搜档网
当前位置:搜档网 › 三角函数图象变换习题

三角函数图象变换习题

三角函数图象变换习题
三角函数图象变换习题

三角函数图象变换复习

1.为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6

y x π=+的图像( ) (A )向左平移4π个长度单位 (B )向右平移4

π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2

π个长度单位 2.函数f (x )=2sin x cos x 是( )

(A)最小正周期为2π的奇函数

(B )最小正周期为2π的偶函数 (C)最小正周期为π的奇函数

(D )最小正周期为π的偶函数 3.设0ω>,函数sin()23y x πω=+

+的图像向右平移43π个单位后与原图像重合,则ω的最小值是( )

(A )23 (B ) 43 (C ) 32

(D ) 3 4.将函数y=sin(x+π/6) (x 属于R)的图象上所有的点向左平行移动π/4个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为( )

(A) y=sin(2x+5π/12) (x 属于R) (B) y=sin(x/2+5π/12) (x 属于R)

(C) y=sin(x/2+π/12) (x 属于R) (D) y=sin(x/2+5π/24) (x 属于R)

5.下列函数中,周期为π,且在[

,]42ππ上为减函数的是( ) (A )sin(2)2y x π=+

(B )cos(2)2y x π=+ (C )sin()2y x π=+ (D )cos()2y x π

=+ 6.已知函数()sin (0,)2y x πω?ω?=+><

的部分图象如题(6)图所示,则( ) A. ω=1 ?= 6π B. ω=1 ?=- 6

π C. ω=2 ?= 6π D. ω=2 ?= -6

π 7.将函数y=sin(x-π/3)的图像上所有的点的横坐标伸长

带原来的2倍(纵坐标不变),再将所得的图象向左平移

π/3个单位,得到的图象对应的解析式为( )

(A)y=sin(x/2) (B)y=sin(x/2-π/2)

(C) y=sin(x/2-π/6) (D)sin(2x-π/6)

8.将函数sin y x =的图像上所有的点向右平行移动10

π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是( )

(A )sin(2)10y x π=- (B )sin(2)5

y x π

=- (C )1sin()210y x π=- (D )1sin()220

y x π=- 9.5y Asin x x R 66ππω???=∈????右图是函数(+)()在区间-,上的图象,为了得到这个函数的图象,只要将y sin x x R =∈()的图象上所有的

点( )

(A)向左平移

3π个单位长度,再把所得各点的横坐标缩短到原来的12

倍,纵坐标不变 (B) 向左平移3

π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变

(C) 向左平移

6π个单位长度,再把所得各点的横坐标缩短到原来的12

倍,纵坐标不变 (D) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 10.将函数y=sin2x 的图象向左平移π/4个单位,再向上平移1个单位所得到函数解析式( )

y=cos2x y=2(cosx)*(cosx) y=1+sin(2x+π/4) y=2(sinx)*(sinx)

11.函数f(x)= 3sin(),24x x R π-

∈的最小正周期为( ) A. 2π

B.x

C.2π

D.4π 12.cos13o o 计算sin43cos 43o o -sin13的值等于( )

A .12

B .33

C .22

D .32

高三数学一轮复习第11讲三角函数的图像与性质教案

三角函数的图像与性质

π??

据正弦函数单调性写出函数的值域(如本例以题试法(2)); (3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在给定区间上的值域(最值)问题(如例1(2)). 以题试法 1. (1)函数y = 2+log 1 2 x +tan x 的定义域为________. (2)(2012·山西考前适应性训练)函数f (x )=3sin ? ????2x -π6在区间??????0,π2上的值域为( ) A.??????-32,32 B.??????-32,3 C.??????-332,332 D.???? ??-332,3 解析:(1)要使函数有意义 则????? 2+log 1 2 x ≥0, x >0,tan x ≥0, x ≠k π+π2 ,k ∈Z ?? ???? 0

三角函数的图象

电教优质课教案 《三角函数图象》 舞钢市第二高级中学 李培林

《三角函数图象》教案 舞钢市第二高级中学 李培林 一、教材分析: 1、地位与作用 本节内容是《普通高中课程标准实验教科书〃数学必修4》(人教A 版)第一章第5节内容,是高一年级课程,三角函数的图象既是函数图象知识的延伸,也是物理简谐波和交流电的图象,还是自然界的生命线,广泛应用于医学领域的心电图,脑电图,多普勒,核磁共振等。同时三角函数的图象对于研究三角函数的性质起到了非常重要的作用,是历年来高考的热点和重点。 2、知识与技能 掌握由函数sin y x =的图象到函数sin()y A x ω?= +的图象的变换原理, 理解振幅变换、周期变换和平移变换,区分先周期后平移,先平移后周期两种变换的联系与区别,灵活应用三种变换解答三角函数的图象问题。 二、学情分析 对高一的学生来说,已经学习了函数图象的平移、伸缩、对称和翻折四种变换,有一定观察分析、解决问题的能力,但对前后知识间的联系、理解、应用有一定难度,因此思维灵活性受到制约。根据以上特点,教师恰当引导,提高学生学习自主性和主动性,带领学生直接参与分析问题、解决问题并品尝劳动成果的喜悦。 三、设计思想:

本节课采用自主学习的课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以问题为导向设计教学情境,以“三角函数的图象”为基本探究内容,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力。 四、教学目标: A.课堂目标 1、理解三角函数“几何”作图法 2、掌握三角函数“五点”作图法 3、掌握三角函数图像变换原理与方法 4、能用三种变换解答三角函数的图象问题 B.过程与方法 让学生从已有的知识出发,通过学生自主探索、合作交流,亲身体验数学规律的发现,由特殊到一般归纳出数学规律,并用规律解决数学问题,让学生掌握数形结合的思想方法。 C.情感态度与价值观 培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣,培养学生合情合理探索数学规律的数学思想方法,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。

三角函数图像变换小结(修订版)

★三角函数图像变换小结★ 相位变换: ①()sin sin()0y x y x ??=→=+> 将sin y x =图像沿x 轴向左平移?个单位 ②()sin sin()0y x y x ??=→=+< 将sin y x =图像沿x 轴向右平移?个单位 周期变换: ①sin sin (01)y x y wx w =→=<< 将sin y x =图像上所有点的纵坐标不变,横坐标伸长为原来的 w 1倍 ②sin sin (1)y x y wx w =→=>将sin y x =图像上所有点的纵坐标不变,横坐标缩短为原来的 w 1倍 振幅变换: ①()sin sin 01y x y A x A =→=<<将sin y x =图像上所有点的横坐标不变, 纵坐标缩短为原来的A 倍 ②()sin sin 1y x y A x A =→=>将sin y x =图像上所有点的横坐标不变,纵坐标伸长为原来的 A 倍 【特别提醒】 由y =sin x 的图象变换出y =Asin(x ω+?)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。 利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现 途径一:先平移变换再周期变换(伸缩变换) 先将y =sin x 的图象向左(?>0)或向右(0?<)平移|?|个单位,再将图象上各点的横坐标变为原来的 ω 1 倍(ω>0),便得y =sin(ωx +?)的图象 途径二:先周期变换(伸缩变换)再平移变换 先将y =sin x 的图象上各点的横坐标变为原来的ω 1 倍(ω>0),再沿x 轴向左(?>0)或向()0?<右平 移ω ?| |个单位,便得y =sin(x ω+?)的图象 【特别提醒】若由sin y x ω=得到()sin y x ω?=+的图象,则向左或向右平移应平移| |?ω 个单位

高中数学三角函数的图象与性质题型归纳总结

三角函数的图象与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ω x +φ)或y =A cos(ω x +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4π C .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1- D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f = B .(0)0f = C .'(0)1f = D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数 D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数 D .π最小正周期为2的偶函数

高中数学教案三角函数的图象与性质

高中数学教案三角函数的图象及性质 精编习题 三角函数的图象及性质 一、知识网络 二、高考考点 (一)三角函数的性质 1、三角函数的定义域,值域或最值问题; 2、三角函数的奇偶性及单调性问题;常见题型为:三角函数为奇 函数(或偶函数)的充要条件的应用;寻求三角函数的单调区间;比较大小的判断等. 3、三角函数的周期性;寻求型三角函数的周期以及 难度较高的含有绝对值的三角函数的周期. (二)三角函数的图象 1、基本三角函数图象的变换; 2、型三角函数的图象问题;重点是“五点法”作草

图的逆用:由给出的一段函数图象求函数解析式; 3、三角函数图象的对称轴或对称中心:寻求或应用; 4、利用函数图象解决应用问题. (三)化归能力以及关于三角函数的认知变换水平. 三、知识要点 (一)三角函数的性质 1、定义域及值域 2、奇偶性 (1)基本函数的奇偶性奇函数:y=sinx,y=tanx;偶函数:y=cosx. (2)型三角函数的奇偶性 (ⅰ)g(x)=(x∈R) g(x)为偶函数 由此得; 同理,为奇函数 . (ⅱ) 为偶函数;为奇函 数 . 3、周期性 (1)基本公式

(ⅰ)基本三角函数的周期y=sinx,y=cosx的周期为;y=tanx,y=cotx的周期为 . (ⅱ)型三角函数的周期 的周期为; 的周期为 . (2)认知 (ⅰ)型函数的周期 的周期为; 的周期为 . (ⅱ)的周期 的周期为; 的周期为 . 均同它们不加绝对值时的周期相同,即对y=的解析式施加绝对值后,该函数的周期不变.注意这一点及(ⅰ)的区别. (ⅱ)若函数为型两位函数之和,则探求周期适于“最小公倍数法”. (ⅲ)探求其它“杂”三角函数的周期,基本策略是试验――猜想――证明. (3)特殊情形研究

三角函数图像变换教学设计

§5 创新课堂教学设计模式 在情境教学设计中,创立了课堂教学八步骤: (1)创设情境(2)提出问题(3)学生探究(4)构建知识 (5)变式练习(6)归纳概括(7)能力训练(8)评估学习 数学情境设计实验案例 《函数y=Asin的图象》教学设计 模块名称:数学新课程必修4 (苏教版) 一课时 一、设计思想: 按照新课程理念,通过计算机辅助教学创设情境,实施信息技术与学科课程整合教学设计。引发学生学习兴趣,从而较好地完成教学任务。动画效果的展示形成对视觉的强刺激,把通常惯用的语言描述生动形象地刻画出来,促进学生对重点难点的知识理解掌握。 本课教学设计重点是学习环境的设计,通过几何画板创设动态直观情境,引导学生主动参与、乐于探究、培养学生处理信息的能力。

二、教学内容分析 本课教学内容是能通过变换和五点法作出函数y=Asin的图像,理解函数y=Asin(A>0, ω>0)的性质及它与y=sinx的图象的关系。本节内容是在三种基本变换的基础上进行的,进一步深入研究正弦函数的性质,y=Asin的图像变换是函数图像变换的综合,充分体现利用数形结合研究函数解决问题的思想,对前面的基础和知识有很好的小结作用,这种函数在物理学和工程学中应用比较广泛,有实际生活背景,它能为实际问题的解决提供良好的理论保证。同时,本课的教材也是培养学生逻辑思维能力、观察、分析、归纳等数学能力的重要素材。 教学重点:掌握函数y=Asin的图像和变换 教学难点:学生能通过自主探究掌握对函数图象的影响。 三、教学目标分析 1认知目标: (1)结合具体实例,理解y=Asin的实际意义,会用“五点法”画出函数y=Asin的简图。会用计算机画图,观察并研究参数,进一步明确 对函数图象的影响。 (2)能由正弦曲线通过平移、伸缩变换得到y=Asin的图象。 (3)教学过程中体现由简单到复杂、特殊到一般的化归的数学思想。 2 能力目标: (1)为学生创设学习数学的情境氛围,培养学生的数学应用意识和创新意识。 (2)在问题解决过程中,培养学生的自主学习能力。 (3)让学生经历列表、描点、连线成图的作图过程,体会数形结合、整体与局部的数学思想,培养学生的科学探索精神,归纳、发现的能力。 3 情感目标:

由三角函数图象求解析式

已知函数()f x =Acos(x ω?+)的图象如图所示,2 ()2 3 f π =- ,则(0)f =( ) (A )23- (B) 23 (C)- 12 (D) 1 2 2π 3,于是f(0)【解析】选B.由图象可得最小正周期为 =f(2π3),注意到2π3与π2关于7π12对称, 所以f(2π3 ) =-f(π2)=23. 如果函数()cos 2y x φ=3+的图像关于点43π?? ??? ,0中心对称,那么||?的最小值 为( ) (A ) 6π (B )4π (C )3π (D) 2 π 【解析】选A. 函数()cos 2y x φ=3+的图像关于点43π?? ??? ,0中心对称w.w.w.k.s.5.u.c.o.m 4232k ππφπ∴? +=+13()6k k Z πφπ∴=-∈由此易得min ||6 π φ=. 已知函数y=sin (ωx+?)(ω>0, -π≤?<π)的图像如图所示,则 ?=________________ 【解析】由图可知, ()544,,2,1255T x πωπ??? = ∴=+ ??? 把代入y=sin 有: 89,510ππ???? +∴= ??? 1=sin 已知函数()2sin()f x x ωφ=+的图像如图所示,则712 f π ?? = ??? 。

【解析】由图象知最小正周期T = 32(445ππ-)= 32π=ωπ2,故ω=3,又x =4 π时,f (x )=0,即2φπ +? 4 3sin()=0,可得4 π φ= ,所以,712f π ?? = ? ?? 2)41273sin(ππ+?=0。 )已知函数()sin(),f x A x x R ω?=+∈(其中0,0,02 A π ω?>><< )的图象与x 轴的 交点中,相邻两个交点之间的距离为2 π ,且图象上一个最低点为2(,2)3M π-. (Ⅰ)求()f x 的解析式; (Ⅱ)当[ ,]122 x ππ ∈,求()f x 的值域. 【解析】(1)由最低点为2(,2)3 M π -得A=2. 由x 轴上相邻的两个交点之间的距离为2π得2T =2 π ,即T π=,222T ππωπ=== 由点2(,2)3M π-在图像上得242sin(2)2,)133ππ ???+=-+=-即sin( 故42,32k k Z ππ?π+=-∈ 1126 k π?π∴=- 又(0, ),,()2sin(2)266f x x π ππ ??∈∴= =+故 (2)7[,],2[,]122636x x πππππ ∈∴+∈ 当26x π+=2π,即6x π=时,()f x 取得最大值2;当7266 x ππ+= 即2 x π =时,()f x 取得最小值-1,故()f x 的值域为[-1,2]把函数y =cos(3x +4 π )的图象适当变动就可以得到y =sin(-3x )的图象,这种变动可以是( ) A.向右平移 4π B.向左平移4 π

三角函数的图像与性质 教案

三角函数的图象与性质   教学目标 1.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质. .熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、 2 重点难点 重点是通过复习,能运用四种三角函数的性质研究复合三角函数的性质及图象的特点,特别是三角函数的周期性,是需要重点明确的问题. 难点是,在研究复合函数性质时,有些需要先进行三角变换,把问题转化到四种三角函数上,才能进行研究,这就增加了问题的综合性和难度. 教学过程 三角函数的图象与性质是三角函数的核心问题,要熟练、准确地掌握.特别是三角函数的周期性,反映了三角函数的特点,在复习“三角函数的性质与图象”时,要牢牢抓住“三角函数周期性”这一内容,认真体会周期性在三角函数所有性质中的地位和作用.这样才能把性质理解透彻. 一、三角函数性质的分析 .三角函数的定义域 1 函数y=cotx的定义域是x≠π或(kπ,kπ+π)(k∈Z),这两种表示法都需要掌握.即角x不能取终边在x轴上的角. (2)函数y=secx、y=cscx的定义域分别与y=tanx、y=cotx相同. 求下列函数的定义域: 例1

π](k∈Z) . 形使函数定义域扩大. 到.注意不要遗漏.

. (3)满足下列条件的x的结果,要熟记(用图形更便于记住它的结果)

是 [ ] 所以选C. 2.三角函数的值域 (1)由|sinx|≤1、|cosx|≤1得函数y=cscx、y=secx的值域是 |cscx|≥1、|secx|≥1. (2)复合三角函数的值域问题较复杂,除了代数求值域的方法都可以适用外,还要注意三角函数本身的特点,特别是经常需要先进行三角变换再求值域.

三角函数图像的变换

1、函数y=sin(x+π),x∈R和y=sin(x- 6- O 3 ),x∈R的图象与y=sin x的图象有什么联系?2 个单位所得的曲线是 2 sin x的图象,试求y=f(x)的解析式。 3 )y=sin2x 3 ) 3 ) 3 ) 3 ) 3 ),x∈R的简图。 π2 3 ),x∈R 6 ),x∈R 三角函数图像的变换 题型归纳: 系? π 34 ),x∈R的图象与y=sin x的图象有什么联 - π-π 3 1y π5ππ 6 34x 2、函数y=3sin(2x+π (1)y=sin x(2)y=sin x y=sin(x+π 4、函数f(x)的横坐标伸长为原来的2倍,再向左平移 π y=1 5、函数y=Asin(ωx+φA>0,ω>0,|φ|<π) 的图象如图,求函数的表达式. y=sin(2x+π y=3sin(2x+π y=sin(2x+π y=3sin(2x+π ★☆作业:(A组) 1、画出下列函数在长度为一个周期的闭区间上的简图: 3、画出函数y=3sin(2x+π y 2x+ 3 x 3sin(2x+π) 3 (3)y=4sin(x- π (4)y=sin(2x+π 第1页共2页

6 ) ,x ∈R (2) y = 1 sin( 3 x - (1) y = 5 sin( 1 x + 4 ) ,x ∈R 6、把函数 y =cos(3x + π A.向右平移 π 4 C.向右平移 12 (3) y = 3sin(2 x - ) ,x ∈R (4) y = 2 cos( x + π ) ,x ∈R 3 ,φ =- 6 B.A =1,T= 2 3 ,φ =- 4 D.A =1,T= 3 sin(2x + 3 sin(2x + (1) y = 8sin( - ) ,x ∈[0,+∞) (2) y = 1 7 ) ,x ∈[0,+∞) 2 的图象的一部分,求这个函数的解析式。 4、(1)y =sin(x + π (2)y =sin(x - π (3)y =sin(x - π 4 )是由 y =sin(x + 4 )向 5、若将某函数的图象向右平移 π 10、设函数 y = sin (x - π A.y =sin(x + 3π B.y =sin( x + π C.y =sin(x - π D.y =sin(x + π 2、说明下列函数的图像由正弦函数或余弦函数经过了怎样的变换。 π 2 2 π 4 )的图象适当变动就可以得到 y =sin(-3x )的图象,这种变动 可以是( ) π π π 4 B.向左平移 D.向左平移 12 ★★☆☆作业( B 组): 7、如图:是函数 y =A sin(ω x +φ )+2 的图象的一部分,它 的振幅、周期、初相各是 ( ) π 1 1 6 4 A.A =3,T= 4π π 4π 3π 3 ,φ =- 4 C.A =1,T= 2π 3π 4π π 3 ,φ =- 6 8、如左下图是函数 y =A sin (ω x +φ )的图象的一段,它的 解析式为 ( ) A. y = 2 π 2 x 3 ) B. y = 3 sin( 2 + π 2 π 4 ) C. y = 3 sin(x - 3 ) D. y = 2 2π 3 ) 3、不画简图,直接 写出下列函数的振幅、周期和初相,并说明这些 函数的图象可由正弦曲 线经过怎样的变化得出(注意定义域): x π 4 8 3 cos(3x + π 4 )是由 y =sin x 向 平移 个单位得到的. 4 )是由 y =sin x 向 平移 个单位得到的. π 平移 个单位得到的. 2 以后所得到的图象的函数式是 y =sin(x + 表达式为( ) 4 ) 2 ) π 4 )- 4 4 ) π 4 ),则原来的函数

三角函数图像变换.docx

龙文教育一对一个性化辅导教案

三角函数图象变换 考点分析:三角函数图象及性质是高考必考内容,主要是函数图像变换及函数性质。重点:①熟练地对y=simr进行振幅和周期变换;②会用相位变换画函数图彖; ③“五点法”画尸力sin(Gx+?)的图象、图象变换过程的理解; 难点:①理解振幅变换和周期变换的规律;②理解并利用相位变换画图象;③多种变换的顺序 一、教学衔接: 1、通过沟通了解学生的思想动态和了解学生的本周学校的学习内容。 2、检查学生的作业,及时指点; 3、59错题讲解 1)错题重现及讲解: 2)讲透考点: 3)相似题练习: 4、课前热身练习: 二、本次课主要内容 知识点一振幅变换 例1画出函数y=2sinx XG R; y=gsinx xwR的图象(简图). 解:画简图,我们用“五点法” ???这两个函数都是周期函数,且周期为2〃 ???我们先画它们在[0, 2刀]上的简图?列表: 作图: 知识点二周期变换 例2 iUlj出函数y=sin2x XG R; y=sin*x xwR的图象(简图)? TT 解:函数y=sin2%, xGR的周期T=——=JI 2 我们先画在[0,兀]上的简图,在[0,兀]上作图,列表: 作图:

知识点三图像平移 例画出函数 yr yr * * y=sin(x+—), xWRy=sin(x ——), xGR 的简图. 3 4 解:列表 描点画图: 【同步训练】 1、(l)y=sin(x+—y=sinx 向平移个单位得到的. (2) y=sin(x ——)是由y=siwc 向平移个单位得到的? ? 4 (3) y=sin(x —兰)是由y=sin(x+— )|nj 平移个单位得到的. 4 4 2?若将某函数的图彖向右平移兰以后所得到的图彖的函数式是y=sm(x+-)f 则原来的 2 41 函数表达式为( ) SIT 7T TT . 77 A ?y=sin(x+ —) B ?y=sin(x+ — )Cj=sin(x — —) D ?y=sin(x+ —— 「 4 ° 2 4 4 4 3、 将函数y=/(x)的图彖沿兀轴向右平移彳,再保持图象上的纵坐标不变,而横坐标变为原 来的2倍, 得到的曲线与y=siwc 的图象相同,贝ijy=/(x)是() 7T TT . 2TT 2TT A.j=sin(2x+y) B.j=sin(2x — y ) C.>j =sin(2x+ —) D ?y=sin(2x ——) 4、 把函数y=cos(3尢+ ◎的图象适当变动就可以得到y=sin(-3x)的图彖,这种变动可以是 4 ( ) A ?向右平移仝 B ?向左平移仝 C ?向右平移三 4 4 12 5、 若函数y=f{x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将 整个图象 沿%轴向左平移兰个单位,沿y 轴向下平移1个单位,得到函数y=-sin^的图彖, 2 2 3 -1 6 4 2 3 D ?向左平移醫

三角函数图像及其变换

高一数学第十四讲 三角函数图像及其变换 一、知识要点: ππ ππ ?ω2,2 3, ,2 , 0=+x 列表求出对应的x 的值与y 的值,用平滑曲线连结各点,即可得到其在一个周期内的图象。 3.研究函数R x x A y ∈+=),sin(?ω(其中0,0>>ωA )的单调性、对称轴、对称中心仍然是将?ω+x 看着整 体并与基本正弦函数加以对照而得出。它的最小正周期||2ωπ =T 4.图象变换 (1)振幅变换 R x x y ∈=,s i n ??????????????→ ?<<>倍 到原来的或缩短所有点的纵坐标伸长A 1)A (01)(A R x x y ∈=,s i n A

(2)周期变换 R x x y ∈=,s i n ??????????????→ ?<<>倍 到原来的或伸长所有点的横坐标缩短ω ωω1 1)(01)(R x x y ∈=,s i n ω (3)相位变换 R x x y ∈=,s i n ????????????→?<>个单位长度平移或向右所有点向左||0)(0)(???R x x y ∈+=,)(s i n ? (4)复合变换 R x x y ∈=,s i n ????????????→ ?<>个单位长度平移或向右所有点向左||0)(0)(???R x x y ∈+=,)(s i n ? ?? ????????????→?<<>倍 到原来的 或伸长所有点的横坐标缩短ω ωω11)(01)(R x x y ∈+=),sin(?ω ??????????????→ ?<<>倍到原来的或缩短所有点的纵坐标伸长A 1)A (01)(A R x x A y ∈+=),sin(?ω 5.主要题型:求三角函数的定义域、值域、周期,判断奇偶性,求单调区间,利用单调性比较大小,图 象的平移和伸缩,图象的对称轴和对称中心,利用图象解题,根据图象求解析式,已知三角函数值求角。 二.基础练习 1. 函数1π2sin()23 y x =+的最小正周期T = . 2.函数sin 2x y =的最小正周期是 若函数tan(2)3y ax π=-的最小正周期是2π,则a=____. 3.函数]),0[)(26 sin( 2ππ ∈-=x x y 为增函数的区间是 4.函数2 2cos()()363 y x x ππ π=- ≤≤的最小值是 5.将函数cos y x =的图像作怎样的变换可以得到函数2cos(2)4 y x π =-的图像? 6.已知简谐运动ππ()2sin 32f x x ????? ?=+< ??????? 的图象经过点(01), ,则该简谐运动的最小正周期T 和初相?分别为 7.已知a=tan1,b=tan2,c=tan3,则a,b,c 的大小关系为______. 8.给出下列命题: ①存在实数x ,使sin cos 1x x =成立; ②函数5sin 22y x π?? =- ???是偶函数; ③直线8x π=是函数5sin 24y x π? ?=+ ??? 的图象的一条对称轴; ④若α和β都是第一象限角,且αβ>,则tan tan αβ>. ⑤R x x x f ∈+ =),32sin(3)(π 的图象关于点)0,6 (π - 对称; 其中结论是正确的序号是 (把你认为是真命题的序号都填上). 三、例题分析: 题型1:三角函数图像变换 例1、 变为了得到函数)62sin(π-=x y 的图象,可以将函数1 cos 2 y x =的图象怎样变换?

三角函数图象教案

第四章第三单元 三角函数的图象与性质 教材为新人教版(高中数学必修第一册(下)) 第一课时 ☆教学课题: §4.8.1 正弦函数、余弦函数的图象与性质(一) ☆教学目标: (一)知识目标 1.正弦函数的图象; 2.余弦函数的图象. (二)能力目标 1.会用单位圆中的线段画出正弦函数的图象; 2.用诱导公式画出余弦函数的图象; 3.会用“五点法”画正、余弦函数的图象. (三)德育目标 1.培养学生的数形结合思想; 2.渗透由抽象到具体思想; 3.使学生理解动与静的辩证关系,注意与其他学科之间的联系,体现数学在其他学科及社会中的应用; 4.培养学生主动探索的精神,独立解决问题的能力. ☆教材分析: 在前面引进了任意角三角函数的定义的基础上,本节对正弦、余弦函数的图象和性质作了系统的研究.本节的主要内容是正弦函数、余弦函数的图象与性质.教科书先利用正弦线画出函数y =sinx , x ∈[0,2π]的图象并根据“终边相同的角有相同的三角函数值”再将其向左、右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x 在x ∈R 上的图象,即正弦曲线,在此基础上,利用诱导公式cos y x == cos()x -= sin [2π-(- x )]= sin ( x +2π),把正弦曲线向左平行移动

2π 个单位长度,得到余弦曲线;然后利用图象考察了正弦、余弦函数的性质,还穿插着介绍了周期函数、(最小正)周期、奇函数和偶函数、在长度为一个周期的闭区间上的五个关键点的意义,介绍了画出定义在闭区间[0,2π](其长度为一个周期)上的函数简图的“五点法”;最后介绍了如何求与正弦、余 弦函数有关的某些简单函数的最大、最小值,如何求这类简单函数的周期,以及如何根据正弦、余弦函数的图象和周期性比较两个三角函数值的大小. 作为函数,它是已学过的指数函数与对数函数的后继内容.课本上基本是借助函数图象直观得出两个函数的性质,大部分没有给予证明.由于有研究指数、对数函数的基础,加之上单元三角变换为图形变换提供了依据,为数形结合创造了条件,因此学生接受起来并不是十分困难.但本节是“两面角和与差的三角函数”后的第一节,概念较多,思维方法与前有所不同,要取得好的教学效果,认真梳理好讲解的顺序(包括推导步骤和图象、简图画法的安排),并通过一定的训练,使学生正确了解有关概念和图象的性质,就成为学好本节的关键. 三角函数的性质贯穿于本单元,函数的性质是研究函数的一个重要内容,它不仅是学习数学后继知识的重要基础,在科学研究、生产实际中也是重要工具之一,因此正弦函数、余弦函数的图象形状及其主要性质(定义域、值域、周期性、奇偶性和单调性)是本节教学内容的重点,利用正弦线画出函数y =sinx , x ∈[0,2π]的图象再利用正弦曲线和诱导公式画出余弦曲线,周期函数和最小正周期的意义,是本节的三个难点.总的来说,利用有关定义论证函数的某 些性质,利用图象获得函数的性质,再利用性质画出图像,使形和数紧密结合,培养学生的形象思维能力和想象能力,是本节的要点. ☆教学重点: 用“五点法”画正弦曲线、余弦曲线 ☆教学难点: 利用单位圆画正弦曲线及用诱导公式画出余弦曲线

三角函数的图象和性质复习课

2006-12月,天津市第二届“信息技术优化教学过程优秀教学设计”中学组二等奖。 三角函数的图象和性质 复习课之教学设计 天津开发区国际学校 何韬 通讯地址:天津开发区晓园街9号 邮编:300457 电子邮箱:

三角函数的图象和性质复习课之教学设计 天津开发区国际学校何韬 300457 【知识目标】①掌握作函数y=Asin(ωx+φ)的简图的方法――五点法和图象变换法; ②了解函数的变换思想; ③三角性质的综合应用 【能力目标】经历猜想、观察、操作、推理等活动,培养观察能力,提取信息的能力,运用现代工具进行探索的能力;并渗透先猜后证的数学探索和研究方法; 通过图象变换不同方式的比较,渗透函数代换思想和数形结合思想 【情感态度目标】经历自主探索和交流合作,分享思想交流带来的乐趣和成就,逐步养成探究习惯和小组分工合作意识。 【教学重点和难点】三角性质的综合应用 【课题的主要体现】1、运用图形计算器,与VCE合理并进; 2、师生运用图形计算器和计算机课件 (ppt演示文稿, 几何画板,图 形计算器软件),进行研究和探讨,交流合作,操作实践 【主要内容及步骤简介】 第一步:复习用五点法和图像变换法作三角函数的图像; 第二步:复习正、余弦函数的性质; 第三步:以一道综合题来应用巩固知识并培养、提高能力。 第四步:练习,小结和作业。 教学步骤实在是极为普通,学生也很容易枯燥乏味。为充分调动学生,体现新课改思想,我这样来设计教学的每个环节。 【教学设计】 一、五点法作图要点说明及举例(对比教学,突出选点方法及操作步骤) 例:作以下两图在一个周期内的图像 y=cosx y=3sin(2x+2π/3)

三角函数图象变换教案

一、新课引入: 师:前面我们学习了正弦函数y=sinx的图象和性质,请同学说出它的定义域、值域、奇偶性、周期及单调区间? 生:定义域:R,值域:[-1,1],奇函数,单增区间:[]单减区间: [] 师:回答的很好,那么形如函数的定义域、值域、奇偶性、周期及单调区间又如何呢? (一片茫然,没有学生回答) 师:大家别着急,今天我们就要来学习它们的图象和性质,并通过它们的图象和性质进一步来探究它们的图象与y=sinx图象会有什么样的关系. 二、动手实验: 下面请大家用图形计算器在同一坐标系分别输入以下几组三角函数的图象,并观察每一组图象的定义域、值域、周期、单调区间及其再观察每一组图象相互之间的关系、特点,然后进行小组讨论、交流. 第一组: 第二组: 第三组: (教师巡视,同时指导学生注意输入中经常出现的几个问题:窗口调节、弧度与度的单位转换、及其如何利用在同一坐标系同时画图和利用功能键进行追踪和如何利用其它键进行的放大等等.) 三、师生交流: 师:从下列第一组图1,你有什么体会?

图1 师:的定义域、值域、周期分别是多少? 生:的定义域:x∈R,值域:y[-2,2],周期:应该与y=sinx的一样还是 师:不错,那么呢? 生:的定义域x∈R,值域:y∈[-,],周期: 师:很好,那么它们三者之间的图象有什么关系呢? 生:好象它们之间有一定的伸缩关系 师:能不能再说得具体一点吗? 生:伸缩倍数是不是与2和有关呢? 师:大家探究和分析的很好,是不是这样呢?不过别着急.下面请大家先看大屏幕几何画板的动画演示 (老师心喜:他们能够说出“伸缩”二字,而且发现与2和有关,只是猜想不知是否正确,此时,利用动画演示有助于验证他们的猜想)

三角函数图象与性质教案

函数y=Asin(ωx+φ)(A>0, ω>0)图象 一、学情分析: 1.接触过描点作图法; 2.学习过“五点法”作正、余弦函数的图象; 3.学习过周期函数的定义. 二、教学目标: 知识目标: 1.“五点法”画y=Asin(ωx+φ)的图象; 2.理解由图象变换得到y=Asin(ωx+φ)的图象的过程; 能力目标: 1.用“五点法”画出y=Asin(ωx+φ)的图象 2.能用图象变换的方法掌握y=Asin(ωx+φ)的图象的形成; 德育目标: 1.数形结合思想的渗透; 2.培养学生“由简单到复杂、由特殊到一般”的化归思想和辩证思想; 3.培养学生的探究能力和协作学习的能力,从而提高学习数学的兴趣; 三、教学重点和难点分析: 在本节课的教学内容中,函数y=Asin(ωx+φ)的图象是核心,因此:教学重点:图像变换过程理解(即将参数A、ω、Φ对函数y=Asin(ωx+φ)图象的影响问题分解,从而把复杂问题分解成若干简单问题,充分体现化归思想)教学难点: 1.由y=sinwx变换到y=sin(wx+φ)的过程 2.多种变换的顺序:周期变换和相位变换的顺序不同时,平移变换的长度也随之改变,这是学生难以理解的,也是本节课的难点,教师在处理这个问题时,结合多媒体的动态演示,给学生清晰的讲述,指出理解这个问题的关键是两种变换作用的对象是x. 四、教学方法:探究—引导—归纳—应用 五、教学手段:多媒体,黑板 六、学法指导:从简单到复杂、特殊到一般的化归思想,体会数形结合的重要数学思想. 七、教学流程图: ↓ ↓ ↓ 八、教学过程: 一、情景引入:

前面我们接触过形如y=Asin(ωx +φ)的函数,它在实践中有很多用处.例如,在物理中,简谐振动中单摆对平衡位置的位移与时间的关系,交流电中电流与时间的关系都是这样的函数.(多媒体给出简谐振动图1)(2分钟) 今天我们就来研究y=Asin(ωx +φ)(A>0,ω>0)函数图象.前面我们已经学习过三角函数的"五点作图法"和函数的相关性质. 特别地,当A=1,ω=1,φ=0时就是我们熟悉的正弦函数y=sinx .那么,当A≠1,ω≠1,φ≠0时,函数的图象和性质又怎么样呢? 二、新课讲授:(25分钟) 现在我们就来研究常数φ, ω, A对函数图象的影响. 分组讨论:学生分为三组,根据用五点作图法作出的函数图象说出它们的联系(学生预习作业,学生团结协作,完成作图并讨论图象间的区别与联系) 第一组:y=sinx 和)3sin(π +=x y 第二组:x y sin =和x y 2sin = 第三组:x y sin =和x y sin 3= (巡视检查预习作业2) (一)我们来探索?对函数图象的影响 师:它们的定义域、值域、周期分别是多少?它们的图象又有如何关系?(对第一组学生提问) 多媒体演示,(并加以引导:分别在两条曲线上各选取纵坐标相同的两点A,B,沿两条曲线同时移动两点,同时保证它们纵坐标相等,观察它们横坐标关系.) 回答:定义域: R ,值域:y ∈[-1,1],周期: ,可以通过把正弦曲线向左平移3 π个单位长度得到. 总结归纳1:)0(),sin(≠+=??x y 的图象,可以看作是把正弦曲线上所有的点向左(φ>0)或向右(φ<0)平移|φ|个单位长度而得到. (二)我们来探索ω对函数图象的影响 师:和第一组一样,你们对这两个函数的图象会有什么体会呢?(对第二组学生提问) 多媒体演示加以引导. 回答:定义域:R,值域:[-1,1]周期:分别是 和π,图象上所有点的横坐标缩短到原来的2 1倍(纵坐标不变)而得到的. 归纳总结2:)sin(?+=wx y 的图象,可以看作是把)sin(?+=x y 的图象上所有 的点的横坐标变为原来的 w 1倍. (三)探索A对函数图象的影响

三角函数图像与性质教案

三角函数的性质与图像 一、教学内容分析 近几年高考降低了对三角变换的考查要求,而加强了对三角函数的图象与性质的考查,因为函数的性质是研究函数的一个重要内容,是学习高等数学和应用技术学科的基础,又是解决生产实际问题的工具,因此三角函数的性质是本章复习的重点。在复习时要充分运用数形结合的思想,把图象与性质结合起来,即利用图象的直观性得出函数的性质,能利用函数的性质来描绘函数的图象,这样既有利于掌握函数的图象与性质,又能熟练地运用数形结合的思想方法。 二、学情分析 对于函数性质的研究,学生已经有些经验.其中,通过观察函数的图象,从图象的特征获得函数的性质是一个基本方法,这也是数形结合思想的应用. 三、教学目标 1、 知识与技能: (1)“五点法”画函数sin()y A x ω?=+的图像. (2).图像变换规律. (3).函数B x A y ++=)sin(?ω),(其中00>>ωA 图像性质及常见问题 处理方法 2、过程与方法:培养学生应用所学知识解决问题的能力,独立思考

能力,规范解题的标准。 3、情感态度与价值观:培养学生全面的分析问题和认真的学习态度,渗透辩证唯物主义思想。 教 学 重 点:围绕三角函数图像变换、五点作图求函数解析式. 教学难点、关键:图像变换中的左右平移变换中平移量的确定. 教 学 方 法:启发、引导、研讨相结合 教 学 手 段:结合学生复习情况,使用多媒体课件,提高教学的效率 教 学 课 时:一课时 四、知识梳理 1、 用“五点法”画sin()y A x ω?=+一个周期的简图时,要找出五 个关键点。 2、 三角函数图像的变化规律。 横坐标变为原来的 倍 画出函数sin y x =图像

三角函数图象变换

的图象变换及特征量 函数)sin(?ω+=x A y 姓名____________________ 评分____________________________ 一. 选择题(每小题5分,共40分) 1.要得到)3 4sin(π -=x y 的图象,只需把x y 4sin =的图象 ( ) (A )向左平移 3π个单位(B )向右平移3 π 个单位(C )向左平移12π个单位(D )向右平移12π个单位 2.把函数 x y cos =的图象上所有的点的横坐标缩小到原来的一半,纵坐标扩大到原来的两倍,然后把 图象向左平移4 π 个单位,则所得图象表示的函数解析式为 ( ) (A )x y 2sin 2= (B )x y 2sin 2-==(C ))42cos(2π+=x y (D ))4 2cos(π +=x y 3.把函数)42sin(2π+=x y 的图象向右平移8 π 个单位,再把所得的图象上各点的横坐标扩大为原点的 两倍,则所得的函数的解析式是 ( ) (A) )83sin(2π+ =x y (B) )8 sin(2π +=x y (C) x y sin 2= (D) x y 4sin 2= 4.把函数)4sin()(π-=x x f 的图象向左平移 34 π 个单位,所得图象所对应的函数是( ) (A )奇函数(B )偶函数(C )既是奇函数又是偶函数(D )既不是奇函数又不是偶函数 5.将函数)(x f y =的图象各点纵坐标不变,横坐标扩大为原点的两倍,再向左平移 2 π 个单位,得函数x y sin 2 1 = 的图象,原)(x f 的解析式为 ( ) (A ))22sin(21π-=x y (B ))22sin(21π+=x y (C ))22sin(21π+=x y (D ))22sin(21π -=x y 6.为了得到函数sin(2)6 y x π =-的图象,可以将函数x y 2cos =的图象 ( ) (A )向左平移 3π个单位(B )向右平移3π 个单位(C )向左平移6π个单位(B )向右平移6π个单位 7.要得到2sin x y =的图象,只需将函数)3 21sin(π -=x y 的图象 ( ) (A)向左平移3π个单位(B )向右平移3 π 个单位(C )向左平移32π个单位(D )向右平移32π个单位 8.函数3sin(2)([0,])6 y x x π π=--∈的单调递增区间是( ) A 5[0,]12π B 2[,]63ππ C 11[, ]612ππ D 211[,]312 ππ 二.填空题(每小题5分,共30分) 9.()sin()(0,0,0),52,(,0),()_____________________. 9 f x A x A f x π ω?ω?ππ=+>><<2已知的最小正周期是最小 3 值是-且图象经过点则解析式为

三角函数图像变换

三角函数图像及其变换 一、 知识梳理 1、sin y x =与cos y x =的图像与性质 2、sin y x =与sin()y A x ωφ=+ (1) 形如sin()y A x ωφ=+的函数图像的画法 (2) sin y x =与sin()y A x ωφ=+图像的关系 二、 典型例题 1、把函数sin y x =(x R ∈)的图象上所有点向左平行移动3 π 个单位长度,再把所得图象上所有点的横坐标缩短到原来的1 2 倍(纵坐标不变),得到的图象所表示的函数是 (A )sin(2)3y x π=-,x R ∈ (B )sin()26x y π =+,x R ∈ (C )sin(2)3y x π=+,x R ∈ (D )sin(2)3 2y x π =+,x R ∈ 2、为得到函数πcos 23y x ? ?=+ ???的图像,只需将函数sin 2y x =的图像( ) A .向左平移 5π 12个长度单位 B .向右平移 5π 12个长度单位 C .向左平移5π 6 个长度单位 D .向右平移5π 6 个长度单位

3、函数πsin 23y x ??=- ?? ?在区间ππ2??-???? ,的简图是( ) 4、下面有五个命题: ①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a = Z k k ∈π ,2 |. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 36 )32sin(3的图象得到的图象向右平移x y x y =π π+= ⑤函数.0)2 sin(〕上是减函数,在〔ππ - =x y 其中真命题的序号是 (写出所言 ) 5、将函数3sin()y x θ=-的图象向右平移3 π 个单位得到图象F ',若F '的一条对称轴是直线4 x π =,则θ的一个可能取值是 A. π125 B. π125- C. π12 11 D. 1112π- 三、高考再现 1、已知函数2 π()sin sin 2 f x x x x ωωω?? =++ ?? ? (0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03?????? ,上的取值范围.

相关主题