搜档网
当前位置:搜档网 › 测定冰的溶解热--实验报告

测定冰的溶解热--实验报告

测定冰的溶解热--实验报告
测定冰的溶解热--实验报告

溶解热的测定实验报告

溶解热测定 姓名 学号 班级 实验日期 1 实验目的 (1)了解电热补偿法测定热效应的基本原理。 (2)用电热补偿法测定硝酸钾在水中的积分溶解热,通过计算或作图求出硝酸钾在水中的微分溶解热、积分溶解热和微分冲淡热。 (3)掌握用微机采集数据、处理数据的实验方法和实验技术。 2 实验原理 溶解热:恒温恒压下,物质的量为2n 的溶质溶于物质的量为1n 的溶剂(或溶于某浓度溶液)中产生的热效应,用Q 表示。 积分溶解热:恒温恒压下,1mol 溶质溶解于一定量的溶剂中形成一定浓度的溶液,整个过程产生的热效应。用s Q 表示。 微分溶解热:恒温恒压下,1mol 溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以1 2n n Q ???? ????表示。 冲淡热:恒温恒压下,一定量的溶剂A 加到某浓度的溶液使之稀释所产生的热效应。 积分冲淡热:恒温恒压下,在含有1mol 溶质的溶液中加入一定量的溶剂,使之稀释成另一浓度的溶液的过程中产生的热效应,以d Q 表示。 微分冲淡热:恒温恒压下,1mol 溶剂加入到某一浓度无限量的溶液中所发生的热效应, 以21n n Q ???? ????或2 0n s n Q ???? ????表示。 它们之间关系可表示为: s Q n Q =2 令021n n n = 2 1002n s n s n Q n n Q Q ???? ????+???? ????= ()()0201n s n s d Q Q Q -= 积分溶解热s Q 可由实验测得,其他三种热效应则可通过0n Q s -曲线求得,曲线某点的切线的斜率为该浓度下的摩尔微分稀释热,切线与纵坐标的截距,为该浓度下的摩尔微分溶解热 (即OC )。显然,图中A 点的摩尔溶解热与B 点的摩尔溶解热之差为该过程的摩尔积分稀释热(即BE )。

物理化学实验报告_溶解热的测定

物理化学实验报告 溶解热的测定 实验时间:2018年4月日 姓名:刘双 班级: 学号: 1.实验目的 (1)了解电热补偿法测量热效应的基本原理。 (2)用电热补偿法测定硝酸钾在水中的积分溶解热,通过计算或者作图求出硝酸钾在水中的微分溶解热、积分冲淡热和微分冲淡热。 (3)掌握微机采集数据、处理数据的实验方法和实验技术。 2.实验原理 物质溶解于溶剂过程的热效应称为溶解热,物质溶解过程包括晶体点阵的破坏、离子或分子的溶剂化、分子电离(对电解质而言)等过程,这些过程热效应的代数和就是溶解过程的热效应,溶解热包括积分(或变浓)溶解热和微分(或定浓)溶解热。把溶剂加到溶液中使之稀释,其热效应称为冲淡热。包括积分(或变浓)冲淡热和微分(或定浓)冲淡热。 溶解热Q:在恒温、恒压下,物质的量为n2的溶质溶于物质的量为n1的溶剂(或溶于某浓度的溶液)中产生的热效应。 积分溶解热Qs:在恒温、恒压下,1mol溶质溶于物质的量为n1的溶剂中产生的热效应。 微分溶解热(ee ee2)e 1 :在恒温、恒压下,1mol溶质溶于某一确定浓度的无限量的溶液中 的热效应。 冲淡热:在恒温、恒压下,物质的量为n1的溶剂加入到某浓度的溶液中产生的热效应。 积分冲淡热Q d:在恒温、恒压下,把原含1mol溶质和n02mol溶剂的溶液冲淡到含溶剂为n01mol时的热效应,为某两浓度的积分溶解热之差。 微分冲淡热(ee ee1) e2 或(eee ee0 ) e2 :在恒温、恒压下,1mol溶剂加入到某一确定浓度的无 限量的溶液中产生的热效应。 它们之间的关系可表示为:

dQ=(ee ee1) e2 ee1+( ee ee2 ) e1 ee2 上式在比值e1 e2 恒定下积分,得: e=(ee ee1 ) e2 e1+( ee ee2 ) e1 e2 ee2=ee,令:e1 n2 =e0,则有: ( ?Q ?n1 )=[ ?(n2Q s ?(n2n0) ]=( ?Q s ?n0 ) Q d=(ee)e01?(ee)e02 其中积分溶解热ee可以直接由实验测定,其他三种可以由ee?e0曲线求得。 欲求溶解过程中的各种热效应,应先测量各种浓度下的的积分溶解热。可采用累加的方法,先在纯溶剂中加入溶质,测出热效应,然后再这溶液中再加入溶质,测出热效应,根据先后加入的溶质的总量可计算出n0,而各次热效应总和即为该浓度下的溶解热。本实验测量硝酸钾溶解在水中的溶解热,是一个溶解过程中温度随反应的进行而降低的吸热反应,故采用电热补偿法测定。先测定体系的初始温度T,当反应进行后温度不断降低时,由电加热法使体系复原到起始温度,根据所耗电能求出热效应Q。 3.仪器和试剂 反应热测量数据采集接口装置: NDRH-1型,温度测量范围0~40℃,温度测量分辨率0.001℃,电压测量范围0~20V,电压测量分辨率0.01V,电流测量范围0~2A,电流测量分辨率0.01A。 精密稳流电源:YP-2B型。 微机、打印机。 量热计(包括杜瓦瓶,搅拌器,加热器,搅拌子)。 称量瓶8只,毛笔,研钵。 硝酸钾(A.R.) 4.实验操作 (1)取8个称量瓶,分别编号。 (2)取KNO3于研钵中,研磨充分。 (3)分别称量约 2.5、1.5、2.5、3.0、3.5、4.0、4.0、4.5g 研磨后的硝酸钾,放入 8 个称量瓶中,并精确称量瓶子与药品的总质量。记录下所称量的数据。

冰的熔解热的测定实验报告

实验名称测定冰的熔解热 一、前言 物质从固相转变为液相的相变过程称为熔解。一定压强下晶体开始熔解时的温度称为该晶体在此压强下的熔点。对于晶体而言,熔解是组成物质的粒子由规则排列向不规则排列的过程,破坏晶体的点阵结构需要能量,因此,晶体在熔解过程中虽吸收能量,但其温度却保持不变。物质的某种晶体熔解成为同温度的液体所吸收的能量,叫做该晶体的熔解潜热。 二、实验目的 1、学习用混合量热法测定冰的熔解热。 2、应用有物态变化时的热交换定律来计算冰的溶解热。 3、了解一种粗略修正散热的方法——抵偿法。 三、实验原理 本实验用混合量热法测定冰的熔解热。其基本做法如下:把待测系统A和一个已知热容的系统B混合起来,并设法使它们形成一个与外界没有热量交换的孤立系统C (C=A+B).这样A(或B)所放出的热量,全部为B(或A)所吸收。因为已知热容的系统在实验过程中所传递的热量Q,是可以由其温度的改变△T 和热容C计算出来,即Q = C△T,因此待测系统在实验过程中所传递的热量也就知道了。 实验时,量热器装有热水(约高于室温10℃,占内筒容积1/2),然后放入适量冰块, 冰溶解后混合系统将达到热平衡。此过程中,原实验系统放热,设为Q 放 ,冰吸热溶成水, 继续吸热使系统达到热平衡温度,设吸收的总热量为Q 吸 。 因为是孤立系统,则有Q 放= Q 吸 (1) 设混合前实验系统的温度为T1,其中热水质量为m1(比热容为c1),内筒的质量为m2(比热容为c2),搅拌器的质量为m3(比热容为c3)。冰的质量为M(冰的温度和冰的熔点均认为是0℃,设为T0),数字温度计浸入水中的部分放出的热量忽略不计。设混

冰的熔化热-实验报告

XX大学物理学院实验报告 实验名称:测定冰的熔化热 学生姓名:XXX 学号:XX 实验日期:20XX年XX月XX日 一、数据及处理 3. 投入冰的时刻:t=250s 冰的温度:-13.0℃ 室温:26.1℃ 5. 计算得到冰的熔化热L=3.22x10J/kg 6. T-t图像:

7. 从图中得到的信息: 水的初始温度(承装水时):39.5℃; 投入冰前水温下降速度:0.1℃/30s; 投入冰时水温:38.7℃; 冰完全融化后的温度:22.1℃; 系统达到稳定状态耗时:约100s; 投入冰时温度比室温高12.6℃,稳定后温度比室温低4℃,其比值为3.15; 二、分析与讨论 1. 误差的主要来源: 误差主要来源于搅拌过程和转移过程之中水的溅出,包括溅出到桌上与溅出到外筒里,这将直接影响冰的测量质量,由于在计算式中,冰的质量位于分母,故放大了绝对误差。因此,在失败(误差过大)一次后,采取连同外筒一起测量质量的方法,防止在取出内筒过程中造成的溅出,同时测量包括溅入外筒的水。 2. 补偿法的意义: 理论公式的适用范围是有限的,在相当多的实验情况下,不可避免的会出现超出适用范围的因素,例如本实验中的对环境吸放热,无法实现完全绝热的实验条件,带来系统的偏差。补偿法可以在一定程度上减小这些不可抗因素的影响,使作用效果相反的两种因素相互抵消以维持实验结果,从而减小实验误差。在其他的实验中,例如迈克尔逊干涉仪中,也存在着大量的补偿法应用。 3. 测量值偏小的原因: (1)取出冰块和将冰块擦干时不可避免的会与外界,特别是加持、擦拭工具间相互传热,甚至与手掌间接传热,造成温度上升,使熔化热计算值偏低; (2)读取系统热平衡温度时,由于外界导热的影响以及温度计示数的延迟使温度读取值偏大,导致熔化热计算值偏低; (3)拟合过程采取直线拟合,与原本的二次拟合存在差异,导致起始温度较推断值更高,使熔化热计算值偏低。 三、收获与感想 (1)投入冰前与最终稳定后,温度的变化较为缓慢,测量数据点可以选择更疏一些。(2)投入冰后到稳定前,温度变化非常剧烈,测量数据点可以选择更密一些。 (3)投入冰与记录时间、温度难以同时进行,故可以根据投入冰前的温度变化线性推出投入冰时刻的系统温度,以获得准确值,在其他热学实验中也可以应用。 (4)在量程允许的情况下,将整个量热器称量质量,而不取出内筒,减少必要的操作步骤,减少水的溅出带来的误差。 (5)初步了解并使用了补偿法,为以后在测电阻、迈克尔逊干涉仪等实验增加经验。

三年级科学下册实验报告单

实验一、温度和温度计 活动1:感受1号杯和2号杯里水的冷热 1号杯水() 2号杯水() 活动2:观察温度计 .观察常用液体温度计的主 要构造。 你观察温度计上有摄氏度 (℃)的标记吗? 你观察温度计上每一小格表 示多少? 最高()最低() 你观察温度计的最高温度和 最低温度是多少? 实验现象温度计里面的液柱热了就会上升,冷了就会下降。 活动3:下面的温度你会读和写吗? 28摄氏度写作: 20摄氏度写作: 零下5摄氏度写作: -21℃读作: 31℃读作: 实验要求:用温度计测量水的温度。 实验用品:400ml烧杯一个一支温度计适量冷水和一暖壶热水吸水纸废物瓶。 步骤操作要求评分标准满分得分1 清点仪器用品按材料清单清点材料用品是否齐全(5分)。 5

2 观察温度计的 零刻线、分度值 和量程。 A、观察温度计的零刻线。(10分) B、观察温度计的分度值和量程 。(10分) 20 3 用手感知水温。将手指伸入烧杯中(冷水)或将手放在烧杯 外壁(热水),手的感觉 (10分),估测水的温度(10分)。 20 4 将温度计测量 水的温度。 A、手拿温度计上端,将其竖直放入水中。(10 分) B、温度计的玻璃泡要完全浸没在水中,玻璃 泡不要碰烧杯的侧壁和底部。(10分) C、等示数稳定时再读数。读数时,要让玻璃 泡继续停留在水中。(10分) D、视线要和温度计的示数保持相平。连续三 次测水的温度分别为、、 ,平均水温为。(15分) 45 5 整理仪器,擦拭 桌面。 A、将温度计擦干放回原处。(5分) B、擦拭桌面。(5分) 10 实验三、水结冰了 一、实验名称:水结冰了 二、实验目的:观察水在不同温度下温度计的读数 三、实验步骤: 1、在试管里加入一半的纯净水,用温度计测量并记录试管里水的温度 2、拿一只保温杯(或在普通塑料杯外包裹一块干毛巾)在杯内装满碎冰, 把试管插入碎冰中,用温度计观测试管里水温的变化 3、在碎冰里加入较多的食盐,保持几分钟持续观测试管里的水温 4、观测试管里的水开始结冰时的温度 四、实验器材:试管、保温杯、温度计、碎冰块、食盐、纯净水。 水结冰了的实验记录表

冰熔化实验报告

篇一:冰熔化实验报告 冰熔化实验报告 实验目的: 观察冰的熔化的过程,知道晶体的熔化特点,是吸热的过程。实验器材: 温度计,铁架台,石棉网,大烧杯,酒精灯,冰,秒表(或手表)实验步骤: 1、把装有冰块的大烧杯放在铁架台的石棉网上。 2、把温度计用铁架台上的架子固定,且温度计不接触大烧杯的底和壁。 3、把酒精灯放在石棉网下面。 4、点燃酒精灯开始加热大烧杯。 5、每隔半分钟记录一次温度计的读数。并记录下来。 6、根据记录的数据,在下表中做温度--时间图线。实验表格: 1实验结论: 实验延伸: 1.是不是所有物质的熔化都和冰的熔化一样具有相同的情况? 2.水凝固成冰的时的温度--时间图线又是怎样的? 2篇二:冰的熔解热的测定实验报告 实验名称测定冰的熔解热 一、前言 物质从固相转变为液相的相变过程称为熔解。一定压强下晶体开始熔解时的温度称为该晶体在此压强下的熔点。对于晶体而言,熔解是组成物质的粒子由规则排列向不规则排列的过程,破坏晶体的点阵结构需要能量,因此,晶体在熔解过程中虽吸收能量,但其温度却保持不变。物质的某种晶体熔解成为同温度的液体所吸收的能量,叫做该晶体的熔解潜热。 二、实验目的 1、学习用混合量热法测定冰的熔解热。 2、应用有物态变化时的热交换定律来计算冰的溶解热。 3、了解一种粗略修正散热的方法——抵偿法。 三、实验原理 本实验用混合量热法测定冰的熔解热。其基本做法如下:把待测系统 a 和一个已知热容的系统 b 混合起来,并设法使它们形成一个与外界没有热量交换的孤立系统 c(c=a+b).这样 a (或 b)所放出的热量,全部为 b(或 a)所吸收。因为已知热容的系统在实验过程中所传递的热量 q,是可以由其温度的改变△t 和热容 c 计算出来,即 q = c△t ,因此待测系统在实验过程中所传递的热量也就知道了。 实验时,量热器装有热水(约高于室温10℃,占内筒容积1/2),然后放入适量冰块,冰溶解后混合系统将达到热平衡。此过程中,原实验系统放热,设为 q放,冰吸热溶成水,继续吸热使系统达到热平衡温度,设吸收的总热量为 q吸。 因为是孤立系统,则有q放= q吸(1) 设混合前实验系统的温度为t1,其中热水质量为m1(比热容为c1),内筒的质量为m2(比热容为c2),搅拌器的质量为m3(比热容为c3)。冰的质量为 m(冰的温度和冰的熔点均认为是0℃,设为t0),数字温度计浸入水中的部分放出的热量忽略不计。设混合后系统达到热平衡的温度为t℃(此时应低于室温10℃左右),冰的溶解热由l表示,根据(1)式有 ml+m c1(t- t0)=(m1 c1+ m2 c2+ m3 c3)(t1- t) 因tr=0℃,所以冰的溶解热为: l? (m1c1?m2c2?m3c3)(t1?t) ?tc1

冰的熔解热的测定实验报告

学院:信息工程学院 班级:通信152 学号:6102215051 姓名:潘鑫华 实验时间:第六周星期二下午八九十节

T T' θ J K T 1 T 1' 实验名称 测定冰的熔解热 一、实验目的 1、学习用混合量热法测定冰的熔解热。 2、应用有物态变化时的热交换定律来计算冰的溶解热。 3、了解一种粗略修正散热的方法——抵偿法。 二、实验原理 本实验用混合量热法测定冰的熔解热。其基本做法如下:把待测系统 A 和一个已知热容的系统 B 混合起来,并设法使它们形成一个与外界没有热量交换的孤立系统 C (C =A +B ).这样 A (或 B )所放出的热量,全部为 B (或 A )所吸收。因为已知热容的系统在实验过程中所传递的热量 Q ,是可以由其温度的改变 △T 和热容 C 计算出来,即 Q = C △T ,因此待测系统在实验过程中所传递的热量也就知道了。 实验时,量热器装有热水(约高于室温10℃,占内筒容积1/2),然后放入适量冰块,冰溶解后混合系统将达到热平衡。此过程中,原实验系统放热,设为 Q 放 ,冰吸热溶成水,继续吸热使系统达到热平衡温度,设吸收的总热量为 Q 吸。 因为是孤立系统,则有Q 放= Q 吸 (1) 设混合前实验系统的温度为T 1,其中热水质量为m2(比热容为c0)。冰的质量为m1(冰的温度和冰的熔点均认为是0℃,设为T 0),数字温度计浸入水中的部分放出的热量忽略不计。设混合后系统达到热平衡的温度为T ℃(此时应低于室温10℃左右),冰的溶解热由L 表示,根据(1)式有 ML +m1c0(T - T 0)=m2c0(T 1- T ) 因T r=0℃,所以冰的溶解热为: L=[m2c0(T1-T2)-T2c0m1]/m1 (2) 综上所述,保持实验系统为孤立系统是混合量热法所要求的基本实验条件。为此整个实验在量热器内进行,但由于实验系统不可能与环境温度始终一致,因此不满足绝热条件,可能会吸收或散失能量。所以当实验过程中系统与外界的热量交换不能忽略

物化实验报告:溶解热的测定-KCl、KNO3

华南师范大学实验报告 课程名称 物理化学实验 实验项目 溶解热的测定 【实验目的】 1.用量热计简单测定硝酸钾在水中的溶解热。 2.掌握贝克曼温度计的调节和使用。 【实验原理】 盐类的溶解往往同时进行着两个过程:一是晶格破坏,为吸热过程;二是离子的溶剂化,为放热过程。溶解热是这两种热效应的总和。最终是吸热还是放热,则由这两种热效应的相对大小来决定。 本实验在定压、不做非体积功的绝热体系中进行时,体系的总焓保持不变,根据热平衡,即可计算过程所涉及的热效应。 T C C W C W W M H m sol ??++-=?][322111 )( (3.1) 式中: m Sol H ?为盐在溶液温度和浓度下的积分溶解热,单位:kJ ·mo1–1; 1W 为溶质的质量,单位:kg ; T ?为溶解过程的真实温差,单位:K ; 2W 为水的质量,单位:kg ; M 为溶质的摩尔质量,单位:kg ·mo1–1 ; 21C C 、分别为溶质和水的比热,单位:11--?K kg kJ ; 度升 3C 为量热计的热容(指除溶液外,使体系温高1℃所需要的热量) ,单位:kJ 。 实验测得W 1、W 2、ΔT 及量热计的热容后,即 可按 图3.1溶解热测定装配图 1.磁力搅拌器; 2.搅拌磁子; 3.杜瓦瓶; 4.漏斗; 5.传感器; 6.SWC —IIC 数字贝克曼温度仪.

(3.1)式算出熔解热m Sol H 。 【仪器与药品 】 溶解热测量装置一套(如图3.1所示);500ml 量筒一个;KCl(A.R.) ;KNO 3(A.R.) 【实验步骤】 1.量热计热容的测定: 本实验采用氯化钾在水中的溶解热来标定量热计热容3C 。为此,先在干净的量热计中装入500m1蒸馏水,将与贝克曼温度计接好的传感器插入量热计中,放在磁力搅拌器上,启动搅拌器, 保持60-90转/分钟的搅拌速度,此时,数字显示应在室温附近,至温度变化基本稳定后,每分钟准确记录读数一次,连续8次后,打开量热计盖,立即将称量好的10克氯化钾(准确至0.01克)迅速加入量热计中,盖上盖,继续搅拌,每分钟记录一次读数,读取12次即可停止。然后用普通水银温度计测出量热计中溶液的温度,倒掉溶液。 2.硝酸钾溶解热的测定:用硝酸钾代替氯化钾重复上述实验,区别是称取硝酸钾的质量为7克(准确至0.01g)。完成一次实验后,溶液不倒掉。同样连续读数8次后,再向溶液中加入7克硝酸钾,再读取12次温度完成第二次测量。实验结束,倒掉溶液 【数据的处理】 1.各样品溶解前后温差的雷诺校正图

测定冰的熔化热-实验报告

测定冰的熔化热实验报告(一)实验数据及处理 1.第一次实验数据处理 C水=4.18×103J/(Kg·K)C1=C2=0.389×103J/(Kg·K)C冰=1.80×103 J/(Kg·K) m=22.69 g m0=164.16 g T2-T3=15.2℃

2.第二次实验数据处理 C水=4.18×103J/(Kg·K)C1=C2=0.389×103J/(Kg·K)C冰=1.80×103 J/(Kg·K) m=22.97g m0=171.13g T2-T3=13.8℃

(T2-θ):(θ-T3)= 10.1 :3.7 (二)分析与讨论 1.从实测数据看,如果实验全过程中散热、吸热没有达到补偿,冰的熔化热结果不一定偏离“合理”的数据范围,这说明散热或吸热并不是该系统的主要实验误差来源。那么,本实验的主要误差来源是什么? 由熔化热的公式看,对计算结果影响最大的量是m,即冰的质量。由于采用间接测量法,因此冰的质量是比较容易产生误差的,比如投冰时溅出水,就会对

算出的冰的质量产生影响,从而产生误差。 2.通过实验去体会粗略修正散热的方法——补偿法在本实验中的应用对学习做实验的意义。 在实验系统不能很好地保证绝热时,用补偿法修正系统误差是一个办法,也是一个好的思路。在这次实验中,我们应该反复摸索,对各物理参量进行合理的选择和调整,使散热和吸热基本达到补偿。 然而,实验结果证实量热器是一个很好的绝热系统,因此,在分析系统误差来源时,应实事求是地、定量地进行分析,不能将误差的来源归结为系统的散热、吸热未能达到补偿。 3.在本实验室提供的条件下,实测熔化热的结果通常小于文献值 L=3.34×105J/Kg,你能分析是什么原因吗? 本实验未计算温度计插入水中的部分带来的影响。

溶解热实验报告

溶解热的测定 名字:程伊伊学号:06 班级:药学日期:2016.3.15 (一)实验原理 1.溶解热概念溶质溶解于溶剂的过程由溶质晶格破坏、电离的吸热过程和溶质溶剂化的放热过程组成,总的热效应取决于两者之和,可能是吸热的,也可能是放热的。在一定温度和压力下,热效应的大小与溶质和溶剂的相对量有关,例如硝酸钾溶解在水中的热效应(吸热)随溶剂水的量增加而增加。 2.电热补偿法原理硝酸钾溶解于水的过程是吸热过程,反应热可以用电热补偿法来进行测定。其基本做法是,在反应前确定系统的温度,在反应中,给予系统电加热,直到反应结束后,系统的温度恢复到起始状态,计算电热量即为反应热。 △Hm=Cp*△T1*M/m Cp=Q/△T2 Q=IVt (二)实验步骤 (1)在分析天平上称取1份重量为8.2345g的硝酸钾样品,放在干燥器中待用。 (2)将蒸馏水加入干燥的保温杯中,同时记录水温,作为实验温度。 (3)插上电源,搭好装置,开启磁力搅拌器,调整转速。观察数字贝克曼温度计,记录初始温度T1,每1min观察1次,记录3次,直至恒温。 (4)将预先称好的硝酸钾8.2345g迅速、全部倒入保温杯中,盖好瓶盖,磁力搅拌器均匀地搅拌,由于硝酸钾溶解为吸热过程,溶解时温度下降,每30s读取温度一次,直至温度不变,即为T2。T2每1min观察1次,记录3次。 (5)开启电源,接上加热器,调整功率(电压约10V,电流约1A),准确记录电流电压值。当贝克曼温度计度数上升0.5℃时,记作标记温度,并按下秒表开始计时。 (6)计时的同时,观察温度上升,直至接近T1,取下加热器,记录温度T3,每1min 观察1次,记录3次。 (三)数据记录和处理 实验温度的测定 通电时间:3min14s 电流:1.435A 电压:10.46V 实验温度:13.92℃ 每1min记录1次第1次第2次第3次 T1 13.93 13.93 13.93 T2 11.16 11.14 11.13 T3 14.18 14.22 14.26

溶解热的测定实验报告

学号:201114120222 基础物理化学实验报告 实验名称:溶解热的测定 应用化学二班班级 03 组号 实验人姓名: xx 同组人姓名:xxxxx 指导老师:李旭老师 实验日期: 2013-11-19 湘南学院化学与生命科学系

一、实验目的 1、掌握量热装置的基本组合及电热补偿法测定热效应的基本原理。 2、用电热补偿法测定KNO3在不同浓度水溶液中的积分溶解热。 3、用作图法求KNO3在水中的微分冲淡热、积分冲淡热和微分溶解热。 二、实验原理 1、在热化学中,关于溶解过程的热效应,有下列几个基本概念。 溶解热:在恒温恒压下,n 2mol 溶质溶于n 1mol 溶剂(或溶于某浓度溶液)中产生的热效应,用Q 表示,溶解热可分为积分(或称变浓)溶解热和微分(或称定浓)溶解热。 积分溶解热:在恒温恒压下,1mol 溶质溶于n 0mol 溶剂中产生的热效应,用Qs 表示。 微分溶解热:在恒温恒压下,1mol 溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以 表示简写为 。 冲淡热:在恒温恒压下,1mol 溶剂加到某浓度的溶液中使之冲淡所产生的热效应。冲淡热也可分为积分(或变浓)冲淡热和微分(或定浓)冲淡热两种。 积分冲淡热:在恒温恒压下,把原含1mol 溶质及n 01mol 溶剂的溶液冲淡到含溶剂为n 02时的热效应,亦即为某两浓度溶液的积分溶解热之差,以Qd 表示。 微分冲淡热 在恒温恒压下,1mol 溶剂加入某一确定浓度的无限量的溶液中产生的热效应,以 可以简写为 。 2、积分溶解热QS 可由实验直接测定,其它三种热效应则通过QS -n 0曲线求得。 设纯溶剂和纯溶质的摩尔焓分别为m H (1)和Hm ? (2),当溶质溶解于溶剂变成溶液后,在溶液中溶剂和溶质的偏摩尔焓分别为H 1,m 和H 2,m ,对于由n 1mol 溶剂和n 2mol 溶质组成的体系,在溶解前体系总焓为H 。 H =n1Hm(1)+n2Hm(2) (1) 设溶液的焓为H ′, H ′=n1H1,m +n2H2,m (2) 此混合(即溶解)过程的焓变为 H H H nA Hm A H*m A nB Hm B H*m B ??==+(,,)(,,) nA Hm A nB Hm B =?+?,, 式中,Hm ?,A 即为该浓度溶液的微分稀释热,ΔHm ,B 即为该浓度溶液的1,,2n p T n Q ???? ????1 2n n Q ???? ????2,,2n p T n Q ???? ????22n n Q ???? ????

冰的熔解热实验报告

大学物理实验报告 课程名称:物理设计类实验 实验名称:冰的熔解热的测定 学院:专业班级: 学生:学号: 实验地点:座位号: 实验时间:第八周星期三下午十五时四十五分开始

关。 由此可知,用混合量热法测冰的熔解热时,应尽量让室温处在水的初、终温之间,使系统向外界吸、放的热量基本抵消。在实验过程中,从混合前一段时间到混合后一段时间均记下温度和时间的关系,绘制T-t 曲线,如图(1)中的实线部分。图中T1约为B 点对应的水的初温,T2约为C点对应的系统平衡温度,我们用眼睛估寻一个温度,由它对应的G 点绘制一条EGF 直线平行于T 轴,它与BGC 线组成两个小面积BGE 和CGF。估寻的原则是这两个小面积相等。 图(1)中由T1 降温到θ'过程是系统向环境散热: q 散= ?t t B G k ( T - θ ) d t 温度从θ'降到T2 过程是系统从环境吸热: q 吸= ?t t G c k ( T - θ ) d t q吸和q散正是上述两个小面积,他们相等时便使交换的总热量正好为零。应该指出,由于冰块越溶越小,表面积也变小,交换热量速度变慢,所以T-t 曲线上的BC 段明显地不是直线,其斜率越来越小。 本实验对温度的测量采用精度为1℃的水银温度计和数字万用表测温档。

时间(s)120 135 150 165 180 195 210 温度(摄氏度)12 11.8 11.6 11.4 11.2 11.2 11.2 温度大概稳定后 时间(s)240 300 360 420 480 540 温度(摄氏度)11.2 11.4 11.6 11.8 12 12 由数据可以作图: 得T1=31.8摄氏度,T2=10.6摄氏度。 由公式L=T2×T0(T1?T2)?T1T2T0 T1

【免费下载】溶解热的测定实验报告 南昌大学

南昌大学物理化学实验 溶解热的测定实验报告一、 实验目的 1 .了解电热补偿法测定热效应的基本原理及仪器使用。 2.测定硝酸钾在水中的积分溶解热,并用作图法求得其微分稀释热、积分稀释热和微分溶解热。 二、 基本原理1.物质溶解于溶剂过程的热效应称为溶解热。它有积分(或变浓)溶解热和微分(或定浓)溶解热两种。前者是1mol 溶质溶解在n 0mol 溶剂中时所产生的热效应,以Q s 表示。后者是1mol 溶质溶解在无限量某一定浓度溶液中时所产生的热效应,即。 溶剂加到溶液中使之稀释时所产生的热效应称为稀释热。它也有积分(或变浓)稀释热和微分(或定浓)稀释热两种。前者是把原含1mol 溶质和n 01mol 溶剂的溶液稀释到含溶剂n 02mol 时所产生的热效应,以Q d 表示,显然。后者是1mol 溶剂加到无限量某一定浓度溶液中时所产生的热效应,即。 2.积分溶解热由实验直接测定,其它三种热效应则需通过作图来求:设纯溶剂、纯溶质的摩尔焓分别为H *m ,A 和H *m ,B ,一定浓度溶液中溶剂和溶质的偏摩尔焓分别为H m ,A 和H m ,B ,若由n A mol 溶剂和n B mol 溶质混合形成溶液,则混合前的总焓为 H = n A H *m ,A + n B H *m ,B (1)混合后的总焓为 H ? = n A H m ,A + n B H m ,B (2)此混合(即溶解)过程的焓变为 ΔH = H ? – H = n A (H m ,A – H *m ,A )+ n B (H m ,B – H *m ,B ) = n A ΔH m ,A + n B ΔH m ,B (3)根据定义,ΔH m ,A 即为该浓度溶液的微分稀释热,ΔH m ,B 即为该浓度溶液的微分溶解热,积分溶解热则为: 故在Q s ~ n 0图上,某点切线的斜率即为该浓度溶液的微分稀释热,截距即为该浓度溶液的微分溶解热。如图所示:、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

【清华】溶解热的测定--2006030027

溶解热的测定 吴大维 2006030027 生64 同组实验者:王若蛟 实验日期:2008年5月16日 提交报告日期:2008年5月30日 指导教师:张连庆 1 引言 1.1 实验目的 1.测量硝酸钾在不同浓度水溶液的溶解热,求硝酸钾在水中溶解过程的各种热效应。 2.掌握量热装置的基本组合及电热补偿法测定热效应的基本原理。 3.复习和掌握常用的测温技术。 1.2 实验原理 1.2.1 基本实验原理 物质溶于溶剂中,一般伴随有热效应的发生。盐类的溶解通常包含着几个同时进行的过程:晶格的破坏、离子或分子的溶剂化、分子电离(对电解质而言)等。热效应的大小和符号决定于溶剂及溶质的性质和它们的相对量。 在热化学中,关于溶解过程的热效应,需要了解以下几个基本概念。 溶解热 在恒温恒压下,溶质B 溶于溶剂A(或溶于某浓度溶液)中产生的热效应,用sol H ?表示。 摩尔积分溶解热 在恒温恒压下,1mol 溶质溶解于一定量的溶剂中形成一定浓度的溶液,整个过程产生的热效应。用sol m H ?表示。 sol sol m B H H n ??= (1) 式中, B n 为溶解于溶剂A 中的溶质B 的物质的量。 摩尔微分溶解热 在恒温恒压下,1mol 溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以,,( )A sol T P n B H n ???表示,简写为()A sol n B H n ???。 稀释热 在恒温恒压下,一定量的溶剂A 加到某浓度的溶液中使之稀释,所产生的热效应。 摩尔积分稀释热 在恒温恒压下,在含有1mol 溶质的溶液中加入一定量的溶剂,使之稀释成另一浓度的溶液,这个过程产生的热效应,以dil m H ?表示。 21dil m sol m sol m H H H ?=?-? (2) 式中,2sol m H ?、1sol m H ?为两种浓度的摩尔积分溶解热。

冰的熔解热的测定.

冰的熔解热的测定 摘要:用混合法测定冰的熔解热是把冰和一个容量已知的系统混合起来达到热平衡,在与外界没有热交换条件下冰吸收的热量等于系统在实验过程中放出的热量,放出的热量可由温度的改变和热容量计算出来,冰的熔解热可根据条件计算出来。 关键词:冰的比熔解热、吸热、放热、散热修正 引言: 将一定质量的冰和一定质量的水混合,当混合后的系统达到一定的温度后,冰全部熔解为同温度的水,根据热力学第一定律,冰熔解所吸收的热量与水降温所放出的热量相等.只要测量出系统与外界的换热量、水的质量、冰的质量等,就可以求出冰的熔解热.文中采用混合法测量冰的熔解热,实验中并未考虑系统环境的散热损失.本实验研究方法中采用测量系统中水的质量变化来测量冰的质量。实验用混合法来测定冰的熔解热,即把待测的系统和一个已知其热容的系统混合起来,并设法使它们形成一个与外界没有热量交换的孤立系统 ()。这样(或)所放出的热量,全部为(或)所吸收。因为已知热容的系统在实验过程中所传递的热量是可以由其温度的改变和热容计算出来的,即 。因此,待测系统在实验过程中所传递的热量也就知道了。由此可见,保持系统为孤立系统,是混合量热法所要求的基本实验条件,这要从仪器装置、测量方法及实验操作等各方面去保证。如果实验过程中与外界的热交换不能忽略,就要做散热或吸热修正。温度是热学中的一个基本物理量,量热实验中必须测量温度。一个系统的温度,只有在平衡态时才有意义,因此计温时必须使系统温度达到稳定而均匀。用温度计的指示值代表系统温度,必须使系统与温度计之间达到热平衡。 1.1实验原理: 一定压强下的晶体开始熔解时的温度称为该晶体在此压强下的熔点,质量为1g的某种物质的晶体熔解为相同温度的液体所吸收的热量叫做该晶体的熔解热。本实验采用混合量热测定冰的熔解热,其基本原理是:把待测系统和一个已知其热容的系统混合起来,并使它们形成一个与外界没有热量交换的孤立系统。于是,在此孤立系统中已知其热容的系统吸收(或放出的热量也就是待测系统放出(或吸收的热量。已知其热容的系统吸收(或放出的热量可通过其温度的变化及其热容来求得,于是待测系统放出(或吸收的热量也便可求得。为了使实验系统成为一个孤立系统,我们采用了量热器。量热器的种类很多,随测量的目的、要求、测量精度的不同而异。最简单的一种如图2-27所示,它是由热的良导体做成的内筒,放在一较大的外筒中组成。通常在内筒中放水、温度计及搅拌器,这些东西(内筒、温度计、搅拌器及水连同放进的待测物体就构成了我们所考虑的(进行实验的系统,内筒、水、温度计和搅拌器的热容可以测知。量热器的内筒置于一绝热架上,外筒用绝热盖盖住,因此其内的空气与外界对流很小。又因空气是不良导体,所以内、外筒间通过热传导传递的热量便可减至很少。同时由于内筒的外壁及外筒的内外壁都十分光亮,使得它们向外辐射热或吸收辐射热的本领

物化实验报告-溶解热的测定

溶解热测定 (物化试验得好好做) 一、实验目的 1、设计简单量热计测定某物质在水中的积分溶解焓。 2、复习和掌握常用的量热技术与测温方法。 3、由作图法求出该物质在水中的摩尔稀释焓、微分溶解焓、微分稀释焓。 二、实验原理 溶解热,即为一定量的物质溶于一定量的溶剂中所产生的热效应。溶解热除了与溶剂量及溶质量有关外,还与体系所处的温度及压力有关。溶解热分为积分溶解热和微分溶解热。 积分溶解热即在等温等压条件下,1mol溶质溶解在一定量的溶剂中形成某指定浓度的溶液时的焓变。也即为此溶解过程的热效应。它是溶液组成的函数,若形成溶液的浓度趋近于零,积分溶解热也趋近于一定值,称为无限稀释积分溶解热。积分溶解热是溶解时所产生的热量的总和,可由实验直接测定。 微分溶解热即在等温等压下,在大量给定浓度的溶液里加入一摩尔溶质时所产生的热效应,它可表示为(ЭΔsolH/ЭnB)T、P、nA ,因溶液的量很大,所以尽管加入一摩尔溶质,浓度仍可视为不变。微分热难以直接测量,但可通过实验,用间接的方法求得。 溶解热的测量可通过绝热测温式量热计进行,它是在绝热恒压不作非体积功的条件下,通过测定量热系统的温度变化,而推算出该系统在等温等压下的热效应。 本实验采用标准物质法进行量热计能当量的标定。利用1molKCl溶于200mol水中的积分溶解热数据进行量热计的标定。当上述溶解过程在恒压绝热式量热计中进行时,可设计以下途径完成: 上述途径中:△H = △H1+△H2 = 0 →△H2 = -△H1

△H1 = [n1Cp,m (KCL,S)+ n2Cp,m(H2O,l)+ K ]×(T2- T1) △H2 = n1ΔsolHm K = -[n1Cp,m(KCL,S)+ n2Cp,m(H2O,l)+(n1ΔsolHm )/(T2- T1)] = -[m1Cp(KCL,S)+ m2Cp(H2O,l)+(m1ΔsolHm )/(M1 △T)] 式中m1 、m2 分别为溶解过程加入的KCl(S)和H2O(l)的质量;Cp,m为物质的恒压比热容,既单位质量的物质的等压热容,Cp(KCl,S)=0.699 kJ/(kg·K),Cp(H2O,l)= 4.184 kJ/(kg·K);M1为KCl的摩尔质量,△T =(T2- T1)即为溶解前后系统温度的差值;ΔsolHm 为1molKCl溶解于200 molH2O的积分溶解热,其不同温度下的积分溶解热数值见附录。通过公式式可计算量热计的K值。 本实验测定1mol的KNO3溶于200mol的H2O的溶解过程的积分溶解热,途径如下 ΔsolH = -[n1Cp,m (KNO3,S)+ n2Cp,m(H2O,l)+ K ]×(T2- T1) = -[ m1Cp(KNO3,S)+ m2Cp(H2O,l)+ K ]×(T2- T1) 摩尔溶解热ΔsolH m = ΔsolH/n1 同理m1,m2 :分别为溶解过程加入的KNO3(S)和H2O(l)的质量;Cp物质的恒压比热容,既单位质量的物质的等压热容,Cp(KNO3,S)=0.9522KJ.Kg-1.K-1,△T =(T2- T1 ):溶解前后系统温度的差值(需经过雷诺校正) ;n1:所加入的KNO3摩尔数 通过公式,既可求得1mol的KNO3溶于200mol的H2O的溶解过程的积分溶解热。 三、仪器与试剂 1、仪器:广口保温瓶、磁力搅拌器、贝克曼温度计、1/10℃温度计、容量瓶(200ml)、停表(1个) 2、试剂:氯化钾(分析纯)、硝酸钾(分析纯) 四、实验步骤 1.量热计的标定 (1)在称量瓶中准确称取4.1413克的KCl, 并记下装有KCL的称量瓶的总重量。 (2) 用容量瓶准确量取200mL室温下的蒸馏水(密度为ρ=1Kg.dm-3),倒入广口保温杯中。

溶解热的测定实验报告

溶解热的测定实验报告 一·实验目的 1.用简单量热计测定硝酸钾的溶解热 2·学习量热计热容的标定方法 3·非绝热因素对实验影响的校正 4·学会使用《计算机全程管理系统》 二·实验原理 无机盐类的溶解,同时进行晶格的破坏(吸热)和离子的溶剂化(放热)过程。将杜瓦瓶看作绝热体系,当盐溶于水中时,有如下热平衡: ΔH(W/M)=KΔT1 式中,K为量热计热容 上述过程完成后,进行电标定,用点加热器加热,又有平衡:IVt=K ΔT2 左边是加热电功的计算 由此可得: ΔH=(M/W)IVt(ΔT1/ΔT2) 由于在此两过程中,体系温度变化小,一般在1度左右,必须使用贝克曼温度计或精密电子温差仪,才能读到千分位,达到实验的要求。 也可以使用热敏电阻作为测温元件,它作为直流电桥的一个臂。热敏电阻因温度变化而电阻发生变化,电桥即有电阻输出。

用自动平衡记录仪记录,或经放大后由计算机采集,用无纸记录仪记录。 由于温度变化小,可认为电桥输出与温度变化成正比。如果以上两过程为l1和l2,可用下式计算溶解热: ΔH=(W/M)IVt(l1/ l2) 由于杜瓦瓶并非真正的绝热体系,实验过程中实际有微小的热交换。必须对温度进行校正。采用外推法,从时间-温度曲线上反映前后平均温度的点引时间坐标的垂线,与反应前后温度变化的延长线香蕉,交点的距离为l1和l2 三·仪器与试剂 500mL杜瓦瓶,装配有加热电炉丝和固体试样加料漏斗克曼温度计或精密温差仪或测温热电阻(配有电桥) 电磁(或电动)搅拌仪直流稳压电源(0~30V,0~2A)直流电流表(0.5级,0~1.5A)500mL量筒停表 记录仪分析纯硝酸钾 四·试验步骤 1·杜瓦瓶中用量筒加450mL水,装置好量热计,开始搅拌。调节输出为0,开启记录仪,记录体系温度稳定过程。 2·分析天平称取硝酸钾(前先碾成细粉,约3.3g),在量热计温度稳定3~5分钟后,从加料漏斗加入,记录仪记录过程温度变化。注意:加料漏斗加料前后应加盖,以减少体系与环境的热交换)3·待温度没有明显变化后约3分钟停止记录。

熔解热测定及思考题

熔解热的测定 一、实验目的 1、用简单量热计测定硝酸钾的溶解热。 2、学习量热计热容的标定方法。 3、非绝热因素对实验的影响校正。 4、学会使用《计算机全过程管理系统》。 二、实验原理 无机盐类的溶解,同时进行晶格的破坏和离子的溶剂化过程。将杜瓦瓶看作绝 热体系,当盐溶于水中时,有如下热平衡: △H(W/M)=K△T1 式中,K为量热计容量。 上述过程完成后,进行电标定,用电加热器加热,又有如下平衡: IVt=K△T2 左边是加热电功的计算。 由此可得: △H=(M/W) IVt .(△T1/△T2) 由于在此两过程中,体系温度变化小,一般在1度左右。必须使用贝壳曼温度计或 精密电子温差仪,才能读到千分位,达到实验的要求。 使用热敏电阻作为测温元件,它作为直流电桥的一个臂。温度变化小,可认为电桥输出与温度变化成正比,△T∝l(l为记录仪记录的变化)。由以上两个过程可用下式计算。 △H 溶解W/M = IVtl 1 /l 2 由于杜瓦瓶并非真正的绝热体系,实验过程中实际有微小的热交换。必须对温差进行校正。采用外推法,从时间-温度曲线上反应前后平均温度的点引时间坐标 的垂线,与反应前后温度变化的延长线相交,交点的距离为l 1和l 2 。 三、仪器与试剂 1.500ml杜瓦瓶,装配有加热电炉丝和固体试样加料漏斗; 2.贝克曼温度计或精密温差仪或测温热电阻;电磁搅拌仪; 3.直流稳压电源(0~30v,0~2A);直流电流表(0.5级,0~1.5A);直流电压表(0.5级,0~10v); 4.500ml量筒;记录仪; 5.分析纯硝酸钾。 四、主要实验步骤 1、溶解过程 1. 清洗实验仪器

相关主题