化工的分析中,正当传统的分析方法无能为力时,气相色谱法就像及时雨一样,成为化学分析的得力助手。从此,科学家对气相色谱法的研究逐步展开。 (2)气相色谱法的发展 在历史上,气相色谱法的发展总是和气相色谱仪器的发展密不可分。每一种气相色谱新技术的出现,往往都伴随着气相色谱仪器的改进。因此,了解气相色谱法的发展历史可以从气相色谱仪的发展入手。历史上最早的气相色谱仪1947年由捷克色谱学家Jaroslav Janak发明的。该仪器以C为流动相、杜马测氮管为检测器测定分离开的气体体积。在样品和CA 进入测氮管之前,通过KOH溶液吸收掉CA,按时间记录气体体积的增量。这台仪器虽然简陋,但对当时的气相色谱研究起到了巨大的推动作用。Jaroslav Janak发明的气相色谱仪也有一些明显的不足:它只能测室温下为气体的样品, 样品中的CA不能被测定,而且没有实现自动化。20世纪50年代末,它逐渐被更先进的气相色谱仪所取代。W55年,第一台商品化气相色谱仪诞生,标志着气相色谱仪的发展进入了崭新的时代。 现代气相色谱仪主要由5个系统组成,即气路系统、进样系统、分离系统、温度控制系统与检测记录系统。气路系统与温控系统自气相色谱诞生以来很少有突破性的进展。气路系统主要朝自动化方向发展,20世纪90年代出现了采用电子压力传感器和电子流量控制器,通过计算机实现压力和流量自动控制的电子程序压力流量控制系统,这是气路系统的一大进步[7]。温控系统则基本朝着精细、快速、自动化方向发展。相比之下,进样系统、分离系统与检测记录系统是气相色谱仪的核心组成系统,它们的每一次变革和进步都推动着气相色谱的

气相色谱定量分析方法

归一化法 归一化法有时候也被称为百分法(percent),不需要标准物质帮助来进行定量。它直接通过峰面积或者峰高进行归一化计算从而得到待测组分的含量。其特点是不需要标准物,只需要一次进样即可完成分析。 归一化法兼具内标和外标两种方法的优点,不需要精确控制进样量,也不需要样品的前处理;缺点在于要求样品中所有组分都出峰,并且在检测器的响应程度相同,即各组分的绝对校正因子都相等。归一化法的计算公式如下: 当各个组分的绝对校正因子不同时,可以采用带校正因子的面积归一化法来计算。事实上,很多时候样品中各组分的绝对校正因子并不相同。为了消除检测器对不同组分响应程度的差异,通过用校正因子对不同组分峰面积进行修正后,再进行归一化计算。其计算公式如下: 与面积归一化法的区别在于用绝对校正因子修正了每一个组分的面积,然后再进行归一化。注意,由于分子分母同时都有校正因子,因此这里也可以使用统一标准下的相对校正因子,这些数据很容易从文献得到。 当样品中不出峰的部分的总量X通过其他方法已经被测定时,可以采用部分归一化来测定剩余组分。计算公式如下: 内标法 选择适宜的物质作为预测组分的参比物,定量加到样品中去,依据欲测定组分和参比物在检测器上的响应值(峰面积或峰高)之比和参比物加入量进行定量分析的方法叫内标法。特点是标准物质和未知样品同时进样,一次进样。内标法的优点在于不需要精确控制进样量,由进样量不同造成的误差不会带到结果中。缺陷在于内标物很难寻找,而且分析操作前需要较多的处理过程,操作复杂,并可能带来误差。 一个合适的内标物应该满足以下要求:能够和待测样品互溶;出峰位置不和样品中的组分

重叠;易于做到加入浓度与待测组分浓度接近;谱图上内标物的峰和待测组分的峰接近。内标法的计算公式推导如下: 式中,Ai,As分别为待测组分和内标物的峰面积;Ws,W分别为内标物和样品的质量;Gwi/s是待测组分对于内标物的相对质量校正因子(此值可自行测定,测定要求不高时也可以由文献中待测组分和内标物组分对苯的相对质量校正因子换算求出)。 内加法 在无法找到样品中没有的合适的组分作为内标物时,可以采用内加法;在分析溶液类型的样品时,如果无法找到空白溶剂,也可以采用内加法。内加法也经常被称为标准加入法。 内加法需要除了和内标法一样进行一份添加样品的处理和分析外,还需要对原始样品进行分析,并根据两次分析结果计算得到待测组分含量。和内标法一样,内加法对进样量并不敏感,不同之处在于至少需要两次分析。下面我们用一个实际应用的例子来说明内加法是如何工作的: 题:在分析某混合芳烃样品时,测得样品中苯的面积为1100,甲苯的面积为2000,(其它组分面积略)。精确称取40.00g该样品,加入0.40g甲苯后混合均匀,在同一色谱仪上进混合后样品测到苯的面积为1200,甲苯的面积为2400,试计算甲苯的含量。 分析:本题的分析过程是一个典型的内加法操作,其中内加物为甲苯,待测组分为甲苯和苯。 解:1. 由于进样量并不准确,因此两次分析的谱图很难直接进行对比。为了取得可以对比的一致性,我们通过数字计算调整两次分析苯的峰面积相等。此时由于两次分析苯峰面积相等,因此可以断定两次分析待测样品的进样量是相等的。需要注意的是:此时两次分析的总的进样量并不相等,添加后样品比原始样品调整后的进样量中,多了添加的内标物的量。调整可以用原始样品谱图为依据,也可以用添加后样品谱图为依据。但是通常采用原始样品作为依据以便计算最终结果时比较简单。注意:选用的依据不同,中间计算结果会产生差异,但不会影响最终结果。依据的谱图一旦选定,计算就应该围绕此依据进行。 在以原始样品谱图为依据的情况下,调整添加后样品谱图中甲苯的峰面积如下: 对比两次分析,甲苯的面积增加为2200-2000=200。在两次分析待测样品量相同的情况下,内加物面积的增加来自于内加量。也就是说,由于内加物的加入,导致了内加物峰面积的增

分析化学第14章练习题

复习提纲:第十四章气相色谱法 色谱法的基本原理 1.色谱法的起源(了解)、基本原理(掌握)、仪器基本框图(掌握)、分类、特点及应用(了解) 2.色谱流出曲线及相关术语:基线:可用于判断仪器稳定性及计算检出限(掌握)峰面积(峰高):定量基础(掌握) 保留值:定性基础(掌握);死时间、保留时间、调整保留时间;死体积、保留体积、调整保留体积;相对保留值(选择性因子)等(掌握) 峰宽的各种表示及换算(掌握) 3.色谱基本原理: 热力学(掌握):分配系数K ,仅与两相和温度有关,温度增加K 减小 分配比k,k 除与两相和温度有关外(温度增加k 减小)还与相比有关(相比的概念)k=t r /t0;k=K/ ;=K2/K 1=k2/k1 分离对热力学的基本要求:两组份的>1 或K 、k 不相等;越大或K 、k 相差越大越容易实现分离 动力学:塔板理论:理论(或有效)塔板数(柱效)及理论(有效板高)的计算公式及有关说明(掌握);塔板理论的贡献及不足(了解) 速率理论:H=A+B/u+Cu 中H、A、B、C、u的含义(掌握);减小A 、B、C的手段(掌握);u 对H 的影响及最佳流速和最低板高的计算公式(掌握);填充物粒径对板高的影响(掌握) 4.分离度分离度的计算公式;R=1.5 时,完全分离;R=1 时基本分离(掌握) 5.基本色谱分离方程两种表达形式要熟练掌握;改善分离度的手段:增加柱效n(适当增加柱长的前提下减小板高)、增加选择性因子(GC:改变固定相和柱温)和控制适当的容量因子k (GC:改变温度及固定相用量)(掌握) 分离度与柱效、柱长、分析时间(即保留时间)之间的关系(掌握);柱温对分离度的影响(了解);相关例题(熟练掌握) 6. 定性分析常规检测器用保留时间(相对保留值也可以)定性,但该法存在的不足要知道,双柱或多柱可提高保留时间定性的可靠性;质谱或红外等检测器有很强的定性能力(了解) 7. 定量分析 相对校正因子和绝对校正因子的概念(掌握);归一化法各组分含量的计算公式(掌握);内标法定 量的计算公式(掌握相关作业)归一化法和内标法不受进样量和仪器条件变化的影响,外标法受进样量和仪器条件变化的影响较大 (了解) 气相色谱法 1.气相色谱法流程和适用对象;气固和气液色谱的适用对象(掌握) 2.气相色谱法的仪器: 气路系统:通常采用N2、H2、Ar、He 等惰性气体做载气(高压钢瓶提供),载气纯度、流速的大小及稳定性对色谱柱柱效、仪器灵敏度及整机稳定影响很大,因此载气纯度要高、流速要适当而且稳定。

气相色谱法附答案

气相色谱法(附答案) 一、填空题1. 气相色谱柱的老化温度要高于分析时最高柱温_____℃,并低于固定液的最高使用温度,老化时,色谱柱要与_____断开。答案:5~10 检测器 2. 气相色谱法分离过程中,一般情况下,沸点差别越小、极性越相近的组分其保留值的差别就_____,而保留值差别最小的一对组分就是_____物质对。答案:越小难分离3.气相色谱法分析非极性组分时应首先选用_____固定液,组分基本按沸点顺序出峰,如烃和非烃混合物,同沸点的组分中_____大的组分先流出色谱柱。答案:非极性极性4.气相色谱法所测组分和固定液分子间的氢键力实际上也是一种_____力,氢键力在气液色谱中占有_____地位。答案:定向重要 5.气相色谱法分离中等极性组分首先选用_____固定液,组分基本按沸点顺序流出色谱柱。答案:中极性 6.气相色谱分析用归一化法定量的条件是______都要流出色谱柱,且在所用检测器上都能_____。 答案:样品中所有组分产生信号 7.气相色谱分析内标法定量要选择一个适宜的__,并要求它与其他组分能__。答案:内标

物完全分离 8.气相色谱法常用的浓度型检测器有_____和_____。答案:热导检测器(TCD) 电子捕获检测器(ECD) 9. 气相色谱法常用的质量型检测器有_____和_____。答案:氢火焰检测器(FID) 火焰光度检测器(FPD) 10. 电子捕获检测器常用的放射源是_____和_____。答案:63Ni 3H 11. 气相色谱分析中,纯载气通过检测器时,输出信号的不稳定程度称为_____。答案:噪音 12. 顶空气体分析法是依据___原理,通过分析气体样来测定__中组分的方法。答案:相平衡平衡液相 13. 毛细管色谱进样技术主要有_____和______。答案:分流进样不分流进样 14. 液—液萃取易溶于水的有机物时,可用______法。即用添加_____来减小水的活度,从而降低有机化合物的溶解度。答案:盐析盐 15.气相色谱载体大致可分为______和______。答案:无机载体有机聚合物载体

气相色谱在环境分析中的应用(精)

气相色谱法在环境分析中的应用 摘要:气相色谱法是一种很常见的环境分析检测方法,我们也经常将它应用在水、大气、固废等环境检测中。我们以检测非甲烷烃为例来进行探究和学习,(非甲烷烃是一种对人体健康有害的气体)因此我们利用带有双柱双氢火焰离子化检测器的气相色谱仪(岛津GC2014型)和自己所学的知识来对此进行气相色谱检测。并且通过这次检测来了解和复习流动相、检测器、色谱柱以及温度等色谱条件是如何选择以及定性、定量分析方法。 关键词:非甲烷总烃;气相色谱法;定性、定量分析; 1.非甲烷总烃 非甲烷烃(NMHC通常是指除甲烷以外的所有可挥发的碳氢化合物(其中主要是C2~C8,又称非甲烷总烃。主要包括烷烃、烯烃、芳香烃和含氧烃等组分。大气中的非甲烷总烃超过一定浓度,除直接对人体健康有害外,在一定条件下经日光照射还能产生光化学烟雾,对环境和人类造成危害[1]。 监测环境空气和工业废气中的NMHC有许多方法,但目前多数国家采用气相色谱法。由于直接测定NMHC所用仪器价格昂贵,因此我们采用双柱双氢火焰离子化检测器气相色谱法分别测出总烃和甲烷的含量,两者之差为NMHC的含量。在规定的条件下所测得的NMHC是于气相色谱氢火焰离子化检测器有明显响应的除甲烷外碳氢化合物总量,以碳计[2]。 目前我国基本采用气相色谱法测定非甲烷总烃, 按进样的不同有活性炭吸附一热解吸法及针筒采样一手动进样法,采用活性炭吸附一热解吸法[3]易受到活性炭吸附效率的影响,而针筒采样——手动进样法[4]则重复性较差、易熄火。而我们采用气袋采样—气体自动进样器进样分析气体中非甲烷总烃,而这样也最令人满意。此方法操作简单、重复性好、效率高、干扰少,且可用于其他挥发性有机物,如苯系物等的测定。 2.利用气相色谱法检测非甲烷总烃

气相色谱定性与定量的分析

实验十一、气相色谱的定性和定量分析 一、实验目的: 1.进一步学习计算色谱峰的分辨率; 2.熟练掌握根据保留值,用已知物对照定性的分析方法; 3.熟悉用归一化法定量测定混合物各组分的含量。 二、实验原理 气相色谱是一种强有力的分离技术,但其定性鉴定能力相对较弱。一般检测器只能“看到”有物质从色谱中流出,而不能直接识别其为何物。若与强有力的鉴定技术如质谱及傅里叶变换红外光谱等联用,则能大大提高气相色谱的定性能力。 在实际工作中,有时遇到的样品其成分是大体已知的,或者是可以根据样品来源等信息进行推测的。这时利用简单的气相色谱定性方法往往能解决问题。气相色谱定性方法主要有以下几种: (1)标准样品对照定性; (2)相对保留值定性; (3)利用调整保留时间与同系物碳数的线性关系定性; (4)利用调整保留时间与同系物沸点的线性关系定性; (5)利用Kovats保留指数定性; (6)双柱定性或多柱定性。 (7)仪器联用定性,如用质谱、红外光谱及原子发射光谱检测器。 本实验采用标准样品对照和相对保留值定性方法。 气相色谱在定量分析方面是一种强有力的手段。常用的定量方法有峰面积百分比法、内部归一化法、内标法和外标法等。峰面积百分比法适合于分析响应因子十分接近的组分的含量,它要求样品中所有组分都出峰。内部归一化法定时准确,但它不仅要求样品中所有组分都出峰,而且要求具备所有组分的标准品,以便测定校正因子。内标法是精度最高的色谱定量方法,但要选择一个或几个合适的内标物并不总是易事,而且在分析样品之前必须将内标物加入样品中。外标法简便易行,但定量精度相对较低,且对操作条件的重现性要求较严。本实验采用内部归一化法,其计算公式如下:

2、分析化学气相色谱分析法、液相和离子色谱

School of Chemical Engineering, HFUT
合肥工业大学 化工学院
高效液相色谱法
第一节 概述
高效液相色谱法:以气相色谱为基础,在经典液相 色谱实验和技术基础上建立的一种液相色谱法 一、HPLC与经典LC区别 二、HPLC与GC差别 三、高效液相色谱仪流程图 四、特点

School of Chemical Engineering, HFUT
合肥工业大学 化工学院
一、HPLC与经典LC区别
主要区别:固定相差别,输液设备和检测手段 1.经典LC:仅做为一种分离手段 柱内径1~3cm,固定相粒径>100μm 且不均匀 常压输送流动相 柱效低(H↑,n↓) 分析周期长 无法在线检测 2.HPLC:分离和分析 柱内径2~6mm,固定相粒径<10μm(球形,匀浆装柱) 高压输送流动相 柱效高(H↓,n↑) 分析时间大大缩短 可以在线检测

School of Chemical Engineering, HFUT
合肥工业大学 化工学院
二、HPLC与GC差别 相同:兼具分离和分析功能,均可以在线检测 主要差别:分析对象的差别和流动相的差别 1.分析对象 GC:能气化、热稳定性好、且沸点较低的样品, 高沸点、挥发性差、热稳定性差、离子型及 高聚物的样品不可检测 占有机物的20% HPLC:溶解后能制成溶液的样品, 不受样品挥发性和热稳定性的限制 分子量大、难气化、热稳定性差及高分子 和离子型样品均可检测 用途广泛,占有机物的80%

气相色谱仪的及如何应用

气相色谱仪的简介及如何应用 气相色谱仪 气相色谱法适用于分析具有一定蒸气压且热稳定性好的组分,对气体试样和受热易挥发的有机物可直接进行分析,而对500℃以下不易挥发或受热易分解的物质部分可采用衍生化法或裂解法。 一、仪器的组成 气相色谱仪由载气源、进样部分、色谱柱、柱温箱、检测器和数据处理系统组成。进样部分、色谱柱和检测器的温度均在控制状态。 二、对仪器的基本要求 1.对仪器的一般要求 (1)载气源气体氦、氮和氢可用作气相色谱法的流动相,可根据供试品的性质和检测器种类选择载气,除另有规定外,常用载气为氮气。 (2)进样部分进样方式一般可采用溶液直接进样或顶空进样。采用溶液直接进样时,进样口温度应高于柱温30~50℃。顶空进样适用于固体和液体供试品中挥发性组分的分离和测定。 (3)色谱柱根据需要选择。新填充柱和毛细管柱在使用前需老化以除去残留溶剂及低分子量的聚合物,色谱柱如长期未用,使用前应老化处理,使基线稳定。 (4)柱温箱柱温箱温度的波动会影响色谱分析结果的重现性,因此柱温箱控温精度应在±1℃,且温度波动小于每小时0.1℃。 (5)检测器适合气相色谱法的检测器有火焰离子化检测器(FID)、热导检测器(TCD)、氮磷检测器(NPD)、火焰光度检测器(FPD)、电子捕获检测器(ECD)、质谱检测器(MS)等。火焰离子化检测器对碳氢化合物响应良好,适合检测大多数的药物;氮磷检测器对含氮、磷元素的化合物灵敏度高;火焰光度检测器对含磷、硫元素的化合物灵敏度高;电子捕获检测器适于含卤素的化合物;质谱检测器还能给出供试品某个成分相应的结构信息,可用于结构确证。除另有规定外,火焰离子化检测器一般用氢气作为燃气,空气作为助燃气。在使用火焰离子化检测器时,检测器温度一般应高于柱温,并不得低于150℃,以免水汽凝结,通常为250~350℃。 (6)数据处理系统目前多用计算机工作站。 药典规定,各品种项下规定的色谱条件,除载气、检测器、固定液品种及特殊指定的色谱柱材料不得改变外,其余如色谱柱内径、长度、载体牌号、粒度、固定液涂布浓度、载气流速、柱温、进样量、检测器的灵敏度等,均可适当改变,以适应具体品种并符合系统适用性试验

气相色谱法—内标法

什么叫内标法?怎样选择内标物?
     内标法是一种间接或相对的校准方法。在分析测定样品中某组分含量时,加入一种内标物质以校谁和消除出于操作条件的波动而对分析结果产生的影响,以提高分析结果的准确度。
     内标法在气相色谱定量分析中是一种重要的技术。使用内标法时,在样品中加入一定量的标准物质,它可被色谱拄所分离,又不受试样中其它组分峰的干扰,只要测定内标物和待测组分的峰面积与相对响应值,即可求出待测组分在样品中的百分含量。采用内标法定量时,内标物的选择是一项十分重要的工作。理想地说,内标物应当是一个能得到纯样的己知化合物,这样它能以准确、已知的量加到样品中去,它应当和被分析的样品组分有基本相同或尽可能一致的物理化学性质(如化学结构、极性、挥发度及在溶剂中的溶解度等)、色谱行为和响应特征,最好是被分析物质的一个同系物。当然,在色谱分析条什下,内标物必须能与样品中各组分充分分离。需要指出的是,在少数情况下,分析人员可能比较关心化台物在一个复杂过程中所得到的回收率,此时,他可以使用一种在这种过程中很容易被完全回收的化台物作内标,来测定感兴趣化合物的百分回收率,而不必遵循以上所说的选择原则。
    
     在使用内标法定量时,有哪些因素会影响内标和被测组分的峰高或峰面积的比值?
    
     影响内标和被测组分峰高或峰面积比值的因素主要有化学方面的、色谱方面的和仪器方面的三类。
     由化学方面的原因产生的面积比的变化常常在分析重复样品时出现。
     化学方面的因素包括:
     1、内标物在样品里混合不好;
     2、内标物和样品组分之间发生反应,
     3、内标物纯度可变等。
     对于一个比较成熟的方法来说,色谱方面的问题发生的可能性更大一些,色谱上常见的一些问题(如渗漏)对绝对面积的影响比较大,对面积比的影响则要小一些,但如果绝对面积的变化已大到足以使面积比发生显著变化的程度,那么一定有某个重要的色谱问题存在,比如进样量改变太大,样品组分浓度和内标浓度之间有很大的差别,检测器非线性等。进样量应足够小并保持不变,这样才不致于造成检测器和积分装置饱和。如果认为方法比较可靠,而色谱固看来也是正常的话,应着重检查积分装置和设置、斜率和峰宽定位。对积分装置发生怀疑的最有力的证据是:面积比可变,而峰高比保持相对恒定,
    
     在制作内标标准曲线时应注意什么?
    
     在用内标法做色话定量分析时,先配制一定重量比的被测组分和内标样品的混合物做色谱分析,测量峰面积,做重量比和面积比的关系曲线,此曲线即为标准曲线。在实际样品分析时所采用的色谱条件应尽可能与制作标准曲线时所用的条件一致,因此,在制作标准曲线时,不仅要注明色谱条件(如固定相、柱温、载气流速等),还应注明进样体积和内标物浓度。在制作内标标准曲线时,各点并不完全落在直线上,此时应求出面积比和重量比的比值与其平均位的标准偏差,在使用过程中应定期进行单点校正,若所得值与平均值的偏差小于2,

气相色谱法的应用

气相色谱法的应用 气相色谱法在石油工业中的应用 ⑴石油气的分析石油气(C1~C4)的成分分析,目前都采用气相色谱法。以25%丁酮酸乙酯为固定液,6201担体,柱长12.15m,内径4mm,柱温12℃,氢为载气,流速25ml/nin,热导池电桥电流120~150mA, C1~C4各组分得较好的分离见图10。图10 石油在丁酮酸乙酯柱上的分离1-空气;2-乙烷;3-乙烯;4-二氧化碳;5-丙烷;6-丙烯;7-异丁烷8-乙炔;9-正丁烷;10-正丁烯;11-异丁烯12- 反丁烯-2,3;13- 顺丁烯-2,4;14-丁二烯北京化工研究院近期研究出用多孔氧化铝微球色谱固定相,对C1~C4烃分离很好,柱长2m,内径2mm,内填充0.3%阿皮松L,改性?-Al2O3,微球120~130目;柱温85℃,氮为载气,流速15ml/min,氢火焰离子化检测器。分离谱见图11. 此外吉林化学工业公司研究院还研制了石墨化炭黑和改性石墨化炭黑色谱固定相分离C1~C4烃。⑵石油馏的的分析气相色谱法分析石油馏分的效能与分析速度是精密分馏等化学方法所不能比拟的。如一根60m长、内径0.17mm的弹性石英毛细管柱,内涂OV-101,在程序升温条件下(柱温40~90℃)进样0.6?1,分流比150:1,分析了65~165℃大港直馏气油。用一根30m长、内径0.25mm 毛细管柱,涂PEG1500,柱温80℃,汽化100℃,氮为载气,分流比100:1,汽油中微量芳香烃得到很好的分离(见图12)。图11 低级烃类的气相色谱分离图1-CH4;2-C2H6;3-C2 H4;4-C3 H8;5-C2 H2;6-C8 H6;7-iC4 H10;8-nC4 H10;9-丙二烯;10-丁烯-1;11-iC5 H12 12--i C4 H6;13- 反丁烯-2;14- 顺丁烯-2;15-丁二烯16-丙炔图12汽微量芳烃的油中色谱分离1-苯;2-甲苯;3-乙苯;4-对二甲苯;5-一间二甲苯; 6-邻二甲苯 气相色谱法在环境科学中的应用 我国在环境科学研究、监督检测中,广泛使用气相色谱法测定大气和水中痕量胡害物质。 ⑴大气中微量-氧化碳的分析 汽车尾气中含有一氧化碳,工业锅炉和家用煤炉燃烧不完全放出一氧化碳,都污染环境。大气中痕量一氧化碳常用转化法没定。国产SP-2307色谱仪具有转化装置,使CO转化为CH4。CO+3H2Ni催化/380℃→CH4+H2O 色谱柱固定相可用5A筛分子,GDX-104,Porpak Q等,以分子筛为例,13X或5A分子筛60~80目(先经500~550℃活化2小时)以氢气载气, 57ml/nin;氢焰检测器;空气400ml/min;尾吹氮气80ml/min。柱长2m,内径2mm,柱温36℃,检测室130℃,转化炉380v;进样量1mm。可测大气中ppm级一氧化碳。

气相色谱法在分析中的应用(精)

-科苑论谈 气相色谱法在分析中的应用 王颖石 (黑化集团有限公司,黑龙江齐齐哈尔161041) 摘要:简述气相色谱法近年来的发展及在分析中所起到的重要作用,详细阐述气相色谱法的工作原理、方法特点、操作流程及气相色谱曲线的特点。 关键词:气相色谱;色谱柱;色谱峰;载气 前言:气相色谱法是近五十年来迅速发展起来的一种新型分离,分析技术,在石油炼制、基本有机原料、高分子、医药、原子能、冶金工业中得到了广泛的应用。对保证工业生产的正常进行和提高产品质量起到了重要的作用。在许多生产部门,气相色谱分析法逐步代替了化学分析法。当前随着我国石油化学工业的迅速发展,气相色谱法在石油、化工生产中已成为中间控制分析中的一种不可缺少的分析方法了。 近年来电子计算机和专用的微型电子计算机已和气相色谱仪联用,可自动对分析结果进行数据处理,对于提高分析速度、改善分析结果的准确性及实现生产过程高自动化起到了重要的作用。现就气相色谱法的原理、特点及流程作以详细阐述。 1气相色谱法工作原理

气相色谱的工作原理是利用试样中各组份在色谱柱中的气相和固定液相间的分配系数不同,当汽化后的试样被载体带入色谱中运行时,组份就在其中的两相间进行反复多次的分配(吸附-脱附或溶解-放出),由于固定相对各组份的吸附或溶解能力不同,(即保留作用不同),各组份在色谱柱中的运行速度也就不同,经过一定柱长后,便彼此分离,按顺序离开色谱柱,进入检测器,产生的离子流经讯号放大后,在记录仪上就描绘各组份的曲线图,称为色谱峰。根据色谱峰的峰高或峰面积就可定量测定出样品中各级份的含量。 2气相色谱法的主要特点 气相色谱法在应用中的主要特点是选择性高、分离效率高、灵敏度高、分析速度快。 2.1选择性高 选择性高是指气相色谱法对性质极为接近的物质,具有很强的分离能力。如在石油化工生产中比较难解决的碳四烯烃异构体的分离;原子能工业中氢的三种同位素:氢、氘、氚的分离;医药和生物化学中结构复杂的旋光异构体的分离。现都可采用气相色谱法来解决。 2.2分离效率高 分离效率高是指气相色谱法能分离分配系数很接近的组份一根1~2m的色谱柱,柱效率可达几千块理论塔板数,因而对组成复杂的或难以分离的物质,经过色谱柱进行反复多次的分配平衡(或吸附平衡),最终均可达到分离的目的。 2.3灵敏度高

气相色谱的定性和定量分析实验

气相色谱的定性和定量分析实验 一、实验药品 乙酸丁酯(AR )、正己烷(AR )、未知试样 二、实验仪器 SC3000气相色谱仪;注射器:1L ;容量瓶若干 三、实验目的 1、深入了解气相色谱仪的基本结构 2、进一步熟悉气相色谱分离分析的基本原理 3、学习计算色谱峰的分离度 4、掌握根据保留值,作已知物对照定性的分析方法 5、熟悉用归一化法定量测定混合物各组分的含量 四、实验原理 利用气相色谱仪,根据物质的沸点、极性、分子量等差别进行分离分析。 对—个混合试样成功地分离,是气相色谱法完成定性及定量分析的前提和基础。衡 量一对色谱峰分离的程度可用分离度R 表示: 式中,T R,2,w 2和T R,1,w 1分别是两个组分的保留时间和峰底宽(时间),当R=1.5时,两峰完全分离;当R=1.0时,98%的分离。在实际应用中,R=1.0一般可以满足需要。 用色谱法进行定性分析的任务是确定色谱图上每一个峰所代表的物质。在色谱条件 一定时,任何一种物质都有确定的保留值、保留时间、保留体积、保留指数及相对保留值等保留参数。因此,在相同的色谱操作条件下,通过比较已知纯样和未知物的保留参数或在固定相上的位置,即可确定未知物为何种物质。 在一定的色谱条件下,组分i 的质量m :或其在流动相中的浓度,与检测器的响应 信号峰面积Ai 或峰高h ,成正比: 21)1()2(21)1()2()(22 w w t t w w t t R R R R R +-=+-=

m i = f i A? A i(1) 或m i = f i h? A i(2) 式中,f i A和f i h称为绝对校正因子。式(1)和式(2)是色谱定量的依据。不难看出,响应信号A、h及校正因了的淮确测量直接影响定定分析的准确度。 由于峰面积的大小不易受操作条件如校温、流动相的流速、进样速度等因素的影响,故峰面积更适于作为定量分析的参数。现代色谱仪中一般都配有准确测量色谱峰面积的电学积分仪。 由式(1),绝对校正因子可用下式表示: (3) 式中,m i可用质量、物质的量及体积等物理量表示,相应的校正因子分别称为质量校正因子、摩尔校正因子和体积校正因子。由于绝对校正因子受仪器和操作条件的影响很大,其应用受到限制,一般采用相对校正因子。相对校正因子是指组分i与基准组分s的绝对校正因子之比,即: (4) 因绝对校正因子很少使用,一般文献上提到的校正因子就是相对校正因子。 根据不同的情况,可选用不同的定量方法。归一化法是将样品中所有组分合量之和按100%计算,以它们相应的响应信号为定量参数.通过下式计算各组分的质量分数: 该法简便、准确。当操作条件变化时,对分析结果影响较小,常用于定量分析,尤其适于进样量少而体积不易准确测量的液体试样。但采用本法进行定量分析时,要求试样中各组分产生可测量的色谱峰。

分析化学

单选题(共6题,每题10分) 1.以高压液体为流动相的色谱法被称为() 2A.液相色谱 B.高速色谱 C.高压色谱 D.高效液相色谱 E.高分辨色谱 参考答案:D 2 .高效液相色谱法英文缩写为() A.HPLC B.TLC C.HTLC D.HSLC E.HRLC 参考答案:A 3 .正相液-液色谱法,流动相极性()固定相极性,()的组分先流出色谱柱。 A.大于;小极性 B.大于;大极性 C.小于;大极性 D.小于;小极性 E.小于;不肯定 参考答案:D

4 .以化学键合相作为固定相的色谱法叫做 ( ) A.固相色谱法 B.键合相色谱法 C.正相键合相 D.化学色谱法 E.反相色谱法 参考答案:B 答案解析:?暂无 5 .高效液相色谱法结构流程图为() A.载气源→色谱柱→进样系统→检测器→记录仪 B.载气源→进样系统→色谱柱→检测器→记录仪 C.储液瓶→高压泵→色谱柱→检测器→记录仪 D.储液瓶→色谱柱→高压泵→检测器→记录仪 E.进样系统→储液瓶→色谱柱→检测器→记录仪参考答案:C 6 .以化学键合相作为固定相的色谱法叫做 ( ) A.固相色谱法 B.键合相色谱法 C.正相键合相 D.化学色谱法 E.反相色谱法 参考答案:B

单选题(共18题,每题4分) 1 .常用于定性定量分析紫外光谱区的波长范围是()。 A.200-400 nm B.400-800 nm C.100-200 nm D.100-800 nm E.200-800 nm 参考答案:A 2 .物质分子吸收光子能量而被激发,然后从激发态的最低振动能级返回到基态所发射出的光称为() A.红外光 B.紫外光 C.光致发光 D.荧光 E.磷光 参考答案:D 3 .荧光分析法是根据物质的荧光谱线位置及其强度进行物质()的方法。 A.结构式测定 B.化学性质测定 C.物理性质测定 D.元素测定

气相色谱定量分析报告详解

气相色谱定量分析 1.常用的气相定量分析方法 1. 归一化法 归一化法是常用的一种简便、准确的定量方法。使用这种方法的条件是样品中所有组分都出峰,将所有出峰组分的含量之和按100%计,当测量参数为面积时,计算式如下: (10) 式中i的百分含量; i的校正因子; i的峰面积。 如果测量参数为峰高,计算式如下: (11) 式中i的峰高校正因子; i的峰高。 如果样品中组分是同分异构体或同系物,若已知校正因子近似相等,就可以不用校正因子,将面积直接归一化,即可按下式计算: (12) 或(13) 归一化定量的优点是方法准确,进样量的多少与结果武官,仪器与操作条件对结果影响小。缺点是某些组分在所用检测器上可能不出峰,如H2O在氢焰离子化检测器上等;样品中含有沸点高,出峰很慢的组分(如果用其它定量方法,可用反吹法除去),不需定量的个别组分可能分离不好,重叠在一起,影响面积的测量,使其应用受到一定程度的限制。在使用选择性检测器时,一般不用该法定量。 2. 内标法 当分析样品不能全部出峰,不能用归一化法定量时,可考虑用内标法定量。

方法:准确称取样品,选择适宜的组分作为欲测组分的参比物,在此称为内标物。加入一定量的内标物,根据被测物和内标物的质量及在色谱图上相应的峰面积比按下式求组分的含量。 (14) 式中i的含量; i的峰面积; 对内标物的要求是:不能与样品或固定相发生反应;能与样品完全互溶;与样品组分很好的分离,又比较接近;加入内标的量要接近被测组分的含量;要准确称量。 如果用峰高作为测量参数,上式也可将面积改为峰高,将面积校正因子改为峰高校正因子进行定量。 内标法定量也比较准确,而且不象归一化法有使用上的限制。主要缺点是:每次需要用分析天平准确称量内标和样品,日常分析使用很不方便,样品中多了一个内标物,显然对分离的要求更高些。 3. 外标法 外标法又称校正曲线法。用已知纯样品配成不同浓度的标准样进行试验,测量各种浓度下对应的峰高或峰面积,绘制响应信号-百分含量标准曲线。分析时,进入同样体积的分析样品,从色谱图上测出面积或峰高,从校正曲线上查出其百分含量。 在一些工厂的常规分析中,样品中各组分中的浓度一般变化不大,在检量线通过原点(O 点)时可不必做校正曲线,而用单点校正法来分析。即配制一个和被测组分含量十分接近的标准样,定量进样,由被测组分与外标组分峰面积或峰高比来求被测组分百分含量。 (15) 式中i的含量; i的含量; i的峰面积。

气相色谱仪用途和案例分析

气相色谱仪用途和分析 一、气相色谱仪用途和应用领域主要有以下方面: 石油和石油化工分析:油气田勘探中的化学分析、原油分析、炼厂气分析、模拟蒸馏、油料分析、单质烃分析、含硫/含氮/含氧化合物分析、汽油添加剂分析、脂肪烃分析、芳烃分析。 环境分析:大气污染物分析、水分析、土壤分析、固体废弃物分析。 食品分析:农药残留分析、香精香料分析、添加剂分析、脂肪酸甲酯分析、食品包装材料分析。 药物和临床分析:雌三醇分析、儿茶酚胺代谢产物分析、尿中孕二醇和孕三醇分析、血浆中睾丸激素分析、血液中乙醇/麻醉剂及氨基酸衍生物分析。 农药残留物分析:有机氯农药残留分析、有机磷农药残留分析、杀虫剂残留分析、除草剂残留分析等。 精细化工分析:添加剂分析、催化剂分析、原材料分析、产品质量控制。 聚合物分析:单体分析、添加剂分析、共聚物组成分析、聚合物结构表征/聚合物中的杂质分析、热稳定性研究。 合成工业:方法研究、质量监控、过程分析。 二、分析实例: (一)天然气常量分析: 选用热导检测器,适用于城市燃气用天然气O2、N2、CH4、CO2、C2H6、C3H8、i-C40、n-C40、i-C50、n-C50等组分的常量分析。分析结果符合国标GB10410.2-89。 (二)人工煤气分析: 选用热导检测器、双阀多柱系统,自动或手动进样,适用于人工煤气中H2、O2、N2、CO2、CH4、C2H4、C2H6、C3H6等主要成分的测定。分析结果符合国标GB10410.1-89。 (三)液化石油气分析①: 选用热导检测器、填充柱系统、阀自动或手动切换,并配有反吹系统,适用于炼油厂生产的液化石油气中C2-C4及总C5烃类组成的分析(不包括双烯烃和炔烃)。分析结果符合SH/T10230-92。 液化石油气分析②:

气相色谱定量分析报告详解

气相色谱定H 分析 1. 常用的气相定H 分析方法 归一化法是常用的一种简便、准确的定量方法。使用这种方法的条件是样品中所有组分 都出峰,将所有出峰组分的含量之和按 100%十,当测量参数为面积时,计算式如下: 式中 f]——组分i 的峰高校正因子; hi ——组分i 的峰高。 如果样品中组分是同分异构体或同系物,若已知校正因子近似相等,就可以不用校正 因子,将面积直接归一化,即可按下式计算: 归一化定量的优点是方法准确, 进样量的多少与结果武官, 仪器与操作条件对结果影响 小。缺点是某些组分在所用检测器上可能不出峰,如 H 2O 在氢焰离子化检测器上等;样品 中含有沸点高,出峰很慢的组分(如果用其它定量方法,可用反吹法除去) ,不需定量的个 别组分可能分离不好,重叠在一起, 影响面积的测量,使其应用受到一定程度的限制。 在使 用选择性检测器时,一般不用该法定量。 2. 标法 □ (10) 式中 国——试样中组分i 的百分含量; 国一一组分i 的校正因子; [A]——组分i 的峰面积。 如果测量参数为峰高,计算式如下: X i X i h i X —i 100 h i (12) (13)

当分析样品不能全部出峰,不能用归一化法定量时,可考虑用标法定量。 方法:准确称取样品,选择适宜的组分作为欲测组分的参比物,在此称为标物。加入一 定量的标物,根据被测物和标物的质量及在色谱图上相应的峰面积比按下式求组分的含量。 式中园一一试样中组分i 的含量; gs | 加入标物的质量; |Ai|——标物的峰面积; |m|——试样的质量; 园一一组分i 的峰面积; 对标物的要:不能与样品或固定相发生反应;能与样品完全互溶;与样品组分很好的 分离,又比较接近;加入标的量要接近被测组分的含量;要准确称量。 如果用峰高作为测量参数,上式也可将面积改为峰高,将面积校正因子改为峰高校正 因子进行定量。 标法定量也比较准确,而且不象归一化法有使用上的限制。主要缺点是:每次需要用 分析夭平准确称量标和样品, 日常分析使用很不方便, 样品中多了一个标物, 显然对分离的 要求更高些。 3. 外标法 外标法又称校正曲线法。用已知纯样品配成不同浓度的标准样进行试验, 测量各种浓度 下对应的峰高或峰面积,绘制响应信号 -百分含量标准曲线。分析时,进入同样体积的分析 样品,从色谱图上测出面积或峰高,从校正曲线上查出其百分含量。 在一些工厂的常规分析中, 样品中各组分中的浓度一般变化不大, 在检量线通过原点( O 点)时可不必做校正曲线,而用单点校正法来分析。即配制一个和被测组分含量十分接近的 标准样,定量进样,由被测组分与外标组分峰面积或峰高比来求被测组分百分含量。 (15) 式中 日一一试样中组分i 的含量; 目一一标准样中组分i 的含量; X i

相关主题