搜档网
当前位置:搜档网 › 川大离散数学习题5

川大离散数学习题5

川大离散数学习题5
川大离散数学习题5

习题 5

1. 设

A={(a,b)|a,b∈N}.定义

A

上的一个二元关系

R={((a,b ),(c,d))|ad=bc},证明:R 是A 上的等价关系. 证:(){}+∈=N b a b a A ,|, ,R={((a,b ),(c,d))|ad=bc} ①自反性:由A 的定义,N b a ba

ab ∈=,

()()()R b a b a ∈∴

,,,

②对称性 设()()()R d c b a ∈,,,,则bc ad = 即 ()()()R b a d c da

cb ∈∴

=,,,

③传递性 设()()()R d c b a ∈1111,,,则1111c b d a =

()()()R d c d c ∈2211,,,则2121c d d c =

2121211211211c b d a c d b d c b d d a =?==?

()()()R d c b a ∈∴

2211,,,

2. 定义复数集合的子集合C 1={a+bi|i 2=-1,a 、b ∈R,a ≠0},在C 1上定义关系S 为:(a+bi)S(c+di)?ac>0。证明:S 是C 1上的一个等价关系,并给出S 的等价类的几何说明。

证明:因为(a+b i )S(c+d i )?ac>0(a,b ∈R,a ≠0,c ≠0)

r:?a ≠0,a2>0?(a+b i )S(a+b i )

s:(a+b i )S(c+d i )?ac>0?ca>0?(c+d i )S(a+b i ) t:(a+b i )S(c+d i )∧(c+d i )S(u+v i )?ac>0∧cu>0

? au>0?(a+b i )S(u+v i ) 综上,S 是C 1上的一个等价关系。 由于ac>0,必须a ≠0,c ≠0且a 和c 同号,故S 只有2个等价类,

其一是[1]={a+bi|a>0},另一个是[-1]={a+bi|a<0},它们分别对应于复平面上右半部和左半部。

3. 集合A={1,2,3,4}的一个分划为S 0={{1,2,4},{3}},求由S 0导出的A 上的一个等价关系R.

解:{}{}{}{}3,4,2,1 ,,4,3,2,10==S A

设{

}{}3,4,3,2,121==A A

()()()()()()()()()(){}

33442414422212412111,,,,,,,,,,,,,,,,,,R =∴

4. 试确定在4个元素的集合上可以定义出的等价关系数目. 解: ∵每个集合的划分就可以确定一个等价关系

∴集合有多少个划分就可以确定多少个等价关系

1541

42

43

44

=+++C C C C 种。 5. 设R 1和R 2是非空集合A 上的两个等价关系.试确定下列各个关系是否是A 上的等价关系:如果是,加以证明;如果不是,举例说明: (1)R 1R 2;(2)R 1R 2;(3)r(R 1-R 2);(4)R 1R 2 解:

①12R R ?不是A 上的等价关系 ②21R R ?是A 上的等价关系 ③()21R R r - 是A 上的等价关系 ④21oR R 不是A 上的等价关系

6. 设R 是非空集合A 上的一个二元关系,具有对称性和传递性.证明:

如果对每一个x∈A,存在y∈A使xRy,那么,R是A上的等价关系。证明:

由题可知,对于每一个x,都存在y使xRy,则非空集合A上所有的元素都存在关系(x,y),

又因为R具有对称性,则对于所有的x,R中也必然存在(y,x)又因为R具有传递性,则对于所有的x,R中也必然存在(x,x),即R具有自反性

综上,据等价关系定义,R是A上的等价关系

7.设M n是全体n阶矩阵的集合.如果对矩阵A、B∈M n,存在可逆矩阵p∈M n使得 A=PBP-1,则记为A∪B(读为A相似于B).证明:∪是M n上的等价关系.

证明:

r:设E是单位矩阵,则?A,A=EAE-1?A~A

s:A~B?A=PBP-1?P-1AP=B?B=P-1A(P-1)-1?B~A

t:A~B∧B~C?A=PBP-1∧B=QCQ-1

? A=P(QCQ-1)P-1?A=(PQ)C(PQ)-1?A~C

所以~是Mn上的等价关系.

8.设A是由54的正因子构成的集合,"|"表示整除.作出偏序集

解:

A={1,2,3,6,9,18,27,54}

COVER(|)={(1,2), (1,3), (2,6), (3,6), (3,9),(6,18),

(9,18), (9,27), (18,54), (27,54)} 最大元:54 最小元:1

有4个包含元素最多的全序子集: L1={54,27,9,3,1} L1={54,18,9,3,1} L1={54,18,6,3,1} L1={54,18,6,2,1}

9. 设A={a,b,c},画出偏序集<2A , ?)对应的Hasse 图.试比较本题与上题Hasse 图的异同. 解:{}c b a A ,,=

()()()()()()(){}c b a c b c a b a c b a A ,,,,,,,,,,,,2Φ=

10. 是否存在集合A 上的一个关系R,它既是等价关系,又是偏序关系?证明或举例说明你的结论.

解:集合A 上的空关系Φ、恒等关系I A 都是等价关系和偏序关系。

<2C

,?>

Φ

{b,c}

11.设R是集合A上的一个等价关系。现在在等价类之间定义一个

新关系S,使得对R的任何等价类[a]和[b]满足[a]S[b] ?aRb,判别S

是一个什么关系?

解:由已知R是等价关系,S是R等价类集合上的二元关系,且[a]S[b] ? aRb。

因为对R 的任2个等价类[a]和[b],要么[a]=[b],要么[a]

?[b]= ?,又aRb说明a和b在同一等价类中,因此,S={([a],

[a]) | a ∈A}(等价类集合上的恒等关系),

所以S满足自反性、对称性、反对称性、传递性,

所以S既是等价关系,又是偏序关系。

12.设R是集合A上的一个二元关系.如果R是反自反的且是传递的,称R是A上的逆序关系.

(1)举一个逆序关系的例子;

(2)证明:逆序关系是反对称的,并进一步证明逆序关系的自反闭包是A上的偏序关系。

解:

(1)例如:A={A,B,C} R={(A,B),(B,C),(A,C)}

(2)证明:逆序关系是传递的,若对于两个不同的x,y存在两个关系(x,y)和(y,x),则必然存在关系(x,x),与逆序关系的

反自反性相矛盾;

即若对于两个不同的x,y不可能存在两个关系(x,y)和

(y,x),所以逆序关系是反对称的。

逆序关系的自反闭包必然具有自反性,且对于两个不同的

x,y 不可能存在两个关系(x,y)和(y,x),则反对称关系依然成立,又因为逆序关系具有传递性,R ∪I A 同样具有传递性。

综上,逆序关系的自反闭包符合偏序关系的定义,故其是

A 上的偏序关系。

13. 设R 是集合A 上的一个偏序关系,B 是A 的非空子集。证明:R B ?B 是B 上的偏序关系。 证:i )自反性,对()R b b A B b ∈∴

?∈?,,,(R 的自反性)

显然()()B B R b b B

B b b ?∈∴

?∈ ,,

ii)反对称性,对()()B B R a b B B R b a B b a ?∈?∈∈? ,,,,

,

即()()R a b R b a ∈∈,,,,由R 的反对称性,b a =?

iii)传递性,对B c b a ∈?,,,设()()B B R c b B B R b a ?∈?∈ ,,,, 则()R b a ∈,,()R c b ∈,。

由R 的传递性,()R c a ∈,,显然()B B c a ?∈,

()B B R c a ?∈∴

,

14.对习题5.2的第1题,找出偏序集A 的最大元和最小元,并确定它有多少个包含元素最多的全序子集. 解:(略)

15. 设A={a,b,c,d}。试构造关于偏序集<2A ,?>的一个全序集<2A ,≤>

使得≤是?的拓扑排序。

解:()d c b a A ,,,=

()()()()()()()()()()()()()()(){}

d c b a d c a d c b d b a c b a d c d b c b d a c a b a d c b a A ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2Φ=

()()()()()()()()()()()()d b a c b a d c d b c b d a c a b a d c b a ,,,,,,,,,,≤≤≤≤≤≤≤≤≤≤≤≤Φ()()()d c b a d c b d c a ,,,,,,,≤≤≤

离散数学练习题(含答案)

离散数学试题 第一部分选择题 一、单项选择题 1.下列是两个命题变元p,q的小项是( C ) A.p∧┐p∧q B.┐p∨q C.┐p∧q D.┐p∨p∨q 2.令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( D )A.p→┐q B.p∨┐q C.p∧q D.p∧┐q 3.下列语句中是命题的只有( A ) A.1+1=10 B.x+y=10 C.sinx+siny<0 D.x mod 3=2 4.下列等值式不正确的是( C ) A.┐(?x)A?(?x)┐A B.(?x)(B→A(x))?B→(?x)A(x) C.(?x)(A(x)∧B(x))?(?x)A(x)∧(?x)B(x) D.(?x)(?y)(A(x)→B(y))?(?x)A(x)→(?y)B(y) 5.谓词公式(?x)P(x,y)∧(?x)(Q(x,z)→(?x)(?y)R(x,y,z)中量词?x的辖域是( C ) A.(?x)Q(x,z)→(?x)(?y)R(x,y,z)) B.Q(x,z)→(?y)R(x,y,z) C.Q(x,z)→(?x)(?y)R(x,y,z) D.Q(x,z) 6.设A={a,b,c,d},A上的等价关系R={,,,}∪I A,则对应于R的A 的划分是( D ) A.{{a},{b,c},{d}} B.{{a,b},{c},{d}} C.{{a},{b},{c},{d}} D.{{a,b},{c,d}} 7.设A={?},B=P(P(A)),以下正确的式子是( A ) A.{?,{?}}∈B B.{{?,?}}∈B C.{{?},{{?}}}∈B D.{?,{{?}}}∈B 8.设X,Y,Z是集合,一是集合相对补运算,下列等式不正确的是( A ) A.(X-Y)-Z=X-(Y∩Z) B.(X-Y)-Z=(X-Z)-Y C.(X-Y)-Z=(X-Z)-(Y-Z) D.(X-Y)-Z=X-(Y∪Z) 9.在自然数集N上,下列定义的运算中不可结合的只有( D ) A.a*b=min(a,b) 02324# 离散数学试题第1 页共4页

离散数学(第五版)清华大学出版社第2章习题解答

离散数学(第五版)清华大学出版社第2章习题解答 2.1 本题没有给出个体域,因而使用全总个体域. (1) 令F(x):x是鸟 G(x):x会飞翔. 命题符号化为 ?x(F(x)→G(x)). (2)令F(x):x为人. G(x):x爱吃糖 命题符号化为 ??x(F(x)→G(x)) 或者 ?x(F(x)∧?G(x)) (3)令F(x):x为人. G(x):x爱看小说. 命题符号化为 ?x(F(x)∧G(x)). (4) F(x):x为人. G(x):x爱看电视. 命题符号化为 ??x(F(x)∧?G(x)). 分析1°如果没指出要求什么样的个体域,就使用全总个休域,使用全总个体域时,往往要使用特性谓词。(1)-(4)中的F(x)都是特性谓词。 2°初学者经常犯的错误是,将类似于(1)中的命题符号化为 27 ?x(F(x)∧G(x)) 即用合取联结词取代蕴含联结词,这是万万不可的。将(1)中命题叙述得更透彻些,是说“对于宇宙间的一切事物百言,如果它是鸟,则它会飞翔。”因而符号化应该使用联结词→而不能使用∧。若使用∧,使(1)中命题变成了“宇宙间的一切事物都是鸟并且都会飞翔。”这显然改变了原命题的意义。

3°(2)与(4)中两种符号化公式是等值的,请读者正确的使用量词否定等值式,证明(2),(4)中两公式各为等值的。 2.2 (1)d (a),(b),(c)中均符号化为 ?xF(x) 其中F(x):(x+1)2=x2+2x+1,此命题在(a),(b),(c)中均为真命题。 (2)在(a),(b),(c)中均符号化为 ?xG(x) 其中G(x):x+2=0,此命题在(a)中为假命题,在(b)(c)中均为真命题。 (3)在(a),(b),(c)中均符号化为 ?xH(x) 其中H(x):5x=1.此命题在(a),(b)中均为假命题,在(c)中为真命题。 分析1°命题的真值与个体域有关。 2°有的命题在不同个体域中,符号化的形式不同,考虑命题 “人都呼吸”。 在个体域为人类集合时,应符号化为 ?xF(x) 这里,F(x):x呼吸,没有引入特性谓词。 在个体域为全总个体域时,应符号化为 ?x(F(x)→G(x)) 这里,F(x):x为人,且F(x)为特性谓词。G(x):x呼吸。 28 2.3 因题目中未给出个体域,因而应采用全总个体域。 (1)令:F(x):x是大学生,G(x):x是文科生,H(x):x是理科生,命题符号化为?x(F(x)→(G(x)∨H(x)) (2)令F(x):x是人,G(y):y是化,H(x):x喜欢,命题符号化为 ?x(F(x)∧?y(G(y)→H(x,y))) (3)令F(x):x是人,G(x):x犯错误,命题符号化为 ??x(F(x)∧?G(x)), 或另一种等值的形式为 ?x(F(x)→G(x)

离散数学习题(耿素云屈婉玲)

离散数学习题答案 习题二及答案:(P38) 5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ?→∧∧ 解:原式()p q q r ?∨∧∧q r ?∧()p p q r ??∨∧∧ ()()p q r p q r ??∧∧∨∧∧37m m ?∨,此即公式的主析取范式, 所以成真赋值为011,111。 6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨?∨ 解:原式()()p p r p q r ?∨?∨∧?∨∨()p q r ??∨∨4M ?,此即公式的主合取范式, 所以成假赋值为100。 7、求下列公式的主析取范式,再用主析取范式求主合取范式: (1)()p q r ∧∨ 解:原式()(()())p q r r p p q q r ?∧∧?∨∨?∨∧?∨∧ ()()()()()()p q r p q r p q r p q r p q r p q r ?∧∧?∨∧∧∨?∧?∧∨?∧∧∨∧?∧∨∧∧ ()()()()()p q r p q r p q r p q r p q r ??∧?∧∨?∧∧∨∧?∧∨∧∧?∨∧∧ 13567m m m m m ?∨∨∨∨,此即主析取范式。 主析取范式中没出现的极小项为0m ,2m ,4m ,所以主合取范式中含有三个极大项0M ,2M ,4M ,故原式的主合取范式024M M M ?∧∧。 9、用真值表法求下面公式的主析取范式: (1)()()p q p r ∨∨?∧ 解:公式的真值表如下:

由真值表可以看出成真赋值的情况有7种,此7种成真赋值所对应的极小项的析取即为主析取范式,故主析取范式 1234567m m m m m m m ?∨∨∨∨∨∨ 习题三及答案:(P52-54) 11、填充下面推理证明中没有写出的推理规则。 前提:,,,p q q r r s p ?∨?∨→ 结论:s 证明: ① p 前提引入 ② p q ?∨ 前提引入 ③ q ①②析取三段论 ④ q r ?∨ 前提引入 ⑤ r ③④析取三段论 ⑥ r s → 前提引入 ⑦ s ⑤⑥假言推理 15、在自然推理系统P 中用附加前提法证明下面推理: (2)前提:()(),()p q r s s t u ∨→∧∨→ 结论: p u → 证明:用附加前提证明法。 ① p 附加前提引入 ② p q ∨ ①附加 ③ ()()p q r s ∨→∧ 前提引入 ④ r s ∧ ②③假言推理 ⑤ s ④化简 ⑥ s t ∨ ⑤附加 ⑦ ()s t u ∨→ 前提引入 ⑧ u ⑥⑦假言推理 故推理正确。 16、在自然推理系统P 中用归谬法证明下面推理: (1)前提: p q →?,r q ?∨,r s ∧? 结论:p ?

离散数学习题

第一章习题 1.1判断下列语句是否为命题,若是命题请指出是简单命题还是复合命题。(1)2是无理数。 (2)5能被2整除。 (3)现在开会吗? (4)x+5>0 (5)这朵花真是好看! (6)2是素数当且仅当三角形有三条边。 (7)雪是黑色的当且仅当太阳是从东方升起。 (8)2000年10月1日天气晴好。 (9)太阳系以外的星球上有生物。 (10)小李在宿舍里。 (11)全体起立。 (12)4是2的倍数或是3的倍数。 (13)4是偶数且是奇数。 (14)李明和王华是同学。 (15)蓝色和黄色可以调配成绿色。 1..2 将上题中的命题符号化,并讨论他们的真值。 1.3判断下列各命题的真值。 (1)若2+2=4,则3+3=6; (2)若2+2=4,则3+3≠6; (3)若2+2≠=4,则3+3=6; (4)若2+2≠=4,则3+3≠=6; (5)2+2=4,当且仅当3+3=6; (6)2+2=4,当且仅当3+3≠6; (7)2+2≠4,当且仅当3+3=6; (8)2+2≠4,当且仅当3+3≠6; 1.4将下列命题符号化,并讨论其真值。 (1)如果今天是1号,则明天是2号; (2)如果今天是1号,则明天是3号; 1.5将下列命题符号化。 (1)2是偶数不是素数; (2)小王不但聪明而且用功; (3)虽然天气冷。老王还是来了; (4)他一边吃饭,一边看电视; (5)如果天下大雨,他就乘公交汽车来; (6)只有天下大雨,他才乘公交汽车来; (7)除非天下大雨,否则他不乘公交汽车来; (8)不经一事,不长一智; 1.5设p,q的真值为0 ,r,s的真值为1,求下列命题公式的真值。(1)p∨(q∧r);

离散数学第五版 模拟试题 及答案

《离散数学》模拟试题3 一、填空题(每小题2分,共20分) 1. 已知集合A ={φ,1,2},则A得幂集合p(A)=_____ _。 2. 设集合E ={a, b, c, d, e}, A= {a, b, c}, B = {a, d, e}, 则A∪B =___ ___, A∩B =____ __,A-B =___ ___,~A∩~B =____ ____。 3. 设A,B是两个集合,其中A= {1, 2, 3}, B= {1, 2},则A-B =____ ___, ρ(A)-ρ(B)=_____ _ _。 4. 已知命题公式R Q P G→ ∧ ? =) (,则G的析取范式为。 5. 设P:2+2=4,Q:3是奇数;将命题“2+2=4,当且仅当3是奇数。”符号化 ,其真值为。 二、单项选择题(选择一个正确答案的代号填入括号中,每小题4分,共16分。) 1. 设A、B是两个集合,A={1,3,4},B={1,2},则A-B为(). A.{1} B. {1, 3} C. {3,4} D. {1,2} 2. 下列式子中正确的有()。 A. φ=0 B. φ∈{φ} C. φ∈{a,b} D. φ∈φ 3. 设集合X={x, y},则ρ(X)=()。 A. {{x},{y}} B. {φ,{x},{y}} C. {φ,{x},{y},{x, y}} D. {{x},{y},{x, y}} 4. 设集合A={1,2,3},A上的关系R={(1,1),(2,2),(2,3),(3,3),(3,2)}, 则R不具备(). 三、计算题(共50分) 1. (6分)设全集E=N,有下列子集:A={1,2,8,10},B={n|n2<50 ,n∈N},C= {n|n可以被3整除,且n<20 ,n∈N},D={n|2i,i<6且i、n∈N},求下列集合:(1)A∪(C∩D) (2)A∩(B∪(C∩D)) (3)B-(A∩C) (4)(~A∩B) ∪D 2. (6分)设集合A={a, b, c},A上二元关系R1,R2,R3分别为:R1=A×A, R2 ={(a,a),(b,b)},R3 ={(a,a)},试分别用 定义和矩阵运算求R1·R2 ,22R,R1·R2 ·R3 , (R1·R2 ·R3 )-1 。 3.(6分)化简等价式(﹁P∧(﹁Q∧R))∨(Q∧R)∨(P∧R). 4.(8分) 设集合A={1,2,3},R为A上的二元关系,且 M R= 写出R的关系表达式,画出R的关系图并说明R的性质. 5. (10分)设公式G的真值表如下. 试叙述如何根据真值表求G的 主析取范式和主合取范式,并 写出G的主析取范式和主合取范式. 1 0 0 1 1 0 1 0 0

离散数学习题三 含答案

离散数学习题三 11、填充下面推理证明中没有写出的推理规则。 前提:p s r r q q ,,,p →∨?∨? 结论:s 证明:① p 前提引入 ②q ∨?p 前提引入 ③ q (①②析取三段论) ④r q ∨? 前提引入 ⑤ r (③④析取三段论) ⑥s r → 前提引入 ⑦ s (⑤⑥假言推理) 12、填充下面推理证明中没有写出的推理规则。 前提:s)(r q r),(q p →→→→ 结论:s q)(p →∧ 证明:①q)(p ∧ (附加前提) ② p (①化简规则) ③ q (①化简规则) ④r)(q p →→ 前提引入 ⑤r q → (②④假言推理) ⑥ r (③⑤假言推理) ⑦s)(r q →→ 前提引入 ⑧s)(r → (③⑦假言推理) ⑨ s (⑥⑧假言推理) 13、前提:s r ,q p q,q)p (→∨∧→? 结论1:r 结论2:s 结论3:s ∨r (1)证明从此前提出发,推出结论1,结论2,结论3的推理都是正确的。 (2)证明从此前提出发,推任何结论的推理都是正确的。 证明:(1)①r s))r (q)(p q)q)p (((→→∨∨∨∧→? 1r s))r (q)p (q)q)p ((?∨?∧∨?∧?∨?∨∨??

②s ∨ → ∨ → ? ((→ ∨ ∧ s)) p( q) r( q) q) (p ∧ ? ? ∨ ∨ ∧ ? ? ? ∨ ∨ ? q) r( q) ∨ s 1 p s)) p ( q) ((? ③s) ∨ ∨ → ∨ ?r → → ∧ (p q) s)) ((∨ ( r( q) q) p( ? ∧ ∨ ∧ ? ? ? ?r ∨ ∨ ? ∨ ∨ r( q) ∨ s 1 p s)) ((? p q) ( q) 即结论1,结论2,结论3的推理都是正确的。 (2)s) ∨ ∧ ∧ ∧ → (→ ? r( p( (p q) q) q) ∧ ? ∨ ? ∧ ? ∨ ∧ ∧ ∧ ? ? ? ∨ ? ∨ ∧ ∧ (∨ (p q) p( q) ( s) r s) q r p ( q) q) ( q) (p ∨ ? ∧ 0? ? ∨ ∧ s) (p r ( q) 即推任何结论的推理都是正确的。 14、在自然推理系统P中构造下面推理的证明: (1)前提:q → p, → (q r) p, r→ 结论:s 证明:①r) →前提引入 p→ (q ②p 前提引入 ③r) (q→①②假言推理 ④q 前提引入 ⑤r③④假言推理 r→⑤附加律 ⑥s 15、在自然推理系统P中用附加前提法证明下面的推理: 前提:q → , →s p→ (q p, r) s→ 结论:r 证明: ①s 附加前提引入 ②p s前提引入 → ③p①②假言推理 ④r) →前提引入 p→ (q ⑤r q→③④假言推理 ⑥q 前提引入 ⑦r ⑤⑥假言推理 即根据附加前提证明法,推理正确。

离散数学结构 习题5

习题5 1.设个体域D={a,b,c},消去下列各式的量词: (1) x y(F(x)∧G(y)) (2) x y(F(x)∨G(y)) (3) xF(x)→yG(y) (4) x(F(x,y)→yG(y)) 答案 (1) x y(F(x)∧G(y)) xF(x)∧yG(y) (F(a)∧F(b))∧F(c))∧(G(a)∨G(b)∨G(c)) (2) x y(F(x)∨G(y)) xF(x)∨yG(y) (F(a)∧F(b)∧F(c))∨(G(a)∧G(b)∧G(c)) (3) xF(x)→yG(y) (F(a)∧F(b)∧F(c))→(G(a)∧G(b)∧G(c)) (4) x(F(x,y)→yG(y)) xF(x,y)→yG(y) (F(a,y)∨F(b,y)∨F(c,y))→(G(a)∨G(b)∨G(c)) 2.设个体域D={1,2},请给出两种不同的解释I1和I2,使得下面公式在I1下都是真命题,而在I2下都是假命题。 (1) x(F(x)→G(x)) (2) x(F(x)∧G(x)) .(1) 答案 I1: F(x):x≤2,G(x):x≤3 F(1),F(2),G(1),G(2)均为真,所以 x(F(x)→G(x)) (F(1)→G(1)∧(F(2)→G(2))为真。 I2: F(x)同I1,G(x):x≤0 则F(1),F(2)均为真,而G(1),G(2)均为假, x(F(x)→G(x))为假。 (2)留给读者自己做。 3.给定解释I如下: (a) 个体域D={3,4}。 (b) (x)为(3)=4,(4)=3。 (c) (x,y)为(3,3)=(4,4)=0,(3,4)=(4,3)=1。 答案 试求下列公式在I下的真值: (1) x yF(x,y) (2) x yF(x,y)

自考离散数学教材课后题第五章答案

习题参考答案 1、设无向图G有16条边,有3个4度结点,4个3度结点,其余结点的度数均小于3,问:G中至少有几个结点。 阮允准同学提供答案: 解:设度数小于3的结点有x个,则有 3×4+4×3+2x≥2×16 解得:x≥4 所以度数小于3的结点至少有4个 所以G至少有11个结点 2、设无向图G有9个结点,每个结点的度数不是5就是6,证明:G中至少有5个6度结点或至少有6个5度结点。 阮允准同学答案: 证明:由题意可知:度数为5的结点数只能是0,2,4,6,8。 若度数为5的结点数为0,2,4个,则度数为6的结点数为9,7,5个结论成立。 若度数为5的结点数为6,8个,结论显然成立。 由上可知,G中至少有5个6度点或至少有6个5度点。 3、证明:简单图的最大度小于结点数。

阮同学认为题中应指定是无向简单图. 晓津证明如下:设简单图有n个结点,某结点的度为最大度,因为简单图任一结点没有平行边,而任一结点的的边必连有另一结点,则其最多有n-1条边与其他结点相连,因此其度数最多只有n-1条,小于结点数n. 4、设图G有n个结点,n+1条边,证明:G中至少有一个结点度数≥3 。阮同学给出证明如下: 证明:设G中所有结点的度数都小于3,即每个结点度数都小于等于2,则所有结点度数之和小于等于2n,所以G的边数必小于等于n,这和已知G有n+1条边相矛盾。所以结论成立。 5、试证明下图中两个图不同构。 晓津证明:同构的充要条件是两图的结点和边分别存在一一对应且保持关联关系。我们可以看出,(a)图和(b)图中都有一个三度结点,(a)图中三度结点的某条边关联着两个一度结点和一个二度结点,而(b)图中三度结点关联着两个二度结点和一个一度结点,因此可断定二图不是同构的。 6、画出所有5个结点3条边,以及5个结点7条边的简单图。 解:如下图所示:(晓津与阮同学答案一致)

离散数学习题解答(第五章)格与布尔代数

离散数学习题解答 习题五(第五章 格与布尔代数) 1.设〈L ,?〉是半序集,?是L 上的整除关系。问当L 取下列集合时,〈L ,?〉是否是格。 a) L={1,2,3,4,6,12} b) L={1,2,3,4,6,8,12} c) L={1,2,3,4,5,6,8,9,10} [解] a) 〈L ,?〉是格,因为L 中任两个元素都有上、下确界。 b) 〈L ,?〉不是格。因为L 中存在着两个元素没有上确界。 例如:8 12=LUB{8,12}不存在。 c) 〈L ,?〉不是格。因为L 中存在着两个元素没有上确界。 1 6 3 1 2 4 8 63 1 2 4 1 1

倒例如:46=LUB{4,6}不存在。 2.设A ,B 是两个集合,f 是从A 到B 的映射。证明:〈S ,?〉是〈2B ,?〉的子格。其中 S={y|y=f (x),x ∈2A } [证] 对于任何B 1∈S ,存在着A 1∈2A ,使B 1=f (A 1),由于f(A 1)={y|y ∈B ∧(x)(x ∈A 1∧f (x)=y)}?B 所以B 1∈2B ,故此S ?2B ;又B 0=f (A)∈S (因为A ∈2A ),所以S 非空; 对于任何B 1,B 2∈S ,存在着A 1,A 2∈2A ,使得B 1=f (A 1),B 2=f (A 2),从而 L ∪B{B 1,B 2}=B 1∪B 2=f (A 1)f (A 2) =f (A 1∪A 2) (习题三的8的1)) 由于A 1∪A 2?A ,即A 1∪A 2∈2A ,因此f (A 1∪A 2)∈S ,即上确界L ∪B{B 1,B 2}存在。 对于任何B 1,B 2∈S ,定义A 1=f –1 (B 1)={x|x ∈A ∧f (x)∈B 1},A 2=f -1 (B 2)={x|x ∈A ∧f (x)∈B 2},则A 1,A 2∈2A ,且显然B 1=f (A 1),B 2=f (A 2),于是 GLB{B 1,B 2}=B 1∩B 2=f (A 1)∩f (A 2) ?f (A 1∩A 2) (习题三的8的2)) 又若y ∈B 1∩B 2,则y ∈B ,且y ∈B 2。由于y ∈B 1=f (A 1)={y|y ∈B ∧(x)(x ∈A 1∧f (x)=y)},于是存在着x ∈A 1,使f (x)=y ,但是f (x)=y ∈B 2。故此x ∈A 2=f -1 (B 2)={x|x ∈A ∧f(x)∈B 2},因此x ∈A 1∩A 2,从而y=f (x)∈f (A 1∩A 2),所以 GLB{B 1,B 2}=B 1∩B 2=f (A 1)∩f (A 2) ?f (A 1∩A 2) 9 7 31

离散数学试题与答案

试卷二试题与参考答案 一、填空 1、 P:您努力,Q:您失败。 2、 “除非您努力,否则您将失败”符号化为 ; “虽然您努力了,但还就是失败了”符号化为 。 2、论域D={1,2},指定谓词P P (1,1) P (1,2) P (2,1) P (2,2) T T F F 则公式x ??真值为 。 3设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则 R= (列举法)。 R 的关系矩阵M R = 。 4、设A={1,2,3},则A 上既不就是对称的又不就是反对称的关系 R= ;A 上既就是对称的又就是反对称的关系R= 。 5、设代数系统,其中A={a,b,c}, 则幺元就是 ;就是否有幂等 性 ;就是否有对称性 。 6、4阶群必就是 群或 群。 7、下面偏序格就是分配格的就是 。 8、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件就是 。 * a b c a b c a b c b b c c c b

二、选择 1、在下述公式中就是重言式为( ) A.)()(Q P Q P ∨→∧; B.))()(()(P Q Q P Q P →∧→??; C.Q Q P ∧→?)(; D.)(Q P P ∨→。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为 ( )。 A.0; B.1; C.2; D.3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A.3; B.6; C.7; D.8 。 4、设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生的S S ?上一个划分共有( )个分块。 A.4; B.5; C.6; D.9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为 则R 具有( )性质。 A.自反性、对称性、传递性; B.反自反性、反对称性; C.反自反性、反对称性、传递性; D.自反性 。 6、设 ο,+ 为普通加法与乘法,则( )>+<ο,,S 就是域。 A.},,3|{Q b a b a x x S ∈+== B.},,2|{Z b a n x x S ∈== C.},12|{Z n n x x S ∈+== D.}0|{≥∧∈=x Z x x S = N 。 7、下面偏序集( )能构成格。

离散数学复习题及答案

1. 写出命题公式 ﹁(P →(P ∨ Q ))的真值表。 答案: 2.证明 答案: 3. 证明以下蕴涵关系成立: 答案: 4. 写出下列式子的主析取范式: 答案: ) ()(Q P Q P Q P ?∧?∨∧??Q)P (Q)(P P) (Q P)P (Q)(Q Q)P (P) Q)P ((Q)Q)P (P) Q (Q)P (Q P ?∧?∨∧?∧∨∧?∨?∧∨?∧??∧∨?∨?∧∨??∨?∧∨???Q Q P P ?∨∧?)() ()(R P Q P ∨∧∧?

5. 构造下列推理的论证:p ∨q, p →r, s →t, s →r, t q 答案: ①s →t 前提 ②t 前提 ③s ①②拒取式I12 ④s →r 前提 ⑤r ③④假言推理I11 ⑥p →r 前提 ⑦p ⑤⑥拒取式I12 ⑧p ∨q 前提 ⑨q ⑦⑧析取三段论I10 6. 用反证法证明:p →((r ∧s)→q), p, s q ) ()(R P Q P ∨∧∧?) ()(R P Q P ∨∧?∨??))(())(R Q P P Q P ∧?∨?∨∧?∨??) ()()()(R Q R P P Q P P ∧?∨∧?∨∧?∨∧??) ()()(Q R P R P Q R P Q ∧∧?∨?∧∧?∨∧∧??) ()()(P R Q P R Q Q R P ?∧∧?∨∧∧?∨?∧∧?∨) ()()(Q R P R P Q R P Q ∧∧?∨?∧∧?∨∧∧??) (Q R P ?∧∧?∨

7. 请将下列命题符号化: 所有鱼都生活在水中。 答案: 令 F( x ):x 是鱼 W( x ):x 生活在水中 ))((W(x)F(x)x →? 8. 请将下列命题符号化: 存在着不是有理数的实数。 答案: 令 Q ( x ):x 是有理数 R ( x ):x 是实数 Q(x))x)(R(x)(?∧? 9. 请将下列命题符号化: 尽管有人聪明,但并非一切人都聪明。 答案: 令M(x):x 是人 C(x):x 是聪明的 则上述命题符号化为 10. 请将下列命题符号化: 对于所有的正实数x,y ,都有x+y ≥x 。 答案: 令P(x):x 是正实数 S(x,y): x+y ≥x 11. 请将下列命题符号化: 每个人都要参加一些课外活动。 ))) ()((())()((x C x M x x C x M x →??∧∧?)) ,()()((y x S y P x P y x →∧??

离散数学(第五版)清华大学出版社第1章习题解答

离散数学(第五版)清华大学出版社第1章习题解答 1.1 除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。 分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。 本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。 其次,4)这个句子是陈述句,但它表示的判断结果是不确定。又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们 都是简单命题。(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来 的复合命题。这里的“且”为“合取”联结词。在日常生活中,合取联结词有许 多表述法,例如,“虽然……,但是……”、“不仅……,而且……”、“一面……,一面……”、“……和……”、“……与……”等。但要注意,有时“和”或“与” 联结的是主语,构成简单命题。例如,(14)、(15)中的“与”与“和”是联结 的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。 1.2 (1)p: 2是无理数,p为真命题。 (2)p:5能被2整除,p为假命题。 (6)p→q。其中,p:2是素数,q:三角形有三条边。由于p与q都是真 命题,因而p→q为假命题。 (7)p→q,其中,p:雪是黑色的,q:太阳从东方升起。由于p为假命 题,q为真命题,因而p→q为假命题。 (8)p:2000年10月1日天气晴好,今日(1999年2月13日)我们还不 知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。(9)p:太阳系外的星球上的生物。它的真值情况而定,是确定的。 1 (10)p:小李在宿舍里. p的真值则具体情况而定,是确定的。 (12)p∨q,其中,p:4是偶数,q:4是奇数。由于q是假命题,所以,q 为假命题,p∨q为真命题。

离散数学 第5章 习题解答

第5章 习题解答 5.1 A:③; B:⑥; C:⑧; D:⑩; E:⑨ 分析 S 为n 元集,那么有个元素.S 上的一个二元运算就是函数 S S ?2n .这样的函数有个.因此上的二元运算有个. S S S f →?:2n n },{b a 162 =n n 下面说明通过运算表判别二元运算性质及求特导元素的方法. 1 °交换律 若运算表中元素关于主对角线成对称分布,则该运算满足交换律. 2 °幂等律 设运算表表头元素的排列顺序为如果主对角线元,,,21n x x x 素的排列也为 则该运算满足幂等律. ,,,21n x x x 其他性质,如结合律或者涉及到两个运算表的分配律和吸收律,在运算表中没有明显的特征,只能针对所有可能的元素等来验证相关的算律是否成立. z y x ,,3 ° 幺元设运算表表头元素的排列顺序为如果元素所在的.e ,,,21n x x x i x 行和列的元素排列顺序也是则为幺元. ,,,21n x x x i x 4 ° 零元如果元素所在的行和列的元素都是,则是零元. .θi x i x i x 5 ° 幂等元.设运算表表头元素的排列顺序为如果主对角线上,,,21n x x x 第个元素恰 为那么是幂等元.易见幺元和零元都是幂等元. i },,2,1{n i x i ∈i x 6 ° 可逆元素及其逆元.设为任意元素,如果所在的行和列都有幺元,并i x i x 且这两个幺元关于主对角线成对称分布,比如说第行第列和第行第列的两i j j i 个位置,那么与互为逆元.如果所在的行和列具有共同的幺元,则幺元一j x i x i x 定在主对角线上,那么的逆元就是自己.如果所在的和地或者所在的列没i x i x i x 有幺元,那么不是可逆元素.不难看出幺元一定是可逆元素,且;而零i x e e e =-1元不是可逆元素. θ以本题为例,的运算表是对称分布的,因此,这三个运算是可交换的, 321,,f f f

离散数学复习题及标准答案

1. 写出命题公式 ﹁(P →(P ∨ Q))的真值表。 答案: 2.证明 答案: 3. 证明以下蕴涵关系成立: 答案: 4. 写出下列式子的主析取范式: 答案: )()(Q P Q P Q P ?∧?∨∧??Q)P (Q)(P P)(Q P)P (Q)(Q Q)P (P)Q)P ((Q)Q)P (P) Q (Q)P (Q P ?∧?∨∧?∧∨∧?∨?∧∨?∧??∧∨?∨?∧∨??∨?∧∨???Q Q P P ?∨∧?)()()(R P Q P ∨∧∧?

5. 构造下列推理的论证:p ∨q, p→?r , s →t, ?s →r, ?t ? q 答案: ①s →t 前提 ②t 前提 ③s ①②拒取式I12 ④s →r 前提 ⑤r ③④假言推理I 11 ⑥p →r 前提 ⑦p ⑤⑥拒取式I12 ⑧p ∨q 前提 ⑨q ⑦⑧析取三段论I10 6. 用反证法证明:p→(?(r ∧s )→?q ), p, ?s ? ?q ) ()(R P Q P ∨∧∧?) ()(R P Q P ∨∧?∨??) )(())(R Q P P Q P ∧?∨?∨∧?∨??) ()()()(R Q R P P Q P P ∧?∨∧?∨∧?∨∧??) ()()(Q R P R P Q R P Q ∧∧?∨?∧∧?∨∧∧??) ()()(P R Q P R Q Q R P ?∧∧?∨∧∧?∨?∧∧?∨) ()()(Q R P R P Q R P Q ∧∧?∨?∧∧?∨∧∧??) (Q R P ?∧∧?∨

7. 请将下列命题符号化: 所有鱼都生活在水中。 答案: 令 F ( x ):x是鱼 W( x ):x 生活在水中 ))((W(x)F(x)x →? 8. 请将下列命题符号化: 存在着不是有理数的实数。 答案: 令 Q ( x ):x 是有理数 R ( x ):x 是实数 Q(x))x)(R(x)(?∧? 9. 请将下列命题符号化: 尽管有人聪明,但并非一切人都聪明。 答案: 令M(x):x 是人 C(x):x 是聪明的 则上述命题符号化为 10. 请将下列命题符号化: 对于所有的正实数x,y ,都有x+y ≥x。 答案: 令P(x):x 是正实数 S(x,y): x+y ≥x 11. 请将下列命题符号化: 每个人都要参加一些课外活动。 答案: 令P(x ):x 是人 Q (y): y 是课外活动 S(x,y):x参加y ))) ()((())()((x C x M x x C x M x →??∧∧?)) ,()()((y x S y P x P y x →∧??))(),()((y Q y x S x P y x ∧→??

最新离散数学习题答案

离散数学习题答案 习题一及答案:(P14-15) 14、将下列命题符号化: (5)李辛与李末是兄弟 解:设p :李辛与李末是兄弟,则命题符号化的结果是p (6)王强与刘威都学过法语 解:设p :王强学过法语;q :刘威学过法语;则命题符号化的结果是 p q ∧ (9)只有天下大雨,他才乘班车上班 解:设p :天下大雨;q :他乘班车上班;则命题符号化的结果是q p → (11)下雪路滑,他迟到了 解:设p :下雪;q :路滑;r :他迟到了;则命题符号化的结果是()p q r ∧→ 15、设p :2+3=5. q :大熊猫产在中国. r :太阳从西方升起. 求下列复合命题的真值: (4)()(())p q r p q r ∧∧???∨?→ 解:p=1,q=1,r=0, ()(110)1p q r ∧∧??∧∧??, (())((11)0)(00)1p q r ?∨?→??∨?→?→? ()(())111p q r p q r ∴∧∧???∨?→??? 19、用真值表判断下列公式的类型: (2)()p p q →?→? 解:列出公式的真值表,如下所示: 20、求下列公式的成真赋值:

(4)()p q q ?∨→ 解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是: ()10p q q ?∨??????00 p q ????? 所以公式的成真赋值有:01,10,11。 习题二及答案:(P38) 5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ?→∧∧ 解:原式()p q q r ?∨∧∧q r ?∧()p p q r ??∨∧∧ ()()p q r p q r ??∧∧∨∧∧37m m ?∨,此即公式的主析取范式, 所以成真赋值为011,111。 6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨?∨ 解:原式()()p p r p q r ?∨?∨∧?∨∨()p q r ??∨∨4M ?,此即公式的主合取范式, 所以成假赋值为100。 7、求下列公式的主析取范式,再用主析取范式求主合取范式: (1)()p q r ∧∨ 解:原式()(()())p q r r p p q q r ?∧∧?∨∨?∨∧?∨∧ ()()()()()()p q r p q r p q r p q r p q r p q r ?∧∧?∨∧∧∨?∧?∧∨?∧∧∨∧?∧∨∧∧ ()()()()()p q r p q r p q r p q r p q r ??∧?∧∨?∧∧∨∧?∧∨∧∧?∨∧∧ 13567m m m m m ?∨∨∨∨,此即主析取范式。 主析取范式中没出现的极小项为0m ,2m ,4m ,所以主合取范式中含有三个极大项0M ,2M ,4M ,故原式的主合取范式024M M M ?∧∧。 9、用真值表法求下面公式的主析取范式:

屈婉玲版离散数学课后习题答案

第四章部分课后习题参考答案 3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值: (1) 对于任意x,均有2=(x+)(x). (2) 存在x,使得x+5=9. 其中(a)个体域为自然数集合. (b)个体域为实数集合. 解: F(x): 2=(x+)(x). G(x): x+5=9. (1)在两个个体域中都解释为)(x ?,在(a)中为假命题,在 xF (b)中为真命题。 (2)在两个个体域中都解释为)(x ?,在(a)(b)中均为真命 xG 题。 4. 在一阶逻辑中将下列命题符号化: (1) 没有不能表示成分数的有理数. (2) 在卖菜的人不全是外地人. 解: (1)F(x): x能表示成分数 H(x): x是有理数 命题符号化为: )) F x∧ x ?? ? ) ( H ( (x (2)F(x): x是卖菜的人

H(x): x是外地人 命题符号化为: )) F ?? x x→ (x ( H ) ( 5. 在一阶逻辑将下列命题符号化: (1) 火车都比轮船快. (3) 不存在比所有火车都快的汽车. 解: (1)F(x): x是火车; G(x): x是轮船; H(x,y): x比y快 命题符号化为: )) F y x G ? y ? ∧ x→ ( ( )) ( H ) x ((y , (2) (1)F(x): x是火车; G(x): x是汽车; H(x,y): x比y快 命题符号化为: ))) x F x y G ∧ ? H ?? y→ ) ( , x ( ( ( (y ) 9.给定解释I如下: (a) 个体域D为实数集合R. (b) D中特定元素=0. (c) 特定函数(x,y)=x y,x,y D ∈. (d) 特定谓词(x,y):x=y,(x,y):x

离散数学第一章部分课后习题参考答案

第一章部分课后习题参考答案 16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)0∨(0∧1) 0 (2)(p?r)∧(﹁q∨s) (0?1)∧(1∨1) 0∧10. (3)(p∧q∧r)?(p∧q∧﹁r) (1∧1∧1)? (0∧0∧0)0 (4)(r∧s)→(p∧q) (0∧1)→(1∧0) 0→0 1 17.判断下面一段论述是否为真:“是无理数。并且,如果3是无理数,则也是无理数。另外6能被2整除,6才能被4整除。” 答:p: 是无理数 1 q: 3是无理数0 r: 是无理数 1 s:6能被2整除 1 t: 6能被4整除0 命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。 19.用真值表判断下列公式的类型: (4)(p→q) →(q→p) (5)(p∧r) (p∧q) (6)((p→q) ∧(q→r)) →(p→r) 答:(4) p q p→q q p q→p (p→q)→(q→p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式 (5)公式类型为可满足式(方法如上例) (6)公式类型为永真式(方法如上例) 第二章部分课后习题参考答案 3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值. (1) (p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 答:(2)(p→(p∨q))∨(p→r)(p∨(p∨q))∨(p∨r)p∨p∨q∨r1

所以公式类型为永真式 (3)P q r p∨q p∧r (p∨q)→(p∧r) 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 所以公式类型为可满足式 4.用等值演算法证明下面等值式: (2)(p→q)∧(p→r)(p→(q∧r)) (4)(p∧q)∨(p∧q)(p∨q) ∧(p∧q) 证明(2)(p→q)∧(p→r) (p∨q)∧(p∨r) p∨(q∧r)) p→(q∧r) (4)(p∧q)∨(p∧q)(p∨(p∧q)) ∧(q∨(p∧q) (p∨p)∧(p∨q)∧(q∨p) ∧(q∨q) 1∧(p∨q)∧(p∧q)∧1 (p∨q)∧(p∧q) 5.求下列公式的主析取范式与主合取范式,并求成真赋值 (1)(p→q)→(q∨p) (2)(p→q)∧q∧r (3)(p∨(q∧r))→(p∨q∨r) 解: (1)主析取范式 (p→q)→(q p) (p q)(q p) (p q)(q p) (p q)(q p)(q p)(p q)(p q) (p q)(p q)(p q) ∑(0,2,3) 主合取范式: (p→q)→(q p) (p q)(q p)

离散数学 练习题及答案

命题逻辑 例1: 下面哪些语句是命题 十是一个整数. 真命题 北京是一个村庄. 假命题 我学英语或法语. 复合命题 如果天气好,我就去散步. 复合命题 向右看齐! 不是命题 您吃饭了吗? 不是命题 本命题是假的. 不是命题 例2:试以符号形式写出下列命题 1) 选小王或小李中的一人当班长。 P: 小王当班长。 Q: 小李当班长。 ( P ∧ ? Q) ∨ (? P ∧ Q) 2) 小王是计算机系的学生,他生于1982年,他是一个好学生。 P: 小王是计算机系的学生。 Q: 他生于1982年。 R: 他是一名好学生。 P ∧ Q ∧ R 3) 只要我上街,我就去书店看看,除非我很累。 P: 我上街。 Q: 我去书店看看。 R: 我很累。 ? R →(P → Q) 例3 给出下列公式的真值表 成真指派:100,101,110,111 例4 试求下面公式的主析取(主合取)范式,并写出成真指派和成假指派。()()P Q Q P ?→→?∨ 例5 证明:P →Q ,?Q ∨R ,?R ,?S ∨P=>?S 证明: (1) ?R 前提 (2) ?Q ∨R 前提 (3) ?Q (1),(2) (4) P →Q 前提 (5) ?P (3),(4) P R Q P →→∧)(

(6) ?S ∨P 前提 (7) ?S (5),(6) 例6 证明:A ,A →B ,A →C ,B →(D → C) => D 证明: (1) A 前提 (2) A →B 前提 (3) B (1),(2) (4) A →C 前提 (5) C (1),(4) (6) B →(D →?C) 前提 (7) D →?C (3),(6) (8) ?D (5),(7) 例7 证明:?B ∨D ,(E →?F)→?D ,?E=>?B 证明: (1) B 附加前提 (2) ?B ∨D 前提 (3) D (1),(2) (4) (E →?F)→?D 前提 (5) ?(E →?F) (3),(4) (6) E ∧?F (5) (7) E (6) (8) ?E 前提 (9) E ∧?E (7),(8) 例8 证明: 谓词逻辑 例1 符号化下列命题 不是所有的男人都比女人高。 M(x):x 是男人,W(x):x 是女人,H(x,y):x 比y 高。 P Q Q P P Q →?∧∨→))(())) ,()(()((y x H y W y x M x →?→??

相关主题